šrintifir gmmerican.

HSTABLISHED 1845.

MUNN \& CO., Editors and Proprietors

 Ublished weekly atNo. 361 BROADWAY, NEW YORK.
. MUNN.
A. E. BEACH

One copy, one year, for the U. S.. Canada or Mexico... One copy, six months, for the

The Scientific American Supplement

LAA AMERICA CIENTIFICA E INDUSTRIAL (Spanish trade edition of the SCIENTIFIC AMERICAN) is published monthly, uniform in size and typograpby witb the SCIENTIFIC AMERICAN. Every number of profusely illustrated. It is the fnest flientitic, industrial trade maper printed in the Spanish language. It circulates throughout Cuba, the West sions-wherever the Spanish language is sposen. \$3.00 a y ear, post paid to any part of the world. Single copies 25 cents. See prospectus. MUNN \&CO., Publishers, 361 Broadway, New York.		
(10 The safest way to remit is by postal order, express money order, ${ }^{\text {drato. }}$ Readers are specially requested to notify the publishers in case of any failure delay, or irregularity in receipt of papers.		
EW YORK, SATURDAY, MAY 7,		
Contents. (Illustrated articles are marked with an asterisk.)		
Artosian well, hot, Waco, Texas ${ }^{\text {a }}$ A 293		
Bridese, a great, for New York... 291		
Carrere pigeons in Paris........ 295		
Catte an horsee, difierences in. ${ }^{\text {and }}$		
Cruiser Raleigh, the new ${ }^{\text {Death match, } \text { ticking of tie..... } 295}$		
Electrical ribbon machines. Elephants, feeding habits of.... 2296		
Guns, laree , wsumbliupa*		
Inventions, recently patented... 2296		
Lantern slides, coloring (4292).... 298		
Lobsters, some curious		
Mechanical inventions, recent.... Monterey, turrets of the.		

TABLE OF CONTENTS OF
 SCIENTIFIC AMERICAN SUPPLEMENT No. 853

steadying vessels at sea.

At the recent meeting of the Institute of Nava Architects, in London, Mr. J. I. Thornyeroft read a paper on the steadying of vessels at sea. He gave an account of some experiments recently made on the yacht Cecile. The vessel was provided with a shifting weight which was arranged under the floor of the cabin and connected with a pendulum and a hydraulic apparatus, in such a manner that when the vesse rolled, the weight was shifted so as to counteract the rise of the vessel. In this way he was able to decrease the rolling from about eighteen degrees each way, when the apparatus was not in use, to about nine degrees, when the device was put in operation.
The use of shifting weights for the trimming of vessels is in common use in this country, and has been for many years. It is chiefly employed on our river and sound steamers. In some cases the weight is shifted by mechanism, but a more common method is to make use of boxes containing iron weights, such as chain cables. The boxes are mounted on wheels, and when the boat begins to roll, the seamen, on signal from the pilot, move the weight as required to bring the boat back to even keel.
Quite a number of patents have been granted in this country for self-acting ballast-shifting devices, with pendulums to trim or prevent vessels from rolling. Among the earliest of these patents was that of Purse and Staley, number 1,460, granted in 1839-more than half a century ago. In this invention a weighted pendulum was used, which, by swinging when the vesse rolled, set gearing into motion that instantly moved heavy weight athwart the vessel so as to counteract the rolling. This apparatus was arranged below decks and motive power from the main engine or from a special engine operated the mechanism.
Mr. Thornyeroft is of the opinion that a contriv ance on the principle described might be advantage ously applied to sea-going vessels. The success of his recent experiment and the long use of analogous apparatus in this country support his views. The ap plication of anti-rolling devices to Atlantic passenger steamers certainly would render the sea passage much more comfortable than it often is at the present time

CALIFORNIA WINES.

An excellent quality of table wine, red or white, can be had of the wholesale dealers in California for from 50 to 60 cents per gallon. Each gallon fllls from five to six bottles, making the cost to the vender but about ten cents a bottle, although he sells it at from 50 to 60 cents a bottle to the consumer. Very little native wine goes to the saloons, because the demand is small, the patrons usually preferring beer or stronger liquors. The hotels and restaurants are the channels through which the wines chiefly go to the tables, and the reason why there is not greater use - of native wines is on ac count of the exorbitant prices charged, under the guise of foreign labels. A correspondent says he has seen in the world can produce made in Los Angeles ; but the wine merchant sorrowfully in New York under French labels."
The result of such frauds is not merely to impose on the purchaser, but also to diminish the inducement to make really choice native wines, because there is no market for them as such.
Large cargoes of California wines go abroad, to be reshipped to this country as foreign goods. The French manipulate them, put in a fancy bouquet, and sell them back to us at an enormous profit. Patriotism should lead us to patronize our own productions, which with a fair degree of caution we may now to be pure and wholesome.
The question is asked, however, if California wines are not adulterated. It is asked in reply, what they can be adulterated with that is cheaper than $\$ 10$ a ton -the price of the native grapes to the manufacturer. There is no question about imitations and frauds; but this is not done in California, for the simple reason that honesty is cheaper there.

Electrical Ribbon Machines.

The City Council of St. Etienne have resolved to apply electric motive power to all the hand looms in the city, and contracts have been made with an electric company for the necessary plant and currents. The electric dynamos are to be driven by water from the city reservoirs. There is practically an unlimited supply of water in the reservoirs, with a fall of upward of 100 feet. To grasp the importance and far-reaching results of this innovation, it is necessary to understand 000,000 bulk of the enormous output of ribbons ($\$ 22$, , ,000 a year) is the product of house industry. The weavers for the most part own their own looms, and 18,000 looms which are thus distributed amere ar 18,000 looms which are thus distributed among the driven by steam in the few ribbon factories of the town is only 5,000 . The 18,000 looms of the independent What the city of St. Etienne proposes to do is to con vert each one of the 18,000 hand looms into a power
loom driven by electricity, the innovation being coupled with the adoption of electric light. The result of this change from slow, laborious, uncertain hand power to the swift, regular, unfailing power furnished by electric motors will be an increase in the productive capacities of the looms and a considerable reduc tion in the general expenses of fabrication. In other words, art will be wedded to modern machinery. The weavers of St. Etienne have always been the most art istic ribbon makers in the world, but they have en joyed few mechanical advantages. Now the old orde of things is to be changed, and the products of the St Etienne ribbon looms, which have been a trifle more costly than similar products in some other countries notably in Switzerland, will be turned out at the lowest possible prices. The weavers employed in the rib bon trade number 70,000 .

Origin of the Term "Grippe."
La Medecine Moderne gives an extract from a mete orological journal kept at Versailles in the eighteenth century, and in which the meteorological variations are carefully noted day by day, with a few reflections upon remarkable atmospheric occurrences-storms, hail, thaw, etc.
Commenting upon the months of February and March, 1743, the journal says. "There was a prova lence of colds and inflammations of the chest at Ver sailles and Paris. The king named this malady 'la grippe.' It was observed that bleeding was wholly contra-indicated. Such persons as had not been bled, and who drank inuch, were the most quickly cured."
It results, then, from this document, that it wa King Louis XV. who gave the name of grippe to the influenza that then prevailed under a meteorologica state, as the journal shows, analogous to that of recent years and of the present year.

Wooden Pavements in Paris
In an article on wood pavement in Paris, contri buted to the Revue Pratique des Travaux Publics by Mr. Brown Vibert, the author remarks that, to insure durability, this class of pavement must be laid with considerable care. The concrete foundation should be 6 in . thick, and made with 300 lb . to 440 lb . of Portland cement to a mixture of 9 cubic feet of sand and 27 cubic feet of gravel. As soon as it has set, the concret should be covered with a $\frac{7}{T_{6}}$ in. layer of mortar consist ing of 660 lb . of Portland cement to every 35 cubic fee of sand, and left to harden two or three days. The blocks should then be set in rows separated from each ther by a space $8 / 8$ in. wide. These cracks are filled with cement mortar, and a layer of broken porphyritic tone $11 / 2$ in. thick spread over the pavement. This layer is soon driven into the wood by the action of the wheels. Provision must be made for the expansion of he wood, and for this reason in wide roadways a space about 2 in . wide is left open along the sidewalk and afterward filled with sand. In a roadway 131 ft . wide an expansion of no less than 16 in. was oberved to take place in fifteen days, the blocks being very dry In Paris these blocks are 6 in . high, 3 in. thick, and $81 / 2 \mathrm{in}$. long. The cost as laid is about 9 s . 6d. per square yard for Landes pine and 14 s . 3d. per square yard fo northern spruce blocks. The duration is said to be about seven or eight years under heavy traffic and about fifteen under moderate

The Best Stone for Roads.

In a paper read before the Boston Society of Civi Engineers, Mr. W. E. McClintock remarks that the specific gravity of a rock is no indication whatever \bullet its fitness for road metal. Thus slate weighs 175 lb per cubic foot and pure mica about 183 lb , but no on would think of using either of these for road metal The best material for this purpose was, he considered, rap rock, after which he would place felsite, and then ame granite. As regards the latter, however, it differ in quality, that containing hornblende being prefer able to those with mica. The latter was soft and should not be used unless it was very difficult to get better material. In cases where the traffic is light and the stones previously mentioned difficult to procure, sandstone may be economically used for metal, in spite fits inferior wearing powers. Of two sandstones, he held that the coarser-grained was to be preferred Gneiss he held to be of about the same value as a good sandstone.

Use of Carrier Pigeons at sea.

According to the Revue Maritime et Coloniale, me important experiments have been recently made at Portsmouth relative to the use of carrier pigeons a a d depot of these birds having been established it the Eastney barracks, some of the nigeons belong

 qual to that of the ..ath if Fown. Thest land almost invariably ret
occasion there was a thick fog ca the other side of the channel ; the pigeons set free circled for a few minutes around the boat, and then, getting their bearing, re turned to Eastney without delay.

