in the direction down the inlet. This forest has been covered to a depth of nearly a hundred feet by the fine sand of a portion of the moraine, which extends several miles down the inlet, on that side, at a constantly decreasing altitude. The fact is that since these trees grew the glacier has advanced until it glided over the trees and over this whole moraine, then it has receded again and a little stream is now doing what the great glacier could not do, root out the trees.
How long the ice may have passed over the buried forest, or how old the trees are, cannot be certainly stated, but the ice must have filled Glacier Bay since the trees grew, and that must have been several hun dred years ago-and may have been several thousand Yet the wood is now so fresh that it might well be but a few years old. That the ice filled Glacier Bay within a few hundred years is very evident from thc condition of the vegetation, for there are no trees nearor than Beardslee Islands, though the conditions are very favorable. The smaller vegetation has spread more rapidly and covers the mountains, while it is gaining some foothold on the moraines about the mouth. Here the plants grow less in quantity and variety nearer the glacier, until within half a mile of the ice no plants are found. Again the mountain sides are very handsomely grooved to a height of 3,000 feet, and even the polish is well shown, though rocks in this atmo sphere disintegrate very rapidly. Debris, too, can be found at a height of 3,000 feet, and Vancouver's de scriptions seem to showthat the ice in his time, though not filling the bay, extended much farther down. Not only has the glacier retreated a long distance since Vancouver's time, but it is now retreating very rapidly. Photographs taken by Professor Reid's party in 1890 show that the front has receded about 3,000 feet in four years, and the steamer company report tha since 1883 it has receded over a mile. The ice front has decreased in thickness also, for it is now at the same height, abovc water, 300 feet, but back at a point which was 400 feet high in 1886. Mr. Cushing shows that [the glacier is dying out, about the heads, with equal rapidity, so that the ice retreats from the mountains into the basin and the source of supply is cut off.

## Railway Rust

The rusting of rails in long tunnels is the subject of a recent article in the Civil Ingenieur, doscribing the results of observations in the Altenberg tunnel, which is about 1,230 feet long and located on a curve of 2,950 feet radius. The rails had been down for 11 years, and at the end of that time were covered to a depth of 0.16 to 0.24 inch by hard scales, which could only be removed by a knife. They were composed mainly of iron sulphide, and werc found principally on the web. While the weight of the rail was much reduced in this manner, its ssectional area was found to have increased, owing to the flaky character of the rust. The new rails have been covered with a mixture consisting largely of tar which is renewed every six months. The gravel bal last has also received a partial covering of broken limestone, and by these means it is hoped that the formation of rust will be retarded. In the Brandleite tunnel, in Thuringen, it was found that rails and metal ties were destroyed by rust as fast as by the passing trains. The ties lost about 5.9 pounds each in six years. This tunnel is nearly 10,000 feet long, and is o a tangent having a 1 per cent grade.

Tropic and Semitropic Fruits and Nuts.
For the first time the Census Officehasmadea special investigation for the purpose of ascertaining the extent and value of the production of oranges, lemons, figs, almonds, cocoanuts, and other tropic and semitropic fruits and nuts as industries of the United States. A preliminary report has been prepared by Mr. J. H. Hale, special agent, under the direction of Mr. Morti mer Whitehead, special agent in charge of horticul ture.
The material from which these statistics are compiled was obtained direct from the growers upon schedules specially prepared for that purpose and by personal visits of special agents to sections of the country wher these products are grown.
From the tabulations in Census Bulletin No. 161, it appears that, in addition to the tropic and semitropic fruits and nuts grown for home and family use, there were in the census year 13,515 acres of almond, 677.50 of banana, $169 \cdot 88$ of citron, 9,864 of cocoanut, 4,477 of fig 550 of guava, $1,362 \cdot 25$ of kaki, 7,256 of lemon, $495 \cdot 58$ of lime, 12,180 of madeira nut, 7,097 of olive, 184,003 of orange, $2,189.50$ of pineapple, $171 \cdot 89$ of pomelo, and $27,419 \cdot 50$ of pecan trees, representing 658,566 bearing and 800,010 nonbearing almond trees, 577,782 bearing banana plants, 4,237 bearing and 14,110 nonbearing citron trees, 123,227 bearing and 1,199,549 nonbearing cocoanut trees, 138,186 bearing and 285,201 nonbearing fig trees, 32,943 bearing and 120,529 nonbearing guav trees, 58,390 bearing and 124,522 nonbearing kaki trees,

167,663 bearing and 498,784 nonbearing lemon trees 19,096 bearing and 44,255 nonbearing lime trees, 188,40 bearing and 411,248 nonbearing madeira nut trees 278,380 bearing and 331,022 nonbearing olive trees, $3,885,890$ bearing and $9,705,246$ nonbearing orange trees, $21,750,000$ pineapple plants, 3,279 bearing and 12,867 non bearing pomelo trees, and 214,988 bearing and 657,980 onbearing pecan trees.
Excluding pineapples and bananas, which are all counted as bearing plants, as they commence fruiting within a year of planting, it will be noted that th average number of all nonbearing trees is about double that of the bearing trees, the product of which in the census year was, as far as reported, valued at \$14,116, 226.59 , divided as follows: Almond $\$ 1,525,109.80$ banana $\$ 280,653.75$, cocoanut $\$ 251,217.41$, fig $\$ 307,271.76$, lemon $\$ 988,099.92$, lime $\$ 62,496.90$, madeira nut $\$ 1,256$, lemon $\$ 988,099.92$, lime $\$ 62,496.90$, madeira nut $\$ 1,256$, $\$ 812,159.17$, pomelo $\$ 27,216$, and pecan $\$ 1,616,576.50$. On the basis of present prices, with all the nonbearing trees in fruitage, the next census ought to show a value of product of more than $\$ 50,000,000$. As a forecast of the future growth of these branches of horticulture, in addition to the acreage already planted, the number of acres of land in the United States susceptible of de velopment in plant in any one or all of the fruits and nuts named has been ascertained, and the aggregat figures are also given.
the lovell diamond safety bicycle.
The accompanying cut shows the 1892 model which the John P. Lovell Arms Company, of Boston, Mass. have just placed on the market. The frame is of the diamond pattern, and made entirely of seamless stee tubing and drop steel forgings. Front wheel 30 inches, with $13 / 4$ inch pneumatic tire; and rear wheel 28 inches with 2 inch pneumatic tire; ball bearings of the im

the lovell diamond safety bicycle.
proved pattern to wheels, crank shaft, pedals, and head; gear, 57 or 60 inches. Scorcher saddle and loop addle post furnished, if preferred. Weight, complete 43 pounds ; stripped, 38 pounds. The Lovell wheels ar guaranteed in every respect. They are a reliable and high grade wheel. The Lovell Company have moved heir factory to Fitchburg, Mass., and their works, when completed, will form one of the largest manufac tories of bicycles and firearms in the world.

## The Future of Manufacture.

Ex-Governor Goodell, of New Hampshire, respondin to this toast at the recent hardware dinner in this city, said : We have been told this evening truthfully hat we made a year or two ago about ten millions of tons of iron in this country. This is certainly an enormous amount, but it is easily explained, yet, when we remember that, when we make $10,000,000$ tons of pig iron in a year, we are making 27,000 tons in a day and we are making a car load of pig iron a minute fo every day of the year counting Sundays and holidays, are we to continue such an enormous production Can this country consume such a quantity? Or are w in the near future to find such a reversion in this business that many of our furnaces will be obliged to bank their fires and go out of blast? It is a questio too much for me, and I think, possibly, too much for you to decide. Yet I have great confidence in the cuture. In considering the future we must conside the past. A few years ago our bridges were all made of wood, with the exception of a few bolts and pins. Now they are made almost wholly of iron. A few years ago our fences were made almost wholly of wood Now barbed wire is used everywhere and the barbed wire business is one of the largest in the country. It is spreading all over the country, and it is likely to spread more and more in the future. We are con stantly designing and discovering uses for iron and steel. Last night, as I was riding in a railway car, a fellow passenger asked what would the railroads do for ties in a short time. I then remember that just a ew days before I had heard that steel ties had been put into use and that very soon it would be likely tha
hey would take the place of the wooden ones on every ailroad in the country. Then, when I remember tha invention is going on all the time; when I realize that Morse, Fulton, Edison, and all the greatest inventor f history have been Americans; when I realize that ew years ago a hall like this would have been lighted with sperm oil distributed from New Bedford, then a ittle later by gas, and that to-night we have thi beautiful light, I have great hopes for the future of manufacture.
You tell me that we are living in a generation the ike of which has never been known in the earth's his tory, and you will also perhaps tell me that we are living in a generation the like of which will never be known again, but I believe that we have just begun o discover great things. What they will be no one can tell. We have been told about iron in the blood o-night, how it makes mind and muscle strong. My riend and myself are strong prohibitionists and we believe that the time is spcedily coming when pro ibitionists will have prohibition, and when those wh are accustomed to the use of such things as produce intemperance will be seeking it as a substitute. (Ap plause.)
We can hardly conceive of its various uses. I am told that Edison is just now engaged in putting up wires around a mountain of iron, by which he expects o hear the sound of the great explosions that occu from time to time in the sun. I am afraid that $I$ shall never hear the sound of the explosions in that great uminary, as I am growing old, and I am afraid, too hat should he be able to hear them, the grea Creator of all things would cause him confusion as he did at the tower of Babel.
We can scarcely imagine, in the midst of all this, what the future is going to bring us. I have great confidence in her gifts, but perhaps something should be said about the profits in the manufac ture of the future. Are wc going to make money by them? The price of everythin is going down, is cheaper to-day than yester day. A few years ago, the price of steel was 10 cents a pound, and we can buy jus as good steel now for a third of that sum. The price has been constantly decreasing in almost every branch of manufacture. W are constantly being told that the price is so low and the profits so small that we will bo obliged to give up business soon. I tell you that we old fellows who have an oldish way of doing business, a rut in which we hav been accustomed to let things run, and who think that we can do business in no othe way, will be obliged to go out of the trade We will go to the wall, but the young man with his eyes open, and who is awake to th responsibilities of his position and who is not content to remain in the groove of his father's methods, which were the proper ones thirty years ago, will devise some new method, some new way and he will produce the good we have been selling at a ruinous loss so that he will be able to make money on them.

## Cement Floors.

Recently I visited a newspaper pressroom, says contributor to the Art Printer, which was, like the majority of pressrooms, especially those for news papers, located in the basement of the building-an essential in placing a large machine or a number of them on a solid foundation. To prevent the dampness rising from the earth and injuring the press and roll ers a concrete fioor had been laid before the press was set up.
After examining the press, the pressman informed the writer that he had swept the floor several times dur ing the day, but that the dust seemed to accumulate rapidly again. No dust was blown in from the outside when the doors were opened, as the ground was frozen and covered with snow. The dust was ground out of the concrete by the tramping of the persons employed in the room.
This dust is not like the ordinary house dust, but is of a coarse, gritty nature, and when blown about the press by the circulation of air through the room is sure to settle on the joints, journal boxes, and in the oil holes and fountain, no matter how carefully they may be covered or protected, and in a short time will do in alculable injury to the machine.
Joists should first be laid and the spaces between them filled with concrete until nearly level with the top, and a well joined, hard wood floor laid over all, which will wear better than the concrete and be more satisfactory than any other floor that can be put in a printing office or workshop. The proprietors of print ng offices, who contemplate the erection of new build ngs or repairs, would do well to make a note of this. [The trouble above mentioned was due to poor ce ment, which did not bind the sand. First class Portland cement one part, fine, sharp, clean sand two parts, properly mixed and laid, will make a superior floorveritable artificial stone, which ordinary use will not abrade--ED. S. A.]

