RECENTLY PATENTED INVENTIONS.

Rallway Appliances.

Car Coupling. - John P. Kirwan and James E. Kırwan, Jr., Pittsfield, Mass. This is a coupler of the knuckle type, the body portion of the pivoted knuchle having a downwardy inchned having at ts lower end an inclined or beveled surface corresponding to that of the knuckle, whereby when the pin 18 raised the knnckle will be forced outward to
the uncoupled position. The construction is very the uncoupled position. The construction is very
simple and durable. and the coupling pin is so formed that the knuckle will have more of a bearing on it than bas beted with the least posible risk to the opertor Metallic Tie. - Edward S. Moffat hin Theodore G. Wolf, Scranton, Pa. The body porrack rail, which is given an oblique bend in the The end portions of the tie are re-enforced rail sections, with their flanges appermost, the two parts being separated by space blocks opposite their web portions and firmly bolted together. The bearing
heads thus formed for the track rails are provided with heads thus formed for the track rails are provided with
clips, held thereon by bolts, the clips being adapted to clips, held thereon by bolts, the clip
clasp the flanges of the track rails.

Electrical.

Telegraph Relay.-Charles M. Dyer, Cloverdale, Ind. According to this invention the arma-
ture in the relay is supported yieldingly on the front of ture in the relay is supported yieldingly on the front of a swinging armature lever, while a belt secured to the
armature extends over a guide palley to connect with the armature lever, the belt being arranged so that the movement of the armature will impart an npposite
movement to the lever, the improvement providing a movement to the lever, the improvement providing a
uicely balanced armature which will be held in prope adjustment without regard to the variations of the electric current.

Mining, Etc.

Ore Washer.-Samuel C. McLanahan aud William F. Kirk, Hollidaysburg, Pa. This is au or more shafts having radial blades revolve in a hox or tank, the blades serving to agitate and carry the ore forward to the discharge. The stirrer shaft is formed with longitudinal sections of angle iron or steel, the
radial fanges extended throughout their lengti, and he sections secured at their ends to cap plates. The hlades or paddles are preferably formed of flat stee by bolts, the same bolts connecting the blades with the shaft sectons and uniting such sections, while the arrangement of the bolt heads and nuts is such that they are but slightly acted on by the ore in the operation of he muchine
Safety Keeper for Mining Cars. - lukerman Bailey and Louis Feger, Madisonville. Ky. This is a device for locking a car upon the hoisting cage
automatically, and releasing it at the top and bottom of the shaft. A shaft is mounted to rock on the platform of the cage, there being keeper arms on the ends of the shaft, and a pendent weighted rock arm adapted the mune shaft rocking the arm when the cage is owered upon it. The improvement is for use on mine cages, whereby coal and other material mined is brought to the top of the shaft in cars, which are transferred
from the hoisting cage to a surface track and moved to a point of discharge
directly from the cage.
Smelting FUrnace.-Adam J. Schumacher, Butte City, Montana. This invention provides an improved diecharge trough, readily applied, to antonatically discharge and separate the products of fusio greater continuity and less attention. The invention consists of a pipe formed into a trough and connected with a water supply to pass water through the pipe. The pipe is continuons, and bent so as to form the
bottom, sides and ends, the bottom having an inlet bottom, sides and ends, the bottom having an inlet
opening, while one end is somewhat less in height than he sides, so as to form a discharge opening
Car Dumping Apparatus. - Maurice M. Neames, St. Patrick's, La This invention relates
to improvements in inclined railways and cars, proto improvements in inclined railways and cars, pro-
viding means whereby cars may bedrawn ap such railways and antomatically dumped at a certain point, being then placed in position to travel down the incline and inexpensive, and means are provided whereby and inexpensive, and means are provided whereby
the car may be quickly and conveniently loaded, and
its contents readily delivered.

Mechanical Appliances.

Screw Cutting Lathe Frrd Meranism. - Wenden P. Norton, Mount Vernon, N. Y. To conveniently and rapidly change the speed of the
feed screw on screw-cutting engine lathes, according to the requirements of the screw to be cut, an improved feed is provided forming the subject of this patent. gear wheels, a pinion turning with and sliding on the shaft, and a driving gear wheel in mesh with the pinion, while a second series of gear wheels of various diameters is arranged step-like on the feed sha
adapted to be engaged by the driving gear wheel.
Bush Hammer.-Clark Holden, Barre, Vt. This hammer is composed of oppositely arranged body plates having centrul bosses and transverse gibs
litted between the plates on the ends of the bosses litted hetween the plates on the ends of the bosses,
each gib naving a tongue fitung into a longitudinal each gib having a tongue fittung into a longitudinal
groove formed in the boosee, while bolts pass through groove formed in the bosses, while bolts pass through
the body plates and through the gibs to hold them in position. The construction is simple, and the blades
are serarely held in position, while the parts may he are serurely held in position, while the parts may be
conventently separated to take out the blades for sharpening or other purposes.

Nut Lock.-Ira J. Griffin, Sing Sing, N. Y. Combined with a bolt having a longitudinal roove in one side, and a nut furnisbed with radial
lots or recesses in its outer face, is a spring key fited to the groove of the bolt and adapted to enter into the recesses of the nut. There is also a series of ratchet teeth in the bottom of the groove in the bolt, the key being adapted to engape the ratchet teetb. The device is
very simple and effective, quickly locking the nut upon very simple and effective, quickly locking the nu
Beading Machine.-James P. Howe, Cabs City, Mich. The making of beads on eavee curately and rapidly, while the machine is easily
cull operated, is the object of this invention, the machine heing so constructed that it will not warp if made of wood and will not easily get out of reparr. It consists
of a fixed and a movahle jaw binged together and of a tixed and a movahle jaw hinged together and
having registering grooves, a roller with a longitudinal groove being beld to turn in the jaw grooves, while a block slding along the outer side of the movable jaw
has its outer face inclined, and a transverse holt or bar extends from the flimed jaw into engagement with the nclined face.
Can Capping and Crimping Ma-Chine.-Mathias Jensen, Astoria, Oregon. This iname inventor, and provides an improved method of capping bothends of the can bodies wilb rapidity and certainty. This is accomplished principally by arranging two sets of jaws opposite each other, each adapted to close and form a tapered bole, the caps being con-
veyed one at a time to the narrow end of each hole, and veyed one at a time to the narrow end or each hole, and he can bodies presented frst one end througb one through the other bole into another cap, the can hodies following each other, 8o that the exd of one can hody
is forced into one cap while the oppositeend of another is at the same time forced into anothercap, the
cans being released to roll off one after another.

Agricultural.

Corn Harvester.-John N. Reimers
Corn Harvester.-John N. Reimers and Winhelm M. Schneskloth, Calimet, Iowa, This having their front sides inclined upward toward the other on their under sides, and baving their flates in lined to diverge rearwardly to feed the stalks rear wardly withont tending to crush them to the gronnd. Combined with the traveling harvester is a hasker, stalks, the husking devices having troughs pivoted at their upper ends to the main frame, and mechanlam by which the opposite ends of the tronghs may be adjusted
vertically, as may be desired, according to the grade of the ground traversed hy the machine, the troughs being
provided with rolls adapted to tear the husks from the provided with rolls adapted to tear the husks from the
Hop Press. - Pierce Riggs, Crowley, Oregon. This is an improvement in that class of
presses in which the fullower operates horizontally within a press hox similarly arranged. Combined with whe press box and follower sliding in it are two sprocket being keyed on the operating shaft, while a chain attached to the ends of the follower passea between the sprocket wheels, there being means for rotating the
shaft. Another wheel is provided having a ratchet rim shaft. Another wheel is provided having a ratchet rim and a rim for receiving a rope, a lever and a pawl act-
ing on the ratchet wheel to produce the initial and inishing movements of the

Lawn Mower. - Edward Z. Kidd, Deadwood, South Dakota. To a plate rigidly connect he main axles, are secured forwardly projecting spearbaped knives, and a plate fitted to slide transversely over this plate carries other V-shaped knives. The latter plate is attached to a lever pivoted on top of the axle, the rear end of the lever being pivotally connected by a pitman with a crank disk on a shaft whose forward end is rotated by a bevel gear in mesh with a
bevel pinion operated from the main driving wheels. The power of the driving wheels is readily transmitted to the cutting mechanism, so that the grass is cut with greatease, and the sets of knives may be readily raised
or lowered to cut long or short grass.
Pruning Implement. - Jesse M. Morgan, Chetopa, Kansas. This implement has a hook and a reciprocating knife, the shank of the hook having
a longitudinal groove in which the hack of the knife is ftted, and the hook proper having a slot through which the knife moves in the forward or cutting movement. The construction is such that the knife is guided and braced against being diverted hy the resistance of the
branch being severed, the knife also, when desired branch being severed, the knife also, when desired
making a shearing cut while itself having a straight path of movement.

Miscellaneous.

Pneumatic Grain Conveyers. Frederic E. Duckbam, Millwall Docks, London, paratus for conveyers, for use in unloading or conveying grain, etc., between ships, bargee, warehouses and granaries, by the carrying power of a current of air The hopper-like chamber into which the suction pipe leads is provided with exhausting apparatus by which
a partial vacuum is maintained, and beneath this a partial vacuam is maintained, and beneath this
chamber a twin receiver rocks upon a horizontal axis, the upper part of the receiver being curved to an arc to the hopper. The oscillating motion of the receive is controlled by mechanism whereby a filled receiver is disconnected from the exhaust and falls over to discharge, hringing the other chamber into position to be
filled. With this apparatus the filled. With this apparatus the grain is transported and
deposited by the air current without the admision devosited by the air carrent without the admission of
sufficient air to destroy the necessary partial vacuum. Evaporating Pan.-Jay B. Copeland,
apparatus for parifying saccharine jaices in the manavessel divided by partitions into a series of longitudinal compartments ranging side, by side, the juice being partially heated in one compartment, highly heated in the next compartment, and so on, the temperature inscum is automatically removed, and the tendency to mix with the purited juice is overcome, the sediment being detaned in the several compartmente, to be removed as it accumulates, whereby the juice is brought to as clear and pure a condition as is possible withSubmarine Boat. - John F. Auer, Nyack, N. Y. This boat has a tubular keel sectio with an openg in ho bem, and valved air supply and exhaust pipes, whereby the admissinn of the keel and its discharge are controlled by the
pressure in the keel section. The arrangement is suct That the bout may be quickly submerged by compressed air and a water ballast. and raised directly to the surface through the medium of compressed air, the water ballast and the action of the air on it being so regulated that ther the bow or the stern cay be dipped or ele vated at will. The storage of sufficient compressed air
is provided for in the vessel to meet all emergencies,

Pipe Coupling.-William D. P. Aims, r., Philadelptia, Pa. having a thickened end which is externally and internally screw-threaded, the exterior edge of the thickened end being beveled, a cap having its flange internally apnular space around the top, with an apertured packing. A simple form of coupling 18 thus provided, for
ase in connection with air, steam, water, or and one which is designed to make an absolutely tight

Sample Case. - John E. Hitch, Wilmington, Ohin. This case comprises connected end pieces having interior shoulders, a flexible wall pivoted
hetween the end pieces and adapted to be rolled upon the shoulders, sapports on the interior of the wall, and catches to fasten the wall in a closed position, with a
suitable handle. The case is especiaily adapted to exhibit anger bits, cutlery, jewelry, and various articles pass, and soarranged as to exhibit the goods to great dvantage without the necessity of handling them.
Nore.-Copies of any of the above patents will be send name of the patentee, title of invention and dat of this paper.

SCIENTIFIC AMERICAN

BUILDING EDITION
MARCH NUMBER.-(No. ซซ.)

TABLE OF CONTENTS

1. Eleg Anne style of architecture, erected for F. S.
Andrews, at Seaside Park, Bridgeport, Conn. Perspective view, floor plans, etc. Longstaff \& Hurd architects, Bridgeport, Conn. Cost \$7,000 complete.
2. Plate in colors of a cottage at Richmond, Mo. Per spective elevation and floor plans. Cost $\$ 1,500$.
residence at Cleveland, o. An admirable design. Floor plans and perspective elevation. Cosi about $\$ 8,000$.
A cottage at Gardner, Me., erected at a cost $\$ 1,900$. Perspectiveelevation and floor plans. loor plans and perspective view of a Colonia
house at Portland, Me. Cost $\$ 3,800$ complete. Design for an ornamental chimney piece. Perspective and floor plans
tive plans and perspective view of a very attrac tive Queen Annc cottage erected at Babylon, L. I Cost complete, $\$ 2,800$.
View of the proposed Odd Fellows' Temple a
Chicago. To be the most imposing structure Chicago. To be the most im posing structure of ing in the world. Height 556 feet. Sketches of an English cottage.
3. An attractive residence recently erected at Belle
Haven Park, Greenwich, Conn., at a cost of $\$ 11,000$ complete. Floor plans and perspectiv elevation.
A residence at East Park, McKeesport, Pa. An at-
tractive design. Plans and perspective. Cost tractive design. Plans and perspective. Cos
about $\$ 4,000$.
A cottage at Asbury Parly, N.J. An excellent design. Cost $\$ 5,300$ complete. Floor plans and perspective
Miscellaneons contents: Lawn planting; bow to do
it and what to avoid, with an illustration.-A
suggestion for inventors. - Acoustics. - They
bought burnıng houses.-Timber in damp places.
-The taper of chimneys.-.-Stained cypress.-Low
ceilingg.-An improved woodworking machine, illustrated.-A fine machine for cabinet shops, illastrated. - Swezey's dumb waiter. - Graphic
representation of strains. - An improved door hanger, illustrated.-A new woodworking ma chine, illustrated-The baths of Diocletian.-The Stanley plumb and leve, illustrated. - The
Diamond Match Company. Diamond Match Company
The
Edition is issued monthly. 82.50 a year. Single copies 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming, practically, a large and splendid Magazine of architecrurr. richly adorned with elegant plates in colors and with fine engravinge, illustrating the most interesting
examples of Modern Architectural Construction and examples of
allied subjects.
The Fullness, Richnese, Cbeapness, and Convenien of any Architectural publication in the world. Sold b all newsdealers.
muNN \& CO.. Ptbliaheza,

2 Business and ${ }^{2}$ ersonal.

ne charge for 1 nsertion under this head ts One Dollar a line
for each insertion; about eioht words to a line. Adrer for each insertion; about eight words to a line. Adver-
tisements must be received at pubtication offce as eariy as Wanted-50 second-hand screw-cutting lathes, 8 to 12^{\prime}
swing, either foot or steam power. Will pay cash. W. " U U s , Reohester, N .
U. S." metaı polish. Indianapolis. Samples free.
For pile driving engines. J. S. Mundy, Newark, N. J. Presbes \& Dies. Ferracute Mach. Co., Bridgeton, N. J.
Gspindle T'urret Drill Presses. A.D. Quint, Hartford C . Mixing machinery. J. H. Day \& Co.. Cincinnati, Ohio. versal and Centrifugal Grinding Mach
Pedrick \& A yer, Philadel phia, Pa.

$\underset{\text { For }}{\substack{\text { Minn. }}}$

For frrt-class patterns write to Chas. Cassell, general
Wanted-To buy frst class patent. Iron article pre , K. M. Scout, 2260 N. 17 th St., Phiadelph The Improved Hydraulic Jacks, Punches, and Tube
Expanders. R. Dudgeon, 24 Columbia St., New York. Screw machines, milling machines, and drill presses.
The Garvin Mach. Co., Laight and Canal Sts., New York. Centrifugal Pumps. Capacity, 100 to 40,000 gals. per
Cen Crandall's patent packing for steam, water, and am-
monia. See adv. next week. Crandall Packing Co., Palmyra, N. Y. pumps, vacuum pumps, vacuum apparatus, air pumps, acid blowers, fliter press pumps, etc.
Split Pulleys at Low prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shafting Wappearance as Whole Puile ess. Yocom \& Son's Shafting
Worke, Drinker St., Philadelphia, Pa. Works, Drinker St., Philadelphia, Pa
What do you want to buy? We will send without cost What do you want to buy? We will send without cost
to you, catalogues, price lists, and information concern-
inganything you wibh. Paret, Willey \& Co., 265 Broadngan ything you
way, New York.
Competent persons who desire agencies for a new
popular book. of ready sale, with handsome popular book, of ready sale, with handsome proft, may
apply to Munn $\&$ C., Scientific American office, 361
Broadway, Broadma, New York.
A middle aged marr
A middle aged married man, a traveled salesman, of
experience, now permanently located at Denver, Colo. experience, now perman has extensive acquaintance, de-
(pop., 150,000), where he
sires sires aqeancy of some E Eastern or foreign specialty. A
dress Brewster $\&$ Co., Mendota Block, Denver, Culo. 0 Send for new and complete cataiogue of Scientific andother Books for sale by Munn \& Co., 361 Broadway

H2 Hexthunis

HINTS TO CORRESPONDENTS.
mess and Address muit accompany all letters.
or no attention wrill be paid thereto. This is for our References to former articles or answers should
give date of paper and puge or number of queation
Inquiries not answered in reasonable time should

 price.
Mineras sent for examination should be distinctly
marked or labeled.

(4152) G. F. writes : I made the eight light dynamo according to debcription of Scientific
American Suplement, No. 600 , except I made the American SUprlement, No. 600, except I made the
yokes bearinge) of cast iron; has that any reducing ironwire. The dynamo started all right, hut the magne wire on armature hecomes so hot as to melt the shellac varnish; what is the cause? I cannot light two car-
hons between brush and magnet (or a and b on cut); it only gives a large spark and a shock by bolding carbone in bare hands by 25 to 30 ohms R. Is there no way to
light a 16 candle power 50 volt light on that dycamo? How can I increase the current? I was careful in conHow can Increase the current? I was careful in con-
necting the coils with the commatator. A. It was a mistake to make the yokes of cast iron as this short
circaite the magnets, to osme estent. In making anymistake to make the yokes of cast iron as this short
circuite the magnets, to some estent. In makıng any-
thing from carefully prepared directions, you should thing from carefully prepared directions, you should
not depart from the instruction given. However, your not depart from the instruction given. However, your
machine seems to work very well, and when you learn machine seems to work very well, and when you learn
how to use it, you will doubtless find it quite satisfactory. By placing the carbons in contact in the circuit you have practically short circuited the armature, thu Place 15 to 20 ohms resistance in the circuit, then touch the carbons togetber, and instantly separate them one-
sixteenth inch. You will then have the arc, and the machine will run easily. With the carbous long in con-
men tact, you are liable to burn out the armature. You should provide some means for separating the carbons By connecting from three to eight incandescent lamps in parallel yon will have no difficulty in runcing them. You do not need an increased current. Learn how to se the carrent you have.
(4153) W. P. asks: 1. If the voltage of an induction coll can be reduced, and the amperage increased after it has been constructed, and how if it can
be done? A. Only by using an inverted induction coil corresponding to the converter in the alternating system
current. 2. What is the voltage of and amperage of an
eight light dynamo? A. 10 amperes at 50 volts E. M.F. 3. How much lead ought a vertical engine bave that 3. How much lead ought a vertical engine have that
takes steam onty on one end ? The engine runs an
exhaust fan. A. Only enough to take up the inertia of the piston and piston rod.
(4154) J. O. F. asks (1) how to color incandescent lamp bulhs a red, white, or blue color, also how to frost them, all by some chemical preparation.
A. For permanent colors the bulbs are made from colored glass. To color them for temporary use dip them in thin collodion to which has been added aniline
color. For frosting use vapor of hydrofuoric acid. solor. For frosting use vapor of hydrofuoric acia. See query 4142 , taking care to protect all brass parts
with vaseline or beeswax. 2. Can I light up a 6 candle power lamp for ten seconds at intervals of 3 to 5 min-
utes, with some form of dry battery without an excessive strain on the battery? How many cells approxi-
mate? A. Possibly 10 or 12 cells of one of the best orms of dry battery might answer
(4155) E. H. C. asks: 1. A definition of the term "hlock system." A. A system of signaling
on railroads. The rogd is divided into sections or blocks. At the beginning of each block is a signal post hal is kept displayed until it leaves it. The system may be automatic and worked by pneumatic, hydranlic, and electric agency, or may be worked by operatives. 2. Whether telegraph stations at intervals along a railroad are essential to such a system? A. To some sysems; not to the automatic. 3. Whether there is ans automatic system in use whereby trains running on the same track may be kept a certain distance apart? A. trains at a proper distance. 4. Some receipt for the gilding of picture frames?
(4156) H. L. B. says : I saw some time ago in the Scientific American a description, and I think an advertisement, of what is known as a
"mineral rod " for locating gold, silver, and other metals, buried in the ground. While I am writing to you
let me ask for a solution of somethirg that has puzzled let me ask for a solution of something that has puzzled
me for some time. Parties around here report having me for some time. Parties around here report having
seen, at night, a ball of fire suspended in air about four eet from the ground, with flame going down to about one foot from the ground and returning to the ball,
which is statoonary. I bave not been able to see it as yet, or I would investigate. Will you please tell me
what it is and the cause of its heing in one particular spot. A. There is. no known device for locating any minerals or ores, except iron, which is indicated by the magnetic needle when in large quantity. We think
such a device may have been described as the work of such a device may have been described as the work of
a crank. What you describe seems to be the "Will-o"-the-Wisp," or "Jack-a-Lantern." What it is due to is ancertain. It has been attributed to spontaneously
inflammable phosphureted hydrogen, and aleo to marsh gas. The latter not being spontaneously infiam-
(4157) L. N. D. asks for the best way to
work with oil painting on white silk and satin. A.
Partly remove the oil from the paint by spreading it on cloth or a piece of blotting paper, then thin it slightly
(4158) J. E. H. asks : What metals are of more money value than gold. A. Caesium, calcium,
barium, cerium, didymium, gallium, indium, iridium lanthanium, lithium, niobium, palladium, rhodium, ruthemium, stronti
yttrium, zirconium.
(4159) O, O. E. says: From a spring 110 rods distant and 40 ft . fall, few bende, what size pipe would I have to lay down to get four horse power
from the motors that are made for such purpose? For ouplying 66 er? A. You will require a 6 inch pipe, eupplying 66 cubic feet of water per minute, $47 / 3$ inch
pipe for two horse power, 33 cubic feet per minute. You should know the flow from the spring for the power that it will produce. A 3 foot diameter motor will give you four horse power and a 24 inch motor
Pelton style will give you two horse power with the of flow as above stated.
(4160) G. H. C. writes : I made myself a cycloidotrope not long since, which draws elegant
figures on smoked glase. Can you tell me how to rransfer them to paper? A. Coat the glase with col-
lodion made granular by the addition of water and lodion made granular hy the addition of water and
stained orange with aniline. Make the tracings on the collodion surface, or you can print the smoke tracings by means of a camera after the manner of lantern
slides. Then print on sensitized paper, using the trac-
(4161) W. A. V. says: I have been taught from scientific books that motion can be pro-
doced from heat, and that beat can also be produced duced from heat, and that heat can also be produced
from motion. Now I cannot see how heat can be obfrom motion. Now I cannot see how heat can be ob-
tained from motion, other than mere friction. But this tained from motion, other than mere friction. But this
is 0 not the heat that I want. I want useful heat, heat trat will heat my house and cook my food. Now I would like to know how auy scientist can obtain this
kind of heat from the motion of a water wheel. Here we have motion without cost of coal; but I cannot see
how heat is to be obtained from it. Cau the Scientifric American enlighten me on the subject? A. We are as much in the dark as yourself in regard to cheap heat
for domestic use. The abstract notions, as you state, for domestic use. The abstract notions, as you state,
are all right, but as yet we do not see the way clear to realize on the faint gleanings of scientific research. When coal gives out, future generations will find ample room for economy in utilizing the ways and means of
living according to the new conditions, or in the most primitive ways of the early ages. Mechanical energy
can be traneformed into heat engrgy by electricity. (4162) O. A. C., Monte Vista, Col., says 1. A day or two since I witnessed something quite un-
usual, I think. Time, $7: 30$ A. M.; mercury 10° above 0 F.; rising sun obscured by clouds, but shining on the mountains, northwest. Upou looking in that direction
(northwest) a mirare was seen, together with what is (northwest) a mirag.e was seen, together with what is
commonly called "heat waves," and quite distinct or commonly called "heat waves," and quite distinct or
pronounced. Both mirage and heat waves seemed to be
traveling west, and soon disappeared. A. There seems
o have been considerable disturbance in the atmosphere
in:Nebraska and Colorado on the 17th of February, causing halos and sun dogs in Nebrasiza and mirage in Colorado. We will be glad to hear from other observers of these phenomenaon that day. 2. Does the rota-
tion of the earth upon its axis influence materially either the tides, marinecurrents, or direction or velocity of the winds ? A. The attraction of the moon principally and of the sun slightly are the forces that produce
tidal action. The motion of the earth gives rise to matidal action. The motion of the earth gives rise to ma-
rine currents and intensifes tidal flow. The unequal distribution of the heat of the sun, together with the
motion of the earth on its axis, gives direction and velocity to the winds.
(4163) J. F. M. W. says : I am building triple-expansion engine, size $31 / 2 \mathrm{in}$. by $51 / \mathrm{in}$., and 9 in. hy 6 in. stroke ; boiler pressure, 80 1b.; 200 revolu-
tions. What size surface condenser, and also what size tions. What size surface condenser, and also what size
gir pump, will I require? A. Surface condenser, 12 quare feet surface ; air pump, one-fifth area of high pressure cylinder, or 2 in. by 6 in . stroke if single act-
ing and direct connection, or $11 / 2 \mathrm{in}$. diameter by 6 in . troke if double actlng.
(4164) C. B. S. writes: 1. I have contructed the " simple electric motor" described in Sup 8 wire, and would like to run it by storage batteries charging them on a 50 volt incandescent light circuit. How many and what size cells should be used, and how long would they ran the motor when fully charged $?$ A.
You will require four cells, with 17 plates 6 by 8 inches. You will require four cells, with 17 plates 6 by 8 inches.
2. Is the way of covering storage battery plates with 2. Is the way of covering storage battery plates with
red lead, as described by C. L. Woolley in Scientific red lead, as described by C. L. Woolley in Scientific
American of November 28, 1891, a good method \boldsymbol{q} A. charge the storage battery and bow longwouldit take ? A. Four to each cell of storage battery. The time required is 6 to 8 hours. 4. Would the motor run a 9 in. engine lathe or a small planer $\%$ A. It is too small.
You will probably require one-hnlf horse power. 5. In charging the battery on the incandescent light circuit, should resistance be put in the circuit? A. Yes. 6 . $22,24,28,30$, and 36 copper wire \& A. $1 \cdot 08,0.65,025$

$$
10 \text { respectively. }
$$

(4165) W. M. C. asks: Can an electric light plant large enough to light five 20 candle power inpower, practically speaking? Said power to run four hours without attention. If so, about how much labor would be necessary to wind it up 9 A. It is impracti-
cable to accomplish what you propose. One horse power requires the fall of 33.000 pounds through the distance of 1 foot each minute, so that this weight would have to fall 240 feet in four hours-twice the
weight half the distance, or half the weight twice the distance. It would take a 1 horse power steam engine something over four hours to wind it. A 2 horse power engine could do it in about two hours. A4 horse power
engine in about one hour. One man could wind it engine in about one hour. One man could wind it in
about four days of tenhourseach, but jt would be con (160)
(4166) W. E. H. asks whether electricity It has not.
(4167) C. R. W. asks: What power pre rom crushing with the tremendous weight above it Please give me as explanatory reply as possible. What accepted theory is there as cause for the wind blowing ther building material is far greater than the weight of the superstructure. Architects and engineers understand this, and spread the foundation to meet the pressure from high buildings. A single common red
brick, when properly laid in strong cement, is equal to a load of 12 tons, and it will require a column of ment-laid brick nearly 10,000 feet high to crush the bot
tom course. The heat of the sun and the rotation of the earth are the primary causes of the circulation of sphere. See query 4162.
(4168) W. L. U. asks: 1. What is supposed to be the cause of aurora borealis, which is seen
in the northern heavens ? A. The aurora is a display of electricity in the upper atmosphere, and is aupposed to be largely developed by disturbances in the sun. See Scientific American Supplement, No. 372, for theo-
ries and description-an interesting paper. 2. Why ries and description-an interesting paper. 2. Why
does the rainbow always appear in a semicircle? Why not appear in the whole easteru or western heavens, according to the time of the day, instead of in a semicircle
as apays appears? A. Rainbows derive their light from the sun as a radant. Theconditions of the reflecton and refraction of the sunlight from rain drops require a circle or part of a circle to meet eve rad. Is
points of the sun and the eye of the observer. 3. Is
there a limited sum which can be paid in copper or there a limited sum which can be paid in copper or
nickel currency? If so, what is the highest sum which can be so paid legally? A. Silver coin is a legal tender to the amount of ten dollars at any one payment.
Nickel and copper coins are a legal tender to the
(4169) G. W. F. S. asks : What provision can be made for properly carrying off water emanating from a cellar, when the cellar is below point of sewage
plant \& A. Water cannot be lifted without power. The ed, so that in a general way we can say, if you have not. a petroles engine and pump is recommended. If is advertised in our columnes, is in order. If you bave facilitites for accommodating a small windmill away from the house, with a suction pipe leading to a deep
cespool in the cellar and discharging into the drainage cespool in the cellar and discharging into the drainage
aystem, you will find it as inexpensive and easily mansystem, you will find it as inexpensive
aged as any device that we can name.
(4170) W. L. M. says : I am building house, and to secure ventilation intend to place ventilat-
ing registers in the ides of the walls, the opeu space between the partition studs being used as a ventilating
shaft. Above the attic floor a tube will connect wit this shaft and be ran either into the chimney flue orout
under the eavee of the roof. Now the questlons I want
answered are these: 1st. Should the ventilators be placed near the floor or near the ceiling? 2 d . Will the to run the tube cond this shaft ? 3d. Would it be better chimney flue or out under the eaves of the house $? ~ A$. For the best arrangement of ventilators in the rooms
there should be one at the bottomand one at the top for each room. If you choose to ase but one, place it a ine rooms in rooms that have a fireplaceand at the bottom tion should the ventilatiou be connected with the chimney, for there are times when the rooms will be filled with smoke from back draugit, besides the danger
from fire. The ventilator shaft should rise through the from fire. The ventilator shaft should rise through the rocf, with a draught hood on top. Opening the ventilator under the eaves is not good practice. The pressure windy weather.
(4171) R. M. says: In looking at an imaginary object created by a nirage, would a telessope
or a pair of field glasses reveal the deception, or would the deception stin seem perfect? A. We bave no experience with a telescopic view of a mirage, but
should judge that as the telescope is only a larger eye the effect would be the same; but the field of vision being so small in the telescope, the scope of a mirage,
due to the larger field of the eye, would be lost in
(4172) H. V. K. asks : 1. I have at tempted to make a Leclanche cell: filled porous cup piece of regular battery carbon. Filled in with MnO_{2}. Set cup in strong solution of $\mathrm{NH}_{3} \mathrm{Cl}$, in which was bar of zinc. After settling for hours current is not strong should use the best quality of graphite, and manganee binoxide with the dust sifted out. 2. Has trinitrate of tiamuth (art. on p. 87, February 6, 1892) another name Large wholesale drug house in city claim no knowledge of it. Where can I get it ? A. It is the neutral his-
muth nitrate, and any reputable drug house should supply it. 3. Is stannous chloride and stannic c.hloride
the same? A. No. The first is SnCl_{2} a solid, the second the same ? A. No. The first is SnCl_{2}, a solid, the seconc Cyclopedia" a department on electrics \& A. Electrometallurgy is treated in it. For general electrical topics see our Supplement catalogue or Hopkins' "Experi-
mental Sclence," $\$ 4$ by mail. 5. Tell me where I can buy an autop A Addrese our advertiser who deal in scientific apparatus, such as Queen \& Co. Philadelphia, Pa. 6. What is a concentrated solutio A. Heat the water with excess of borax and then pour off and heat with powdered shellac. 7. What is mean by the brush circuit and feld circuit from a dynamo?
A. The brush circuit should mean all the circuits taken A. The brush circuit should mean all the circuits taken
from the brushes - the field circuit is the circuit which from the brushes; the field
excites the feld magnets.
(4173) J. W. C. asks : 1. Given a hollow
 weight will be required to sink it thirty feet below the surface'of the water? A. The compressibility of water is
0.00004583 of its own bulk at 15 lb . pressure, so that if your apparatus displaces one ton water, then $0 \cdot 0004 \mathrm{c}^{6} 3 x$ 2,000 pounds $=0.09336$ of a pound to sink it 34 feet after it 18 under water. This will also be somewhat modified by the elasticity of the hollow vessel,which is also subject to compression, and if it has as much or more com-
pressibility than water under the increasing pressure of epth it will go to the bottom with additional weight.
(4174) D. R. F. asks : 1. Please inform me whether glase cells would not answer the same pur
pose or be superior to gutta percha cells in the con"Experime the large 8 ") "Experimental Science"? A. A glass cell is preferakindly state how many cells would be required to rur eight incandescent lights ? A. It depends something upon the voltage of the lights. Six celle will run two
or three 10 volt lamps. 3. Would thecurrent fromsuc a battery be as steady and the light as bright as
(4175) T. H. B. asks : Will a wrought iron collar shrink in heating ? To explain : Suppose I turn a collar large enough to just slip over an inch bar when it is cold, will it by heating make it tight on the
shaft ? (After it is cold.) Does a bullet bave the same velocity on returniug to ground as it had when it left the barrel of the rifie? Supposing it to he shot up vertically. A. Wrought iron rings will become slightly
smaller, by heating and cooling, so that if made just to fit a mandrel it See Scientific American Supplement. No. 830, "Gun Wrinkles," for answers to various questions in relation
to bullets and shooting.
(4176) A. asks: 1 . Will the dynamo delamp? if not, why? What changes would bave to be made? A. The dynamo referred to will light two 5
candle power lamps. 2 . Wouldlmotor described in Streplement, No. 641, run the dynamo ? A. It is bardly sufficient for running the dynamo up to its full capacity. 3. Can dynamo described in Supplement,
No. 161, be used as a motor? A. Yes. 4. Could num ber 18 or 20 wire be used for the armature instead of
16? What difference would it make in motor? A. Yes, it would give a higher electromotive force, but it will ingly.
(4177) "Andes" asks: What is the most simple method of testing the existence of borax when panied by baggage? A. Pulverize the mineral, moisten with sulphuric acid and cover with alcohol and ignite A green flame will show the presence of boracic acid provided other substances (barium or copper) are not
present. If present, separate by well known processes. A good test is to moisten the mineral with sulpharic acid and glycerine and ignite on a platinum wire in an alcohol lamp or blowpipe flame. A green flame
goes to prove boracic acid. A good corroborative tes is to dissolve the mineral, first pressing with sodium
carbonato if necessary, then to slightly acidify with
hydrochloric acid, to dip a piece of turmeric paper in it and dry the paper at a low heat. A browrish red color
shows boracic acid. This test is also interfered with, but the two are pretty good proof. See Cornwall's "Blowpipe Analysis and Determinative Mineralogy," $\$ 2.50$ by mail. Study and experience
prepare for field work in mineralogy.
(4178) J. W. P. asks: Can you tell me of any acid or liquid that will eat or burn up tinfoil plates are protected in parts by wax and then the res etched with acid? A. For etching tin use a mixture of 1 part nitricand 2 parts bydrochloric acid and 3 parts All parts are by weight.
(4179) P. H. asks: How much storage battery should I require for say 20 lights, not over half
of them being nsed most of the to recharge the battery oftener than once in two o three months? A. It is impracticable to retain the charge in storage batteries for two or three months as
you suggest. The batteries will have to be recharged you suggest. The batteries will have to be recharged
once every ten days or two weeks. To light 20 lamps once every ten days or two weeks. To light 20 lamps
you will require 26 cella, provided the lamps are 50 you will re
volt lamps.
(4180) A. B. asks: 1. I made a condenser for the induction coll shown in Supplement No. 161, and same would not work satisfactory. I at-
tached same to the primary wires, and the vibrator works all right, but the coil will not give any spark works all right, but the coil will not give any spark
when the condeuser is attached. In making the condenser I used 12 sheets of tin foil 5 inches by 5 inches and connected them at each end $1,3,5=2,4,6$, etc.
and separated each sheet by well shellacked paper. A. You will probably find that there is a cross connection or leakage in your condenser. 2. I have two glas
cella 6 by 8 by 9 , and each cell has two zincs and thre cella 6 by 8 by 9 , and each cell has two zincs and thre
carbons, 6 by 8 inches by 14 . What is the amperage of the two connected in series? (Plunge celle.) How can I compute the capacity of a plunge cell with reference to the square inch of plates? A. The amperage of a
battery is computed by dividing its E.M.F. by its resist ance.
(4181) S. M. I. writes: 1. I want to in length up to as high a temperature as it will stand with an electric current of 8 amperes with E.M.F. of 50 to 60 volts. What number of wire should I use? A With above E.M. ., and using such current, you could
heal about14 feet of No. 19 German silver wireto $1,500^{\circ}$ F. The amperes fix absolutely the diameter of the ance, i. e., its leugth; hence the calcu lation cannot b carried out for the incompatible conditions of length given by you. 2. Why on standing close to an incandescent electric lamp do the flaments appear as fine threads of white light, and on receding from the lam they seem thicker until they appear as a single
A. The phenomenon is known as irradiation.
(4182) G. T. L. asks: What is the rocess of making the smalt or roagh, sana-covere pigns? What means are used to prevent the oil in the margins of the letters and turning to a dark color A. The ground is painted the same color as the smalts.
The smalts are then thrown on in the same way as The smalts are then thrown on in the same way as
sanding paint. The figures or letters are painted on sanding paint. The figures or letters are painted on
the cloth with a thin mucilage of gum tragacanth and the color laid on so as not to overlap.
(4183) A. F. O. writes: I have somewhere heard of a process for roughening the surface of
glass by applying something strongly adhesive, which by subsequent drying and contraction, tore off the eur particulars of the process \& A. Make a thick molutio of gelatine, pour it on the glass, let dry on a level. In shrinking, the gelatine will take out the surface of the (4184) A. W. says : 1. I wish to know what number of wire should be used on a magnet to draw the armature with the greatest force and how
much wire, using three cells of Fuller battery. A. Fo your magnet use soft iron cores G of an inch in diame er, and upon them wind 140 feet of No. 20 magnet wire fast running machinery were inclosed in a vacuum and the air kept out by a wall pump operated from the main shaft, would there not be a considerable saving of power? It seems to me the speed would be more easily attained and a great deal harder to check. What are your views on the subject? A. It is doubtful if the plan suggested would effect any saving, as considerable cower will be required to maintail a vacuum. Yo in a practically air tight box. By this means the air would be prevented from being thrown off by centrifugal action. 3. Can you give me the formula for a com
position that is a non-conductor of electricity, light in weight and will not warp by being put for hours in a
liquid heated to 80° Fah. ${ }^{\circ}$ A. We know of nothing betliquid heated to 80° Fah. 9 A. We know of nothing bet
ter for your purpose than glass or porcelain.
(4185) W. E. B. asks: 1. Would you advise a person, wishing to purchase a first clase watch, watch as good as a non-magnetic one? A. If you ar liable to visit places in which your watch would be enbchase of a non-magnetic watch, as the poorest watch o this kind will keep better time than any magnetizable watch when magnetized. 2. Where is the most desirable non-magnetic watch made, and by what company. Some jewelers tell me that the non-magnetic watch is a
fraud; while others say the time is coming when a nonmagnetic watch will be neceesary if a person wants reliable watch. A. There are several non-magnetic watches in the market, which are about equally good
We think that jewelerg generally believe it to be impos sible to make an absolutely perfect timepie impos non-magnetic principle, but they are sufficiently accu-
nary uses.
(4186) C. M. P. asks: 1. Is the simple moting ? In other worde: You say it is $1 / 6$ horee power,

Now, could I take half the battery required to run it at
its fullest capacity, and run it as a one-sisteenth horse power machine? A. The motor would require mor than oue half the battery to run at one-balf its full ca-
pacity. 2 . Where the instructions are to use wood. would it be any better were I to use type or babbitt metal? A. Type metal or babbitt would not do for the core for the hub of the armature, unless you provide a commutator cylinder separate from the hab. 3. Please
let me know what is meant by the word shunt as ap pled to electrical machines. A. Shunt ie a term ap-
(418i) E. D. H. asks : 1. Please give the solution of the Lecianche baturies. A. Satinrated solution of sal ammoniac and water. 2. What size storage battery would be required to ran a small motor Cor operating a wood turning latheq A. Your query ind indefinte to admit of arrect reply. It requires what it costs and how much would the cost be in renewing itp A. The cost of a storage battery is $\$ 15$ per cell. The cost of charging, of conrse, varies with the cost of the motive power used in driving the charging dynamo
(4188) M. W. writes : Suppose two elec trical stornge batteries ench baving capacity enough run a dynamo for several hours of several horse power,
the one being charged and the other not. How long a the one being charged and the other not. How hong a
time will it require after they are connected till there ie an equiiibrium between the two, that is, will the charge ome time? A. The charging of storage batteries by means of other sorage batteree is practically the sam as charging them by the current from a dynamo, and they shoild be charged at the same rate. For elabor te tables on charging and hisearging dyamos oonet
(4189) H. R. writes : I am making some blue enamel for enameling iron ware made of sand,
borax, potash, and cobalt oxide. When ground into a pulp, there is a white scum on the top of the enamel Can you let me know the cause of it? Can you give me
a rectiot for blue enamel? Is there any book pablished ou the manufacturing of glass and enameling? A Fuee tee mistare, pour while fused intowater and aegrind it. This will give it greater uniformity and avord the scum. The "Scientic American Cyclopedia
of Receipts," $\$ 5$ by mail, gives a great deal of informa-
(4190) W. P. D. writes: During las falis drought we dug a cistern, at a depth of ten fee ent and 1 wai wited ap whi bik and ce
 beipg used.) Later on, when the ground became thor two feet deep. It was pumped out and another layer ent was put down, making the bottom dooble, but it filled with water just the same. Wha ad we best do to secure good resulte and make it hold fall up? Would the water go out daring drooght as it came inf It is now haif to three. fourthe fail. All come hrough the botom. A. The water wil doubtless diaopt the cietern, plater walle and botom with be Portland cement, neat, then put in another bottom and
(4191) R. M. asks : 1. Please give chemical action in a single fluid battery using iron for the positive plate, and a saturated eolution of common sait.
A. The iron would oxidize very slightly and the bat
and tery woold become polarized. The ealt would merely
act to accelerate osidation. 2. Also E. M. F. of the same. A. It would be very slight; practically only
(4192) E. L. writes : I have a silver wash made by diseolviny siver culoride in a solution of hy-
posulphite of soda. When first made the solution worked very well and deposited silver nicely. Now, atter a lapee of several months, it will not work at all, and
there is a constderable amount of black sediment in it. Can you tell me how it can be made to work, or how the silver can be reclamed. if that is imposibile? A.
Possibly your solution is exhausted. To eet rid of black sediment, filter. To recover silver add a few pieces or zinc, acidify in open air with sulpharic acid, and even-
tallyy diseolve allt the zinc. The silver will be left in
(4193) G. H. C. asks : If the rings used n the armature of motor No. 641 were so made that a he circumference were wholen would it decreseo or increase the power of the motor, and are such rings made? A. It would increase the power of the motor to
(4194) W. T. B. asks : 1. If the carbon sticks used for arc lamps be used for carbon element in bichromate plange battery, should enough sticks be
used to make the carbon surface equal the zinc surfacee? A. You should nse enoigh of the carbon rods to make inc cance surace new or double that or the
 Supplement ? A. The gravity battery is no suitable for running motors of this kind. You will probably require 20 or 30 cells to ran the motor up to its full capacity. Better uee a plunging battery or a Bansen. 3.
Woud not said motor be just as efficient. if a circular iron band, say $3 / 4$ inch wide, $3 / 8$ or three-sisteenths inch thick, fastened to a wooden disk, were subatituted for
the iron disk to which the armature spools are athe and be screwed to the iron band? A. There is no objection to the constructio
(4195) E. H. asks : What is meant by a made, and what is its action, or intother words, how does it purify water, etc.? A. Sllicated carbon illters may be any mixture contain ing silica and carbon. This
may be eand and charcoal mixcel or a porous sandstone may be eand and charcoai mixed or a porous sandatone
slab covered with pulverized charcoal. Solid filer slabs may also be made from pnlverized retort carbon, eand,
and clay, by baking the same as bricke are made. The
lendency to deodoriz
action of the carbon.
(4196) W. E. K. says : Will you please ell me what is meant by, latent heat, and also oomething Lo take away warts? A. Latent heat is the heat that has of fluids to vapor, or in the eomes hidden in the change he heat thatitidererived from the condenaticicn of vapors and from fluids when passing into the solid state. As ts name indicatee, it it hidden or concealed heat, not
shown by change of temperature. Try a drop of kero. sene oil on the warts twice a day.
(4197) J. H. K. asks : 1. How are school blackboards made P. The best misturee contain a ehicie, often shelat," and lampblack or other pia nents, often with a litie Prussiun bue See the "sici entific American Cyclopedia," $\$ 5$ by mail. 2. How can gas be lit by electricity and what is a simple way? By a spark coil, three or four Leclanche batteries in ach burner. The latter are sold by electrical dealer . How can small bombs be made, which, when throw Fulme ground, do not make mach of a report ? Fulminate of mercury is the explosive of ordinary to
pedoes. All this clase of manipulation is very das
(4198) F. W. P. asks: Can a fish of any ind or eel shoot or swim up a ten-foot dam or fallis Doen Is it better to write a leiter for information the he publishers of any paper or send an article before doing sor A. Salmon are known to jumpa considers be fall with deep, water below. They jump all the fald of the Columbia below Spokane. We have no figuree see Scientific American Supllament, No. 275, for an interesting acconnr. Eels crawl around falls or dam See Scientific Am erican Supplement, No. 708, for a and arricle together.
(4199) C. C. B. writes: Will you allow he to add a little to your directions for reinking type writer rinbons. Inith aniline dye, makes the ribbon too obby, add causes it to ured to rnn a hot iron over it, having frrst put it be ween two bloters. This remedied the trouble at once
(4200) W. D. R. says : I wish to convey ater through a pipe 260 feet from a ditch. I have 24 feet fall. T would like to know what is the smallest
ize pipe I can use and have a supply of 3 gallons per ninate. A. A $3 / 4$ inch pipe will give you about 5 gal lons per minute. We do not recommend smaller pipe on account of its liability to close after being in use
(4201) H. G. G. asks: What occupies he space in the top of the barometer tube? Is it a vacuum? If it in not a complete vacaum, what fills
 tipped down so that the mercury touches the top of he tube, there is good proof that it contains no air gases. There is only a possibility that an infinitely
small smount of vapor or mercury rises in the open mail amount of vapor of mercury rises in the open
pace that condenses as the mercury rises to the top in pace that condenses as
(4202) W. S. T. says: Please give me he proper weight fir a fywheel for an engine 3x ing of $1 / 3 / 8$ stroke, or give rule in next issue for find$\underset{\text { ing w }}{\substack{\text { ing } \\ \text { rim }}}$
mean piston pressare Xatroke in feet

Rev. per m. ${ }^{2} \times \times 0003$

or for your engine, assuming 40 pounds mean piston

$\frac{40 \times 8 \cdot 29 \times \neq 1}{90 \times 90 \times \cdot 0003}=34 \cdot 8$ pounds.

(4203) H. M. asks: What is the red franeparent composition used on the outslde surface if made to adhere to the glas8? From close obeerv ance I notice that qreen and blue lenses are not made in this way, bat apparenly the coloring matter, what lass. From this the queetion arises, can green or blue Consered made in the same manner as the red? A Colored glaze is used and baked on as with glazed
earrhenware. Otherwise the coloring is made at the glase house by using colored plass in blowing. Colored varmshes may be ueed for cheap work. The principal colors in sheet glase are sold by the trade, consibing or
ordinary g glase giazed on one side with colored glase. This is a special
decorated work.
(4204) W. B. says: Suppose there is a hole through the center of the earth from one side to
he other. The air being extrausted in the hole, a lead ball is dropped in; will it fall past the center?, will it velocity increase or diminieh in the first 2,000 miles A. The lead ball wonld not drop through the hole freely unless the hole was from pole to pole. The mo-
tion of the earth decreases from the eurface toward the enter or axis. The ball partaking of the eurface velocity would hag the east side of the hole, because it motion as it moved toward the center. With a polar hole the ball would drop with an increasing velocity to he center, and pass to an equal dietance to the
side with a decreasing velocity, from the effect of sravity, and would vibrate from surface to surface, no
griction
(4205) C. P. M. asks: If a cannon be Ared at a horizontal and another ball be dropped from the same height at the eame inetant, which will reach
the ground frrst ? I say there will be no difference. A says that is an old theory, and that modern science has proved that the hall that is dropped will reach the
Eround Arot, and $\& 8$ the ScizNTIFIC Aukrons doee not
thee west modern rifle fired at too yards throw a ball in a
the will straight line that or any part of that distance?
not, how far above the target will the rifle actually sighted, and at what point along the line will the hall e fanct above a direct line, and how far? A eays as sighted rifies as a businese, and that a rifle will ing according to the velocity. What is your opinio ord A. You are right as to the time of direct fal ard the fall of the horizontal shot. A ball fired hor zontally does not move in a straight line after it leave he gun. It is a downard dave. The sightiog is de pressed from the lise onces. Hence the ball rieas on of ine of sight, but not on the line of the bore think well of A's opinion. The depression in sighting depends upon strength of powder and weizht of ball as well as lentth of barrel or distance between th (4206) W. E. MacK. writes: 1. I ma n induction coil as described in your paper, but can wo pounds of secondary wire wound perfectly, eac layer shellacked, with two layers of thin paper between each layer. I feel positive that the insulation is perfect hroughout. The condenser is made from leaves of a then dipped in paraine. How can I teretrons a then dipped in parama. How can I lest to tind your induction coil by means of a galvanometer and rheostat, and see it it has the reeistance due to it
length. If the resistance of the coil is less than that he wire, your iesistance of the coil is less than that he wire, your iusulation 18 dencient 12 sime points.
he resistance is extremely high, or if the current will not pass at all, it indicates a break. Possibly you areno sing sufficient battery to develop the full power of th If yon are asing small cells, try connecting the
pp by twos in parallel. 2 . Why is it that if the wir rom the zinc of a bichromate of potash cell be co while if connected at the binding post or to anothe piece of wire from the carbon it is not made even
sensibly warm? A. By connecting the wire directly with the bindiug posts, you have the greatrest posibibe
current you can obtain from the battery. Any addiional resiet ance introdiced the battery. Any add current. 3. I have three cells of carbon and zinc bat ery which I charge with a saturated solution of bthromate of soda and one part sulpharic acid to five solution. Why is it that when this battery is set a resh it becomes so hot that the paraffine is melte fum ends or the carbons, although everything is quis zincs beco the zinc 18 put in? A. The fact or the malgamation. You should amalpamate your zinc thoroughty in every part. 4. On page 321 of Mr. Hop-
kins' book he speaks of sulphurous acid water. What does he mean? A. Sulphurous acid water is water in which sulphurous acid (whichis a gas a ordinary temperatures) has been absorbed. 5. How shall I go to wor to harden asteel roiler (tool steel) 4 inches by 2 inched
diameter with journals 3 inches by $11 /$ projecting fro each end? I wish the journals soft and the center and hard as possible to get it. I have mad : three but all crack in the hardening? A. For yoir rolle take ete that has been worked as little as poesible, and never perature required for hardening and dip to straigh down into cool water, holding it there until it become cool; afterward draw the temper of the journale. A t should be finished, after hardening, in a grinding lathe.
Marlboro asks : For a variety of whitewash receipts,
 there ary way in which short hair may be curled without the use of curling iron, and without doing any y injury o either hair or scalpp-E. W. says: Please give me a cement to faten plase and that it can stand hot water?-H. W. F. says: Will you give receipt for Worcestershire sance, same as made
hy Lea \& Perrins 9 R. C. C. eays : Please give formula for rubber mixture to repair rabber coat.-A. H. R ays: Can you inform us of some lacquer to use on
brase signs to keep them from tariushing $?-\mathrm{R}$. F. M. says: Could you kindly give us a recipe for hard transparent cement ror sticking glass, insolable in watertB. B. A. says: How can I remove mud stains fron a boie leather dress sait case without leaving any mark
Is there any way to remove initials nadly put ou with he black puint generally used for that parpose ?-C. J. McG. says: Oblige me with a receipt for making colored a solution for removing ink is made ?-T. F. McD. says Please give a receipt to make an easy-runnng bismuth solder?-T. J. вays: Can you farnish me with the re-
 are the stripes on pool balls donet-1. A. A. says: so that when a heavy charge of lectricity comes over the wires it will not melt the cementrt? 2. Can yon tem-how?-A Reader asks how to clean wall paper.-C. H. C. asks for tin and zinc plating baths.-E.C. W.asks or a durable wild
Answers to all of the above queries will be found in the "Scientific American Cyclopedia of Receipts, Notes The advertisement of this book is printed in another column. A new circular is now ready.

Replies to Enquiries.
 The following replies relate to enquiries recently pub-

 therein givenRemovolof Writte Incrustation from Bricks.-Large quanuties or the preseed bricke referred to in query No. acid, dilute 1 in 3 water, and put on with a whitewa-h brueh, will take
Maltom, Ontaria.

NEW BOORS AND PUBLICATIONS.
The Mechanical Engineer's Pocket book of tables, Formula, Rules, AND Data. By D. Kinnear Clark,
M. Int. C.E. New York: D. Van
Nostrand Co. 1892. Po.
Pxxii, 656. Price $\$ 3$.
A book of this character, provided with an extended able of contents and also with a full index is always
welcome. The work covers the ground designated by is title, with one noteworthy feature. This is the inngineering including bong other torico dyal smpe, conductors, telephones, and lighting conductors The preface states that the work is expecially designed or the ase of the mechanical engineer, and its namer ous thaber anc practical rules and examples will prove
of the greateet use to members of the profesion in

Notes on Building Construction. Part IV. Illustrated with Londrask
folding plates. Lond
York: Longanas, G
Pp. xix, 364 . Price 4.50 .
This large and beautifuly madid volume / a yryturiz
meet the requirements of the sylubus of the tomide and Art Department of the cometitee of counction education, South Keneington, En, kand, for fohat is
termed the course for honore. Whit) examination syetem is productive of \downarrow dod or harm to ence on the world of books is in some ways bad aia tending to restrict the ecope of books to the limited "re. quiremente $"$ of the examinatione. This volume, how-
ever, while avowedy written for such eid, trates an ally of its subject builuine structures and wlewlaure nctent thereto, that it will be toand yalm is to to mony Kensington examination,
How to Run Eniizios ane Roileqs.
By Egbert P. Watson. New York.
1892. Pp. 125.
This is a little hand book of useful information and direction hy the editor of the Engineer, deeigned to be
particularly serviceable to young encineers and steam particularly serviceable to young engineers and steam
users. It treats of cleaning the boiler and removing scales, boiler fittinge, grate bars and tubes, bridge walls. etc., and several shorr chapters are given to the elide
valve throtting engine. Many valuable prucical hints alve throtting engine. Many valuable practical hinta relative to engine running and management are piven,
and the information contained in the book is set out so and the information contained in the book is set out so
plainly and clearly that the moet ordinary mechanic canpot fail to understand and appreciate its contents.
not

TO INVENTORS

An experience of forty years, and the preparation of
more than one hundred thousand applications for pamore than one hundrea thousand applications for paents at home and abroad, enable us to understand the
aws and practice on both continents, and to posseas unequaled facilities for procuring patents everrmbere. A
syonosis of the patent laws of the United States and all foreign countries may be had onapplication, and persons contemplating the securing of patents, either at home or which are low. in accordance with the times and our extensive facilities for conducting the business. Address
MUNN \& CO, office ScIENTIFIC AMERICAN, 361 BroadMUNN \& CO., o
way, New York.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

March 15, 1892.

AND EACH BEARING THAT DATE.

