马ricmitific gmmerian.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
 No. 361 BROADWAY, NEW YORK.

-. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S., Canada or Mexico..
One copy, six months, for the U. S., Canada or Mexico
One copy,one year,to any foreign country belonging to Postal Union. 150 Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., 361 Broadway, corner of Frauklin Street, New York.

THE ARCBITECTS AND BUILDERS EDiTion Of THE SCIENTIFICAMERI-

 MUNN \& CO., Publishers, ${ }_{361}$ Broadway, New York

NEW YORK, SATURDAY, MARCH 19, 1892.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 846 .
For the Week Ending March 19, 1892.

 II. CHEMISTRY, -Examination of Inks. By Osw. Schuurric and

IV. EDUCATION-The Central School of Arts and Manufactures,

acetate of soda warmers and caustic soda

 team boilers.In France acetate of soda has received an extensive application by railroad companies for the purpose of supplying foot warmers. The principle on which it operates and even its true functions are not generally understood.
Sodium acetate is used in the class of foot warmer and similar devices as a factor in the storage of heat If a brick is warmed in an oven, it represents a source of heat which will supply a greater or less quantity in proportion to the degree of heat which has been im parted to it. A bottle of hot water is of the same category. The weight of the substance heated, its temperature, and its specific heat determine the quantit of heat which is absorbed and will be given out
In sodium acetate a fourth element enters into the problem. It is a solid crystalline salt, having three molecules of water of crystallization. It possesses the property of dissolving at a boiling temperature in one part by weight of water. If allowed to cool, most of it crystallizes out, leaving about one-third still in solution in the mother liquor. If the apparently dry salt is heated, it liquefies in its water of crystallization, what is practically a fusion of the salt resulting. If kept in this state of fusion in an open vessel, the water gradu ally evaporates and the salt becomes anhydrous.
The melting of the crystals occurs at a comparatively low temperature. The fusion begins at 136° F., and at $167^{\circ} \mathrm{F}$. is complete. As this fusion involves the conver sion of a body from the solid into the liquid state, a large number of heat units are absorbed in the process in other words, a large quantity of heat is rendered latent. This heat is given off during the solidification of the material.
The method for its use consists in packing cases of purposes, as desired, with for foot warmers and other be closed. Placed for a short time in boiling water, the temperature of liquefaction is soon attained, and the salt remains practically at that temperature until melted. The action, though not so definite as regards the point of fusion, is identical with that of the water of melting ice, which cannot pass 32^{\prime} F. as long as any solid ice remains. The case of melted acetate is now charged with latent as well as sensible heat. In use the salt gradually solidifies, but as it does this maintains its temperature of fusion approximately until it is solid. Then the loss of sensible heat begins and it rapidly cools.
The last described action is again comparable to that of water freezing. As long as liquid water remains in a vessel the temperature, except under special condi tions, cannot fall below $32^{\circ} \mathrm{F}$. In the case of sodium acetate, the temperature cannot go much below 136^{2} F. until the whole mass is solidified.

When a brick or a metallic slab is used for a foot warmer, the low specific heat of the material renders it ineffective in proportion to its weight. Hot water, on the other hand, is effective, because of its high specific heat, but is too bulky. The sodium acetate seems to avoid both difficulties.
This use of the above salt must not be confounded with the application of caustic soda or sodium hydrat for the generation of steam. In the latter application a direct chemical actof combination is utilized. Wate has a strong affinity for sodium hydrate, and unites with it with the production of heat. A parallel case is seen in the uniting of water with quicklime, the heat pro duced in which operation is familiar to all. The "caustic soda boiler" as it is termed has melted caustic soda surrounding its water chamber. This is neces sarily hot when introduced, so that steam is at firs generated by the sensible heat. The exhaust steam from the engine is blown into the caustic soda. This,
by its combination with the sodium hydrate, generates additional heat. The process goes on until the caustic soda solution becomes so weakened by the water absorbed that it ceases to respond enough to be effect ive in maintaining the steam pressure in the boiler.
The caustic soda boiler has been successfully tried in the form of locomotives for tramways, tunnels, and in a submarine torpedo boat. It is evident that its advantage in not exhausting the oxygen of the air render it peculiarly adapted for such purposes. Up to the
present time it has been used very little.

Great Bodies of Fresh water. jetties, and the Amazon from the source of the Ben the isle of Marajo, are over 4,000 miles in length To be exact, the former is 4,300 and the latter 4,029 are mingled source to the places where their water re mingled with those of the ocean. Four claim total length of over 3,000 and under 4,000. They are th Yenisei in Asia, length 3,580; the Kiang, Asia, length 3,900 ; the Nile, Africa, 3,240 ; and the Hoang-ho, Asia, which is 3,040 miles. Seven streams on the globe are
under 3,000 and over 2,000 miles in length, the Volga in Russia and the Amoor in Asia each being 2,500 miles in
length; two are 2,800 miles long, the Mackenzie in British America and the Platte in South America The Rio Bravo in North America, the Rio Madeira in South America, and the Niger in Africa are each 2,300 miles from end to end. The Arkansas River just comes inside of this 2,000 mile limit. Ten of the great river of the world are over 1,000 and under 2,000 miles in length. Three of these are in North America, the Re River 1,520 , Ohio 1,480, and the St. Lawrence 1,450 South America has also three in this list, the Rio Negro 1,650 , Orinoco 1,600, and the Uruguay 1,100 miles. Asia has three in the same list, the Euphrates 1,900 miles, and the Tigris and Ganges, each of which is abou 1,300 miles. In the group of great rivers, the St. Law rence is the most remarkable. It constitutes by far the largest body of fresh water in the world. lf we include the great lakes and tributary rivers, with the St Lawrence system, as they cover about 73,000 square miles, the aggregate represents not less than 9,000 solid miles of water. The unthinkable size of this mass may be better comprehended when we consider the figure of Professor Cyrus C. Dinwidde, who says that it woul take over forty years for this entire mass to pour ove Niagara at the computed rate of $1,000,000$ cubic feet per second.

Indigo.

The chief source of natural indigo is the various spe ies of Indigofera, especially Indigofera tinctoria, which are cultivated in India, China, and South Amer ica. It is also contained in European woad (Isati inctoria) and a few other plants, the cultivation of which for the production of indigo was a flourishing ndustry from the ninth to the sixteenth century, an urther, one which, thanks to the decrees of the ruling powers in England, France, and Germany, was the cause of delaying the introduction of the "devouring devil's color," as the Indian indigo blue was formerly called. The cultivation of European woad is to-day almost an extinct industry, although up to the commencement of the seventeenth century it was a sourc f considerable revenue both in France and Germany The color is not contained in the free state in thes plants, but as what is called a glucoside, to which the name of indican has been given. In this glucosid he indigo is held in combination with a kind of suga glucose-which former undergoes decomposition under certain well defined conditions with the separation of indigo blue. It is the Indigofera plants of India China, and South America, especially the first of these rom which the color is now prepared. The method fits preparation is very simple, although considerable attention is paid to the treatment of the soil previous to the planting of the seeds. Ten to fourteen day suffice for the first appearance of the shoots above the soil, after which they continue to grow rapidly. Shortly before flowering, or about three months after sowing he plants are cut off close to the ground, and are then eady for extracting the color. After cropping the plants are again allowed to grow until they are suff ciently mature to admit of a second cutting. Occa sionally a third and even a fourth crop is made, but each of these contains successively less and less of the ndican. The cut plants are at once placed in large tone cisterns or fermenting vats, called "steepers," where they are covered with water, and kept in posi tion by means of boards and heavy stones.

overeating vs. overwork.

An abuse that tends to the injury of brain workers excessive eating. A writer in the Medical Mir or recalls to mind several active brain workers who suddenly broke down, and fancied that it was due to brain fatigue, when, as a matter of fact it was due to overstuffing of their stomachs. The furnace connect ed with mental machinery became clogged up with ashes and carbon in various shapes and forms, and a result disease came, and before the cases were fully appreciated, a demoralized condition of the nervou ystems was manifested, and they laid the flattering unction to their souls that they had indulged in menta overwork. Hard work, mental or physical, rarely ever kills. If a mild amount of physical exercise be taken and a judicious amount of food be furnished, the bow sept open in the proper manner, the surface pro ected with proper clothing, and the individual cult vates a philosophical nature and absolutely resolves to permit nothing to annoy or fret him, the chances are that he can do an almost unlimited amount of work for an indefinite length of time, bearing in mind al ways that when weariness comes, he must rest, and not take stimulants and work upon false capital. The ired, worn-out slave should not be scourged to additonal labor. Under such stimulus, the slave may do the task, but he soon becomes crippled and unfit fo work. The secret of successful work lies in the direc tion of selecting good, nutritious, digestible food, tak en in proper quantities, the adopting of regular methods of work, the rule of resting when pronounc ed fatigue presents itself, determining absolutely no to permit friction, worry, or fretting to enter into his charity, patience, and philosophy.

The Present Sun. spot. Mr. Christie, the Astronomer Royal, informed the representative of the London Globe that this is the
largest spot yet photographed at the Greenwich Observatory (where the sun has been regularly and sys tematically photographed since 1873), and that the greatest attention has been paid to it, with a view to clear up, as far as possible, moot points with regard to the cause, periodicity, and, perhaps, even more particularly, the magnetic disturbance which these spots bring about on this earth. Some excellent photographs have been secured, but, unfortunately, on several days the sun was obscured, and until photographs are received from India or Mauritius the investigation cannot be regarded as complete. However, the information which Mr. Christie has obtained is of the greatest interest and value. In the first place, the spot is found to be composed of two nuclei, very black, surrounded, as usual, by a penumbra, or fringe, and with several smaller'nuclei connected with it. Occupying as it does an "rea of about ${ }_{\text {s.b }}{ }^{1}$ of the face of the sun as we see it, the "spot"-still to speak of it in the singular number-i plainly shown on the negativestaken at the observatory; photographic plates ten inches square being used, and the solar disk being eightinches in diameter. Without, therefore, the aid of a magnifying glass the unusual size and importance of the spot are at once evident. But it is when the negative is placed under the microscope and accurately measured that the details of its size become more striking, for it is found that, whileits greatest length is about 100,000 miles, and its greatest breadth 60,000 miles, the whole group extends over 150,000 miles.
Asked as to what was the cause of these spots, Mr. Christie said that there had been several theories framed to account for the phenomenon, but none that were entirely satisfactory. There were those, for instance, of Faye, Secchi, and Lockyer. The theory of the last named was that the spots are caused by a bombardment of meteoric matter falling into the sun, and causing a great "splash." The nucleus, as the dark part is called, is cold, and is at a lower level than the general surface of the sun; while around the spot are generally seen what are called faculce, part of the sun's surface which are raised up. Often by means of the spectroscope can be traced moving masses of molten matter surging round and over the nucleus. The apis, of course, the movement of the sun itself carrying the so-called spot with it. On these points Mr. Christie was careful to state that all is conjecture; and he pointed out, as an objection to Mr. Lockyer's theory, that while the spots never appear far from the sun's center, the nearer the spot is to the solar equator the faster it appears to move; a spot at the extreme limit from the equator taking two days longer to complete the circuit than one near to it. What he was able to speak more positively upon from the records at the observatory was the characteristics of the spots as they have been observed. In this connection a very valua ble series of diagramshave been prepared by Mr. Ellis, both from the observations? since 1873 and from the records prior to that year, showing not only that the magnetic disturbances have been coincident with th appearance of the spots, but that the intensity of the disturbance has been in exact ratio with the size of the
spot. They further show that the "spottiness" of the spot. They further show that the "spottiness" of the
sun reaches its maximum every eleven years, dying gradually down to its minimum of absolute freedom from spots, and as gradually increasing. There was, for instance, a minimum in 1878 and a maximum at the end of 1882 or the beginning of 1883 . Then, again there was a minimum in 1889, since which year the number and frequency of the spots has been increasing It is a notable fact that when there are the fewest spot they come near the equator, but when a fresh cycle begins the spots appear in higher latitudes-about 35° or so from the equator, though never appearing at a greater distance than 40°
These are the solar phenomena in connection with the spots. The terrestrial magnetic phendmena ar equally striking, the magnetic storms or disturbances being of great extent-amounting to several degrees in the deviation of the compass. In the present instance, soon after the spot had passed the central meridian, there was a great magnetic disturbance from noon on Saturday to noon on Sunday, and that was accom-
panied by aurora on Saturday night. During this period both the movement of the needle to the north and its attraction to the earth showed a great disturb ance. This has been fixed by the recording instru ments at Greenwich, which work in this way. In the point of the magnetized needle is a small mirror, which reflects light upon sensitized paper. Ordinarily, therefore, there is on the paper, which revolves on a drum, a continuous line, which shows that the needle has been
quiescent. But when the magnetic disturbance of quiescent. But when the magnetic disturbance of
Saturday set in, instead of a straight line there was recorded a series of zigzag lines, showing that the needle was darting from one side to the other to such an ex-
tent as to get off the paper-some four or five inches in width-on both sides, many times, and exactly the same results were found in the register of currents pass-
ing through the earth. The matter of interest now, said Mr. Christie, is to discuss what is the connection
between the sun spots and these extraordinary mag between the sun spots and these extraordinary mag
netic disturbances. There are now three or four mark ed cases on record of large spots on the sun being coincident with these disturbances on the scale experienced during the past few days; but while there are no cases of a large spot being seen without magnetic disturbances being felt, there are cases in which the latte have been experienced without sun spots being visible This might be urged as upsetting the theory; but we
only see what is going on on one side of the sun, and it only see what is going on on one side of the sun, and it
is very possible the spot was "on the other side;" so that the absence of a visible spot cannot be held to prove that there is nothing on the sun causing the dis turbance.

The screw Propeller

In these days of high art in using steam power it is interesting to call to mind the day of small things, within the memory of thousands of people now living I find a few notes on this subject in an unexpected quarter, namely, in Bishop Heber's travels in India which he made tediously by sail on the sea, by oar setting pole, and sail on the rivers, and, on land, by palanquin, horse, and elephant, through sections now long traversed by railroads. His notes are the more in teresting, because he was a good man and a keen ob-server-"a godly gentleman and a great lover of learn vard College, by one of his contemporaries. Nothin escaped the keen eye and attention of the bishop. He visited the King of Oude in 1824, and the king talked about steam vessels, speaking particularly of a new way of propelling ships by a spiral wheel at the bottom o the vessel, which an English engineer in his pay had invented; and in a letter dated at Calcutta on Decem ber 14, 1825, he says the steamboat long promised from England, the Enterprise, is at length arrived, after a passage of nearly four months. Here we have an ac-
count of one of the earliest experiments with the screw propeller, made by an East India king living away up in the interior; and of the first steamer by the Cape of Good Hope to India.
The late John Ericsson, whose remains were not long ago borne to his native Sweden by a United States ship of war, in consideration of his invaluable service in the late war, was the man of all others to persevere in making the screw propeller a power throughout the
world. Previous to 1839 Ericsson tried unsuccessfully world. Previous to 1839 Ericsson tried unsuccessfully
to introduce it in England, and came to the United to introduce it in England, and came to the United
States. In 1840 the English woke up, and the propeller States. In 1840 the English woke up, and the propeller on was built in use in Eng government, and was the first vessel with a screw propeller in this country. - The introduction of the propeller was slow for ten or fifteen years, but now for more than fifteen years it has been the only mode of propulsion used on sea-going steam vessels and tug boats. There is no more animating and impressive sight in busy harbors and on busy river than to see the lively tug boats darting about, towing the largest ships with ease; and it is hard to realize that even in Boston i:arbor, for instance, there were no regular tug boats until, mainly through the continued efforts of John Ericsson, the screw propeller came into general use. Truly, "Peace hath her victories, as well as war."-The Locomotive.

A Wonderful Star that No Man Has Yet Seen.
The many wonderful discoveries in astronomy re cently made by the aid of photography have seemed to eave the older methods of astronomical investigation far in the rear. But just now Mr. S. C. Chandier, of
Boston, has made what may be called a discovery by the aid of mathematical methods, recalling the achieve ment of Leverrier and Adams in the detection of Nep tune fifty years ago. There is in the northern sky a star known as Algol, which the sharp-sighted Arabs who discovered its variations in light called the demon star. Every two days twenty hours and forty-nine minutes this star suddenly begins to fade, and continues to grow fainter for three or four hours, at the end of which it has sunk from the second to nearly the ourth magnitude. After remaining thus for a few minutes it begins to brighten, and in the course of hree or four hours more regains its former brilliancy Within the past few years it has been discovered tha there is a huge dark body revolving around Algol at a distance of some three milion miles, and to this phenomenon the variations in Algol's light are due. At egular intervals this dark companion star comes into partially eclipses Algol, cutting off, perhaps, five-sixths of its light.
These stars, Algol and its strange non-luminous com rade, are of great size, Algol itself being more than eleven hundred thousand miles in diameter, while the diameter of the dark body that circles around it is eight hundred and forty thousand miles.
Mr. Chandler, meditating on certain irregularities in themotions of Algol and its companion, suspected tha
they might be due to the presence of another invisible star in their immediate neighborhood. He carefully compared the observations back to the time of Good ricke, more than a hundred years ago, and pursuing a mathematical method similar to that which resulted in the discovery of Neptune through the effect of its attraction on Uranus, he arrived at the conclusion that such another star must actually exist. According to his conclusion this mysterious body is far more'mas sive than either Algol or its companion, but does not give forth any perceptible ligh \grave{i}, and it forms a center of attraction around which both o P the other stars re volve in a nearly circular orbit, in a period of one hundred and thirty years. Mr. Chandler's theory seems to fit in well with the observed irregularities of Algol. He remarks, moreover, that there are several other stars known to astronomers to be variable which evidently have one or more dark companions like those of Algol.
It is natural to inquire what is the nature of these mysterious dark bodies existing in the neighborhood of bright stars comparable in brilliancy with our own sun, and evidently obeying the same law of gravita tion that prevails in our solar system. The primary distinction between a sun and a planet is that the for mer glows with a brilliant light of its own, while the planet, having been encrusted with a solid and opaque shell, only shines by the reflected light which it re ceives from its sun. The dark companions of Algo may then be regarded as in the planetary condition, at least so far as the question of luminosity is concerned. But they differ widely from any of the planets of our system in their great size as compared with the sun in whose neighborhood they circle. That com panion of Algol, which by its eclipsing effect produces the variation in the light of the star, is not very far inferior in size to its bright comrade, while the greater dark body, whose existence seems to be demonstrated by Mr. Chandler's investigations, greatly exceeds them both in mass. Here, then, if we choose to adopt th idea that this great invisible orb around which Algol revolves is a planet in our sense of the word, we have a world which is the center of motion for the sun that illuminates it. This is going back to the old preCopernican idea of the earth as the center of the sola ystem, having the sun as its satellite. Such a system seems unnatural, if not impossible, because the ordinary laws of the radiation of heat require that a large body, other things being equal, should cool down from the solar to the planetary condition later than smaller body. But it would seem that in the Algo system, for some reason yet to be discovered, the most massive member of the system has parted with it light and heat far earlier than one of the satellites re olving around it
If it should prove to be true, as Mr. Chandler sug gests, that there are other, and perhaps many other systems similar to that of Algol, then we shall simply have additional evidence of the great variety that ex ists in the arrangements of the stellar universe. There really is no reason why we should take our own solar system as an invariable type to which all the other ystems throughout space must correspond. It migh be suggested that in the case of such a system as that of Algol, all the bodies belonging to it have long since become extinct through theoperation of those laws of cosmical evolution which seem to be manifested in the universe at large as well as in our own planetary system, and that through some such cause as a collision one of the minor bodies of the $\mathrm{s}^{ }$stem has again been brough to a luminous condition.
But there is no end of dspeculation when we try to interpret the wonderful discoveries with which the astronomy of our time is continually surprising the world.-New York א̌un.

The Magnetic Propertics of Oxygen.

Commenting on Prof. Dewar's recent experimental erification of the magnetic properties possessed by iquid oxygen, M. Guilla me points out, in L'Industrie Electrique, that if we accept the values found by Edmond Becquerel for the magnetic constant of oxygen, it ought, when in the iquid state, and in a field of medium strength, to possess a magnetic moment per cubic centimeter one third of that of iron, and a magnetic moment per gramme twice as great as that of ron ; so that the strange conclusion is forced upon us that oxygen is the most magnetic of substances. M. Guillaume also points out that liquid oxygen might be made to give a faithful and delicate representation of the distribution of the lines of force in a magnetic field, the liquid being heaped up in the strong places.

Messrs. Escher, Wyss \& Co., Zurich, Switzerland received a first of prize $£ 200$, and Messrs. Ganz \& Co., Buda-Pesth, Prof. A. Lupton, Leeds, and Mr. J. Sturgeon, Birmingham, England, received second prizes of £150 each, for projects for hydraulic development, pre pared last summer, for the commission of the Niagara none the prompany. It wil be approved and ac cepted in their entirety by the commission.

