AN IMPROVED RAILROAD SIGNAL

I signal designed to give a positive alarm to the enreer on the locomotive when his train approaches an en switch or drawbridge, or a semaphore set at anger," bas been patented by Mr. James 8 . Parter of Woodstock Ontario Canada and is. Par
that stood near water ditches on hillsides. The ground thrown over in terracing gives depth of loosened soil that makes a rapid and healthy growth of tree and fruit, that it is thought fully compensates for the cost ot the work. The terracing gives picturesque beauty to the country, of the highest order known to practical e accompanying illustration. From the top of horticulture, thereby creating a value beyond intrinsic p. erected along the track, at conveordin ordinary danger signal, wings or arms are made to project toward the line when there is danger ahead, and operate a swinging bracket on the locomotive, by which a bell is rung inside the cab, the wings being held parallel with the line when the road is clear. Each wing forms part of a slotted extension bar adjustably secured to the top of a double sprocket wheel journaled in a forked bracket adjustably attached to the top of the post, as shown in Fig. 3, a sheet iron cover protecting their parts from snow, ice, etc. On the main shaft of the switch, near the top, a similar sprocket wheel is mounted upon it and connected with the others in the series by a wire rope or cable, At the lower end of the switch shaft is a gear wheel meshing with a gear pinion on the countershaft connected with the switch bar, which is operated by a handle. That the wire connecting rope may be held taut at all times, without being affected by changes in the temperature, an automatic take-up turn buckle is provided, as shown in Fig. 4, by which compensation is made for expansion and contraction. Swing brackets journaled at the
top of the cab on each side have extension pieces normally extending outward at right angles, and held in such position by spiral springs connected with a corrugated eccentric plate, as shown in Fig. 2. Sliding rods held in brackets on the interior top of the cab have their outer ends held against the corrugated edges of the eccentric plate by springs, and hinged to each rod is a hammer lever adapted to strike an alarm upon a bell. The extension wings being positively held toward the track, at about right angles, whenever a switch or drawbridge is open, or a semaphore at "danger," the extension piece of the swinging bracket on the approaching locomotive in such case strikes the wings and causes the alarm to be sounded in the cab, the bracket swinging backward sufficiently to allow it to pass the wing. In using this device upon a curve, it is designed to have a shaft on each post. extending downward to within three feet from the ground, made driangular in cross section at its lower end, wrenches to fit this shape being then carried upon the train, so that when a train migh be delayed at or near curve, the signal might be set by a train hand fron the nearest post, without the necessity of going back a half mile or so to signal in the ordinary way, a train that may be following.

TERRACING IN THE FOOTHILLS.

There is a strip of country on the east and north of the San Joaquin and Sacramento valleys that extends their entire length known as the "therma belt." It lies in the firs foothill lands that rise ou of the valleys, and is only a few miles in width There is less frost her than in the valleys; and above, the cold steadily increases until the summit of the Sierras is reached. In this region a great va riety of fruit can be grown of superior quality.
Many of the hillsides, however, are too steep to be planted to orchards in the ordinary manner, but during the last few years some of them have been terraced and planted to oranges and early peaches with results that are highly satisfactory. Both the fruits require abundant water, but the land on which the trees are grown must have perfect drainage. They will then produce fruit large in size, and in great quantity, and it will ripen earlier than where less water can be used, as I have noticed for some years the finest fruit and the first to ripen was always from trees

HILL TERRACES, CALIFORNIA.
work was begun on a spur of land projecting from th ridge, containing ten acres. This lies west from Pen yn two and a half miles, northwest from Loomis equally distant, and in plain view from either place. Near the base of this hill, and at the point of central pproach, is a cottage house, neatly built of spit granite, that is now being used as a club house, for the

Colony Club. Beginning just below this house, I built a zigzag avenue up the center of the spur to the top, on a regular grade of twenty inches to the rod. This makes an easy carriage road, the steepness of the hill being overcome by the continuous curving. After the terraces were made, I paved the gutters on the upper sides the side at each curve. Pipes were laid across the road as the gutter changed sides, four inch pipe being used on the upper turn increasing to eight inch pipe at the lower crossing, as in a rainfall the water is greater in quantity at the base than at the top of the terraces. From the highest part of this spur that was to be planted I began the terraces on each side of the avenue, the first being only a few rods in length, increasing with each terrace until the base was reached. The terraces terminate at the side of the avenue, and have a grade of two and a half inches to the rod for the running of water in irrigating. The terrace step was made level, with a bank slope of 45 degrees, varying according to the steepness of the hillside. The width of the terraces as measured on the slope was about 25 ft . on an average, but only from 12 ft . to 20 ft . wa the width of the level part. Sidehill plows were used in making the terraces, and they were run back and forth until the work was nearly done, when it was finished with shovels, some dirt having to be taken from high points to low places in wheelbarrows. Recent experience, however, has made me familiar with an implement called a " V," which, following the plow, does the leveling much more cheaply. This implement should be made especially for this work which I cannot describe in this article. The trees were planted eighteen feet apart in the row, and near the edge of the terrace, that they might stand centrally over the greatest depth of loosened soil
Orange trees in this section should be planted in March, that they may become well rooted before sum mer, when the heat is liable to check their growth if planted late. Since planting this orchard I have been nearly all the time in Southern California, and have frequently visited the orchards of Riverside, Pomona and Redlands, and I find the trees on these terraces are as large, as vigorous, as healthy, and as uniform in size, as any in the favored sections of the South that are of the same age and were of the same size when planted.
Among the visitors to this orchard when first planted were some English gentlemen. They were soimpressed with the picturesqu beauty of the place and the surrounding country that they purchased land adjoining, and in the spring of 1890 began to ter race and plant the' hillside south of the terrace plant ed in 1888. Continuing las spring, they now have nearly one mile in length of the hill slope terraced and planted, and many more acres are to be plant ed in the neighborhood during the coming season These terraces are irri gated by several lines o pipes laid from the to running down the face o the hill to the bottom. The distance between these lines of pipe is 330 ft . The pipes are laid under the ground, with faucets at tached and coming to the surface, just at the base of each bank. Wach terrac can thus be supplied with water by the opening of a faucet, and the trees can be irrigated for a distance of 330 ft ., when another line of pipe is reached this continuing along the entire length of the orchard. Near the cente of this planted tract is an avenue that runs diago nally over the face of the ridge to Clover Valley. I have made a paved gutte on the upper side of this avenue, into which runs al surplus water when irrigating, and all that may ac cumulate on the terraces from heavy rains. A deep furrow is plowed at the base of each terrace to conduc his water to the gutter.
Many Englishmen have already located here, some
of whom are gentlemen of abundant means, who have brought their families, have built substantial houses, and have come to stay. Others have purchased land which they are having improved, and will come themselves as soon as they can arrange to leave their presont callings. With their national thrift, they profor to have their country homes where a good incomc can bc derived from their investment, rather than havc their country residences in some suburban town of San Francisco, where no income is ever expected, as in the Oakland or Santa Cruz highlands that ovcrlook the towns, as the foothills here overlook the valley and the capital city of Sacramento.
These terraces, as they lie on the face of the curving ridge that encircles the sloping valley, are like "pictures hung on the wall" to travelers on the Central Pacific Railroad as they pass through the towns of Penryn, Loomis, and Rocklin, and to the people who live in the vicinity they are a constant source of pleasure. When the face of this ridge from the Newcastle line to Rocklin becomes converted into terraced orange orchards, as the owners purpose doing in a few years, and when the trees attain good size, and come into bearing, they will present scenes of unique beauty unequaled by anything similar in the country. $-P$. W. Butler, in Rural Press.

Transmission of Power by Compressed Air. Compressed air is, perhaps, the chief rival of electrical transmission. It is at present used chiefly in mines, where it is still a very successful rival of electricity, but from present appearances it is likely that it will gradually be replaced by the latter mothod. In Paris there is a large contral station for the distribution of compressed air, and it seems to be in successful operation. It does not appear, however, that the advantages over electrical transmission are so great that it will not soon be replaced by electricity. Its introduction is not making the rapid strides that the introduction of electricity is now making. Its efficioncy as compared with electricity will be shown very well at the Niagara Falls power plant, where I understand a compressed air system is to be introduced in competition with electricity. From a paper by Professor Unwin it appears that the transmission of power by compressed air is practical to a distance of at least 20 miles. It seems that 10,000 horse power can be transmitted to a distance of 20 miles in a 30 -inch main at 132.3 pounds per square inch with a loss of pressure of only 12 per cent. The efficiency of such a plant is said to be 40 to 50 per cont if the air is used cold, and 59 to 73 per con if the air is reheated. The relative efficiencies in per cont for different distances of several systoms is as follows:

Distance	Efffciency in per cent.		
in Miles.	Hydraalic.	Pneumatic.	Wire
Rope.			
$1 / 2$	50	65	91
1	49	54	85
3	41	51	61
5	37	50	43
10	26	43	21
13	18	39	11

The most usual and extended method of transmit ting power, if so it may be called, is that of transport ing the coal itself from the mines in the manufacturing cities. The efficiency in ongineering terms in Phila delphia, which is not far from the coal regions, is onl 50 per cent.

Carl Hering.
Good Will-Trade Name.
The following rulings regarding the important subjects of good will and trade name were made by the Supreme Court of Louisiana, in the case of Vonderbank vs. Schmidt, viz.:

1. Good will is the favor which the management of a business wins from the public and the probability that old customers will continue their patronage and to re sort to the old place.
2. It may be said to consist of those intangible advantages or incidents which are impersonal, so far as the vendor is concerned, and attach to the thing conveyed. When it consists in the advantage of location it follows an assignment of the lease of the location and if not assigned it passes to the lessee of the property at the termination of the lease.
3. A trade mark has no separate existence, but owes its existence to the fact that it is actually affixed to a vendible commodity, whereas a trade name, or a fictitious name, may be considered as a quasi-trade mark, a more property which is somowhat allied to good will.
4. The only restraint the grant of good will imposes upon the grantor is to prevent his subsequent employ ment of his name so as to deceive and mislead the public.
5. A surname may become impersonal when attached to an article of manufacture, and become the name by which such article is known in the market; and, in case of sale of the right to manufacture the name passes also, though it does not pass as good will, but as a trade mark.
6. By giving a particular name to a building, as a
make the name a fixture to the building and the property of thc landlord upon the expiration of the lease. One may consent to the employment of his name as that of a place of refreshment, but if such consent be purely gratuitous he may withdraw it at pleasure, particularly if such name be his surname, it being persona to the proprietor and not an element of good will of the business.

A FLOUR OR KITCHEN CABINET.

The cabinet shown in the illustration is designed to present a neat appearance, and afford ample ventilation to the flour or other materials in the bins. It has been patented by Mr. Albert A. Tinker, of Madison, Wis. The front opening of the flour compartment is closed by an inclined hinge cover, and pivoted to the

TINKER'S FLOUR CABINET.

framing is a moulding board, adapted to be swung up in front of the cover, as shown in the sectional view. When the moulding board or leaf is tilted, any flour on it may be readily scraped off into a drawer below. The rearward movement of this drawer is limited, an air passage being left behind it so that air may freely circulate, the door of the lower compartment being pro vided with wire gauze.

\triangle LECTURE BAROMETER.

T. O'CONOR SLOANE, PB.D.

A simple form of barometer is illustrated for exhibiting the principle of the instrument in lectures or before audiences. The object is to have a large ai chamber, so that it can be readily seon atya distance, yet to avoid the necessity of using very large amounts
of mercury. It also is comparatively portable, as the tubes composing it are much shorter than the baro motric column.
Two tubes and a perforated rubber cork comprise the recipient of the barometric column. The upper tube may be half or three-quarters of an inch in in ternal diameter, resembling a test tube in general ap pearance, but should be considerably heavier and stronger. The lower tube is regular barometric tubing, or may be almost capillary in bore. To fill it, the tubes being taken apart, the tube of larger diametor i filled with mercury nearly to the top, and the cork is inserted. This has the effect of expelling a little mer cury through the perforation of the cork. Next the smaller tube is pushed into the aperture in the cork; this tube, of course, is open at both onds, and, as it is pushed down, the mercury rises in it. To avoid the resistance and pressure which the long sistance and pressure which the long
column of mercury would produce were column of mercury would produce were
it vertical, it is well, in thrusting this it vertical, it is well, in thrusting this
tube into its final position, to hold the two, as shown in the cut, nearly horizontal with the lower end of the small tube over a recipient, which would naturally be the mercury cistern. When com-

a lecture barometer.

pletely filled, the finger is placed over the ond of th lower tube and the whole system is inverted in mer cury, as in the manipulation of the ordinary barometer tube; the finger is removed and the mercury settles down to the proper height.
As regards their lengths, the upper tube may be 8 in. or 10 in . long and the lower one about 24 in . Owing to the large volume of mercury employed, it settles down slowly to its position, the long almost capillary lower tube acting as a damper upon its motion exactly as in the ordinary sea barometer.
The advantages of this method of filling are that air can be so readily excluded. When a barometor is
mercury, and to get rid of it some trouble is requir The bubbles may be fished out with a wire. By verting the tube in mercury they may be made coalesce into a large bubble; or the mercury may boiled. In the present case, if any bubbles coller the large tube, they may easily be drawn out v glass rod or iron wire before inserting the cor the subsequent filling, as there is no agitation mercury, a perfect integral column is obtained. As its disadvantage, the liability to leakage of the joint between the tubes should be mentioned. This is to be guarded against by using a very soft and perfectly fitting cork.

Palladium.

An experiment, illustrating the remarkable power possessed by palladium of occluding hydrogen is described by Prof. Wilm, of St. Petersburg, so says Nature, in the current number of the Berichte of the German Chemical Society. The experiment is so simgerman Chemical society. The experiment is so simple, and requires so short a time to exhibit, that it
would appear to be eminently suitable for lecture would appear to be eminently suitable for lecture
demonstration. The metallic palladium is employed demonstration. The metallic palladium is employed
in the finely divided state obtained by heating the easily prepared yellow crystals of the compound $\mathrm{PdCl}_{2} .2 \mathrm{NH}_{3}$, first in the open air, and subsequently for a short time in an atmosphere of hydrogen. A small quantity, about four grammes in weight, of the palladium so obtained is placed in a bulb blown at the bend of a U-shaped tube. The extremity of one limb of the U-tube is bent round at right angles, and connected with a wash-bottle containing sulphuric acid, which in its turn is connocted with a Kipp's apparatus generating hydrogen from zinc and dilute sulphuric acid. The wash-bottle serves not only to dry the hydrogen, but also to indicate the speed of the current of gas.
The extremity of the other limb of the U-tube is narrowed to a capillary, and terminates with a tightlyfitting stop cock and jot. In commencing the experiment, the hydrogen current is startod, and then, first the metal, and afterward the whole U-tube, is carefully heated with.a Bunsen flame in order to remove the moisture formed by the action of the hydrogen, under the influence of the palladium, upon the oxygen of the air contained in the apparatus. When all the air and moisture are thus driven out of the apparatus, an at tempt may be made to ignite the issuing hydrogen at the jet above the open stop cock. It will be found however, that even while the metal is hot and the stream of hydrogen very rapid, a constantly burning flame cannot be maintained at the jet with the stopcock fully open ; instead, a series of somewhat explosive ignitions and sudden extinctions ocenr. It is only when the stop cock is turned so as to reduce the exito the gas to a minimum that a constantly burning jet can be obtained, the hydrogen in contact with the palladium boing then subjocted to a certain amount of compression. The palladium is now heated a little more strongly, just above bright redness, when it is no longer capable of occluding hydrogen, and then the lamp is withdrawn, and after a few seconds the stop cock closed. The occlusion is then demonstrated in a most striking manner, for the stream of hydrogen continues to bubble through the sulphuric acid bottle and into the U-tube for several minutes with its original rapidity, although all exit is prevented by the closing of the stop cock.
At length, however, the occlusion diminishes, and the stream of hydrogen gradually becomes slower and slower, until it entirely ceases, the palladium having regained the temperature of the room, and becomes saturated with hydrogen at this temperature. If now the stop cock is opened, and the metal again heated, upon applying a flame to the jet, the issuing hydrogen upon applying a fame to the jet, the issuing hydrogen evolved from the palladium takes fine, and
a tall flame which remains constant for some minutes, a tall flame which remains constant for some minutes,
then, as the hydrogen stored in the palladium becomes then, as the hydrogen stored in the palladium becomes
exhausted, diminishes in size, and finally disappears. The moment the flame is removed occlusion instantly commences again, and the experiment may be repeated any number of times with undiminished effect.

Torpedo Depot ship.

The French government is about to construct one after designs which have been prepared by M. J. C. Duplaa-Lahitte, of the Corps du Genie's Maritime. The vessel, which is to be named the Foudre, will be 370 feet 6 inches long and 51 feet 3 inches broad, and at a mean draught of 20 feet will displace 5,970 tons of water. Engines of 11,400 aggregate H. P. will drive twin-screws and give an extreme speed of 19 knots. The armament will consist of eight 3.9 inch , four 2.5 inch, and four 1.8 inch, quick firing Canet guns, and five torpedo ejectors ; and she will carry ton torpedo boats, corresponding with ours of the second class, which will be hoisted and lowered by means of hydraulic gear. A cortain amount of protection will be given to the vessel by a steel deck $11 / 2$ inches thick. The Foudre, which will be ready for sea in 1895, will be supplied with material and apparatus for the repair of torpedoes and torpedo boats and for the construction of small crast.

