

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors published weekly at
No. 361 BROADWAY, NEW YORK.

O. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year. for the U. S.. Canada or Mexico.. emit by postal or express money order, or by bank draft or check.
MUNN $\&$ CO.. 361 Broadway, corner of Franklın Street. New York. The Scientific American Supplement.

suilding Edition.

 Readerare, peedilly requesed to onoufy the

NEW YORK, SATORDAY, AUGUST 29, 1891

Contents. (lllustrated articles are marked with an aster sk.)	
	Powder, smokeless, with 12-inch 132

table of contents of

SCIENTIFIC AMERICAN SUPPLEMENT

NO. 817.
For the Week Ending August 29, 1891.

Price 10 cents. For sale by all nemedealert.

\qquad
The proceedings in the Prussian courts of Essen, quoted in these columns, 8th inst., from a statement published on an erroneous report in the London Iron and Steel Trades Journal, were an action brought by the state to prosecute both the author and editor of a local partisan paper on charges of violation of the statutes regulating the privileges of the press. They were indicted for writing and promulgating articles assailing the honor and integrity of a number of citizens, residents of Bochum, both of private and of offcial standing, charging them with malice aforethought in incensory language with fictitious crimes against the fiscal laws for the purpose of disseminating hatred among the different classes and religious denom inations of society and for inciting insurrection. One of the calumnies went to show that the Board of Assessors of Taxes, in connivance with the city authorities in all their numbers, incluang in their capacity as members of the Common Gouncil the Directorsociety for mining and cast steel manufacture, to grossly undervalue the income of every one of their number, and many of their favorites, especially Protestants, some as high as 90 per cent, and to overestimate the people of the widdle and lower grades of income, especially Catholics. All the libeled parties appeared on summons as witnesses for the state with straightforward, clear and overwhelming testimony The author in his defense evinced great antagonism in violent attacks upon one person especially, the direc tor-general of the steel works, Louis Baare, who stood ready to support separate and aggravating charges of dustrial committed upon himself and the great inmony the defendant charged him with using counter feit stamps upon inferior and rejected rails and other railroad material, thus making it pass for good. The ffect had been made before a magistrate the day pre vious, temporarily withdrew the separate charges con cerning offenses against Baare, in order to avoid delay by postponing the case pending the investigation of the new matter. The latter resulted in the dismissal of the deponent's charge, which during the further course of proceedings was declared unfounded. The defendants were convicted of all the charges pre lerred, found guilty, and sentenced to a term of imprisonment. Baare, in behalf of the Bochum Verein bad in the meantime deposited in court documentary evidence proving that stamps were regularly and egitimately made at the works upon order and for the proper use and convenience of contracting parties and their representatives, who stamped with hem their tested material on acceptation.
The Prussian ministerial department of railroads has published since a table, showing from railroad statistics the accidents which occurred each of the last
six years, numbering in all 2,672 cases, of which there
was only one wherein a broken rail was a cause, and that only from being struck by a broken wheel.
Contradiction of the felonious charge has followed from railroads named in the same. The stenographic reports of the court proceedings, and state docu ments published in German offlial papers, are the sources of the aforegoing narration of this much abused affair.

the american association for the advancement

 of science.The first session of the fortieth meeting of this body was held in Washington, August 19. Prof. Goodale, of Harvard, relinquished the presidency to Prof. Prescott, of the University of Michigan. Eight addresses were delivered by the several vice-presidents before their respective sections, the subject of Vice-President Steven son, of New York, being a study of the Chemung and Catskill gronps in relation to the geology of the State of New York. E. W. Hyde, of Cincinnati, addressed the Section of Mathematics and Astronomy on "The Evolution of Algebra; " Prof. J. A. E. Nipher, of St. Louis, the Section of Physics on "Functions and Nature of the Ether of Space; " Prof. R. C. McKenzie, of the Agricultural College of Michigan, the Chemical Section on "Alchemy;" Prof. Thomas Gray, of Terre Haute, Ind., the Mechanical Section on "Problems in Mathematical Science;" Prof. Joseph Jastrow of Madison, Wis the Antbropological Suction "Th Mad, Witw ${ }^{2}$ " The Natural History of Analogy ;" and Prof. John M.
Coulter, President of the Indiana University, the Coulter, President of the Indiana University, the
Biological Section on "The Future of Systematic Botany."
The evening was devoted in part to the annual address of the retiring president, Prof. George L. Good ale, of Harvard, on "Some of the Possibilities of Econowic Botany."

The programme of the second day included papers in all except the mechanical section. A technical paper on "A Measure of the Reliability of Census Enumeration" was read by Alexander S. Christie, of Washington. "A National University, Its Character and Purposes," and "The Science and Art of Government" were titles of papers by Lester F. Ward, of Washington. W. J. McGee read a paper on "The Southern Old Fields," followed by one by Colonel Hinton on "Agriculture by Irrigation; Some Social Economic Possibilities." C. R. Dodge read a paper on "The Needs of the American Flax-Fiber Industry," and exhibited samples of flax.
The Biological Section was much interested in "Anther Chapter in the History of the Venus Fly Trap," y Dr. J. M. MacFarlane, of Edinburgh. Among other papers read in this section were " Notes on the Physiological and Structural Changes in Cayuga Lake Lam preys" and "The Transformation of the Vermilion Spotted Newt," Simon H. Gage; "On the Kinds of Motion of the Ultimate Units of Contractile Living Matter," John A. Ryder; "A New Nectria," Byron D. Halstead; "The Flora of Carmen Island," Joseph N. Rose: "Uses of the Fermentation Tube in Bacte iology, with Demonstrations," Theobald Smith; and The Foraminifera, with a New Device for the Exhibition of Specimens," James M. Flint.
In the Geological Section the topics were: "Source of Supply to Lateral and Medial Moraines," by John T. Campbell; "New Meteoric Iron frow Arizona con aining Diamonds," A. E. Foote; "Post-Glacial Anti linal Ridges near Ripley and Caledonia, New York, G. K. Gilbert ; "Purposes of Mountain Building and their Relationship to the Earth's Construction." Warren Upham; " Notes on an Extinct Volcano at Montreal, Canada," Henry Lampard ; "On a New Horizon of Fossil Fishes," E. D. Cope; "On the Age of the Mount Pleasant, Ohio, Beds," Joseph F. James ; "Preiminary Report of Observation at the Deep Well near Wheeling, W. Va.," William Hallock; and "The Eureka Shale of Northern Arkansas," T. C. Hopkins.
In the Astronomical Section the topic was "Lati tude of the Sayre Observatory," the title of a paper by C. L. Doolittle, and "The secular variation of terrestrial latitudes," by George C. Comstock. Among other papers in this section were : "On a digest of the literature of the mathematical sciences," Alexander S. Christie; "Groups of stars, binary and multiple,' G. W. Holley; "Note on some recent photographs of the reversal of the hydrogen lines of solar prominences,' by J. A. Brashear; and "Standardizing photographi film without the use of a standard light," Frank H Bigelow.
Among the pupers before the Chemical Nection were 'Preliminary notes on the influence of swamp waters on the formation of the phosphate nodules of South Carolina," Chas. T. Reese; "Land and river phosphate pebbles or nodules of Florida," E. T. Cox; "A latent characteristic of aluminum," Alfred Springer; "The influence of negative atoms and groups of atoms on organic compounds," Paul G. Freer: "The calculation of the boiling points of isometrics from their moment of inertia," and "The deterwination of the true position of the carbon atoms in organic compounds by means of analytioal mechanics," Gustavus Hinrichs;
" Distribution of titunic oxide on the earth's surface," F. P. Dunnington.

Awong the papers in the Anthropological Section were: "The essentials of a good education, with a new classification of knowledge," M. H. Seaman; "The custom of kava drinking as practiced by the Papuans and Polynesians," Walter Hough; "A linguistic map of North America," J. W. Powell ; "Jade implements from Mexico and Central America," Thomas Wilson : "On a collection of stone pipes frow Vermont," G. H. Perkins; and "The importance and wethods of tine scieuce of comparative religion," Merwin Marie Snell. Professor Powell's ingenious map at tracted much attention.

Diamonds in Meteors.

by в. с. нover.

A remarkable paper was read at the Washington meeting of the A. A. A. S., by Prof. A. E. Foote, of Philadelphia, describing a new locality for meteoric iron near Canon Diablo, Arizona, fragments of which contained diawonds. The report at first was that a vein of pure iron, two miles long and forty feet ${ }^{\circ}$ wide, had been found, containing also gold, silver, and lead; and that surface iron could be gathered by the carload. That was in March of the present year. Prof. Foote explored the region thoroughly in June, without findirgany such vein; but what he did find was of great geological and mineralogical interest.
Crater Mountain, 185 miles north of Tucson, is a peculiar circular elevation, strikingly like an old erater It rises 432 feet above the surrounding plain, and its cavity is three-fourths of a mile in diameter. Its interior walls are so steep that animals once entrapped within them never escape, but leave their bleached bones at the bottom. The rim, of sandstones and limestones, is uniformly uplifted on all sides at an angle of 40°, while the bottom lies at a depth of from 50 to 100 feet below the general level of the plain. Although the cavity is thus crateriform, no lava, nor obsidian, or any other volcanic product was found. Siuall meteoric fragments were scattered over an area about a third of a mile in length and 120 feet wide, and extending northwest and southeast. Exactly in line with it, but about two miles from the base of the crater, were found two large masses, one weighing 154 pounds and the other 201 pounds, which were on exhi bition, both of them deeply pitted, and the larger one perforated in three places. The latter is now the pro perty of the Ecole des Mines, Paris. Smaller masse were also found, numbering 131 in all, ranging in weight from one-sixteenth of an ounce to 6 pounds 10 ounces. Several of them were coated with arragonite About 200 pounds of angular sulphureted fragments. also of meteoric origin, were found near the base of the crater, a few of which showed a greenish stain from oxidized nickel.
A fragment of a mass weighing 40 pounds was examined by Prof. G. A. Koering, who found it to be extremely hard, a day and a half being taken in making a section and several chisels being broken in the operation. An ewery wheel was ruined in trying to polish the section. This led to closerinspection of certain ex posed cavities, where small black diamonds were found that cut polished corunduw as easily as a knife might cut gypsum. These diamonds are mineralogically of great linterest; the presence of such in meteoric having been unknown till 1887, when two Russian mineralogists found traces of diamonds in a meteorite mixture of olivine and bronzite. By treating with acid the amorphous carbon in the cavities, a swall white diamond, one-fiftieth of an inch in diameter, was found, as well as troilite and daubreelite. The genera mass was three per cent nickel. The Widmanstattian figures were not regular. The indications are that a large meteorite, weighing about 600 pounds, had become oxidized in passing through the air, and burst before reaching the earth. It is hardly credible that the crater could be accounted for by meteoric impact, and its origin is a problem unsolved. The fact of special interest may be accepted as proved, that diamonds have been found in meteoric fragments. The specimens were carefully examined by the geologists present at the reading of Prof. Foote's paper, and while there were many opinions expressed as to the so-called "crater," and as to its relation to the meteor, none doubted the genuineness of the diamonds.

position of the planets in september.

 jupiteris morning star until the 5th, and then evening star. He is in opposition with the sun on the 5th, at 5 h .12 in. P. M., when he appears on the eastern side of the sun, rises at sunset, is on the meridian at midnight, and is visible the entire night. It is the culmination of his career for the present year, and glorious is none too strong a word to give expression to the majestic grace with which the prince of the solar family treads his starry path during September nights.
Planets have two periods. The sidereal period is the time of a planet's revolution around the sun, from a star to the same star again, as seen from the sun. The synodic period is the time between two successive con-
junctions of the planet with the sun, as seen from the earth.
Jupiter's sidereal period is 11.86 years, so that it takes him nearly 12 years to complete a revolution through the constellations of the zodiac, and he, there fore, requires a year to make his way through a zodia cal constellation. He will be found in Aquarius dur ing the present year, in Pisces during the next year, and so on.
Jupiter's synodic period is 399 days, a little more than a year and a month, a number easily remembered and one which makes it easy to calculate his successive oppositions. Jupiter's opposition occurs this year on September 5. It will occur 34 days later in 1892, or about October 9. It will thus be seen that the careful observer may readily keep the run of Jupiter's position in the zodiac, and the date of his opposition frow year to year.
The moon is in conjunction with Jupiter on the 17 th the day before the full, at 0 h .47 m. A. M., being $3^{\circ} 45$ south.

The right ascension of Jupiter on the 1st is 23 h .2 m., his declination is $7^{\circ} 50^{\prime}$ south, his diameter is $47^{\prime \prime} .4$ and he is in the constellation Aquarius
Jupiter rises on the 1st at 6 h .40 m. P. M. On the 30 th he sets at 3 h .33 m. A. M.

ATURN

evening star until the 13 th , and then morning star He is in conjunction with the sun on the 13th, at 8 h 38 m. A. M., when he passes to the sun's western side, and will soon be seen playing his part as morning star. Saturn is too near the sun to be visible, but an inter esting epoch occurs in his September course. The rings will disappear on the 22d, when the plane of the ring passes through the earth, and is seen edgewise. It will not reappear until October 30, when the plane of the ring passes ithrough the sun. The southern sur face of the ring that has been illumined by the sun for fifteen years will now be in shadow for the same time, and the northern surface will be illumined in it turn for the same time, when the ring will again dis appear. Saturn's sidereal period is 29.5 years. He is now found in the same position in the zodiac that he passed in 1862.
The three-hours-old moon is in conjunction with Saturn on the 3 d , at 6 h .26 m ., being $3^{\circ} 6^{\prime}$ north
The right ascension of Saturn on the 1 st is 11 h .22 m ., his declination is $6^{\circ} 7^{\prime}$ north, his diameter is $15^{\prime \prime}$ and he is in the constellation Leo.
Saturn sets on the 1st at 6 h .58 m. P. M. On the 30th he rises at 4 h .37 m . A. M.

MERCURY

is evening star until the 13 th and then morning star. He is in inferior conjunction with the sun on the 13th at 0 h .11 m. A. M., passing then between the earth and the sun, as the moon does at new moon. He reaches his greatest western elongation on the 28th, at 4 h. P. M., when he is $17^{\circ} 53^{\prime}$ west of the sun. This is the last opportunity during the year for seeing Mer cury as morning star with the naked eye. He must be looked for an hour before sunrise, and 8° north of the sunrise point, and is visible at elongationand for a few days before and after
The right ascension of Mercury on the 1st is 11 h .47 w., his declination is $3^{\circ} 14^{\prime}$ south, his diameter is $9^{\prime \prime} .6$, and he is in the constellation Virgo.
Mercury sets on the 1st at $6 \mathrm{~h} .50 \mathrm{~m} . \mathrm{P}$. M. On the 30th he rises at $4 \mathrm{~h} .26 \mathrm{~m} . \mathrm{A} . \mathrm{M}$
venus
is morning star until the 18 th , and then evening star. She is in superior conjunction with the sun on the 18th at 10 h .8 m. A. M., when she takes her first steps on the path which will suake her during the winter months the radiant evening
too near the sun to be visible.
Venus, four days before her superior conjunction, meets Saturn, the day after his conjunction. The event occurs on the 14 th at $6 \mathrm{~h} .32 \mathrm{~m} . \mathrm{P}$. M., Venus being 32^{\prime} south. The actors in the scene are of course too near the sun for terrestrial vision.
The right ascension of Venus on the 1 st is 10 h .32 m ., her declination is $10^{\circ} 44^{\prime}$ north, her diameter is $10^{\prime \prime}$, and she is in the constellation Leo
Venus rises on the 1st at 5 h .3 m . A. M. On the 30th she sets at $5 \mathrm{~h} .49 \mathrm{~m} . \mathrm{P} . \mathrm{M}$

MARS
is morning star. He rises about an hour and three quarters before the sun, but it is hard to find him, for he is only a ruddy point in the sky.

The waning moon is in conjunction w
The right ascension of Mars on the 1 st is 10 h .2 m his declination is $13^{\circ} 16^{\prime}$ north, his diameter is $3^{\prime \prime} 8$ and he is in the constellation Leo
Mars rises on the 1 st at 4 h .28 m . A. M. On the 30 th he rises at 4 h .7 m .

NEPTUNE
is morning star. He is in quadrature with the sun on He 1st at 3 h . P. M., when he is 90° west of the sun. His right ascension on the 1st is 4 h .20 m ., his declina the constellation Taurus.

Neptune rises on the 1 st at 10 h .26 m. P. M. On the 30 th he rises at $8 \mathrm{~h} .31 \mathrm{~m} . \mathrm{P}$. M.

URANUS
is evening star. His right ascension on the 1 st is 13 h . 47 m. , his declination is $10^{\circ} 32^{\prime}$ south, his diameter is $3^{\circ} .5$, and he is in the constellation Virgo.
Uranus sets on the 1st at 8 h .25 m . P. M. On the 30th he sets at $6 \mathrm{~h} .34 \mathrm{~m} . \mathrm{P}$. M.
Mercury, Mars, Saturn and Neptune are morning stars at the close of the month. Venus, Jupiter and Uranus are evening stars

Edward Burgess.

The death of Mr. Edward Burgess, of Boston, on July 12, at the age of 43, removed one of the few per sons in America who have made important contribu tions to insect anatomy.
His work was not voluminous, but it was very careful and exact. He was the author of, in 1880 an excellent review of the then recent literature in insect anatomy and physiology. His own most important and extensive paper was on the anatomy of the milkweed butterfly, but he worked out in more or less detail the anatomy of the perfect stage in Anabrus and Aletia, and studied minutely the male abdominal appendages of butterflies, the structure of the head of Psocidae, the mouth parts of the larva of Dytiscus, and the varied course of the aorta in Lepidoptera. He was also the first to show the precise structure and working of the apparatus for feeding in the imago of Lepidoptera.
A large part of his work was in aid of the researches of others, in which he was generous almost to a fault and his unselfish devotion to his duties for sixteen years as secretary of the Boston Society of Natural History in whose publications most of his papers were issued brought the office to a high state of efficiency-a de votion further signalized in his will, in which he made the society his contingent residuary legatee. Besides, although he published but a single short paper on Diptera, his knowlecge of this group, in which he ren dered large service to others, was unsurpassed among our countrymen.
To entomology, which he had cultivated with such signal success, Mr. Burgess, it is true, died several years ago when he parted from his collection and library and turned his attention exclusively to naval architecture, in which he had been interested from boyhood, and which offered far more promise of finan cial returns, then first absolutely necessary for him to consider. His world-known success in his new field (for he fairly leaped into fame) it is not the place here to consider, but, clearly the greatest genius our country has ever produced in this branch of science. his naturalist friends without exception will agree that in osing him from their immediate ranks science at large has been the gainer. They were indeed eager to ap plaud his success, his old scientific friends being, we believe, the very first to give him a tangible proof o their pride in his fellowship-a pride all the greater for the almost painful modesty with which he received every mark of his growing fame. Selfishness could not live in his sight. When the city of Boston gave him a public reception, his shrinking boyish figure as he rose to return his thanks, in which he tried to turn public attention rather to the one whose means, whose confidence, and whose sympathy had rendered the realiza tion of his scientific genius practically possible, will not soon be forgotten by those who witnessed it. But the gentleness and sincerity of his character, the refine ment of his life and manners, his truthfulness and oyalty, and all those other delicate traits which re vealed his heart and rendered him so dear to his intimate friends, will remain to them a source of perennial inspiration.-Psyche.

The Battle of Bennington Monument.
On August 19 there was dedicated with appropriate ceremonies, marked by the attendance of the Presiden and many distinguished visitors, a monument in com memoration of the battle of Bennington, Vt., in our revolutionary war. The monument has been in pro gress of building for several years, and has cost $\$ 100,000$. It was paid for by appropriations. It was paid for by the States of Massachusetts, New Hamp shire, and Vermont, and by private subscriptions. It is 301 feet $101 / 2$ inches high from base to the top of the capstone, and stands on a site 283 feet high. Its base is 37 feet 4 inches, and it is built of native ston faced with Sandy Hill dolomite. It has a lookout roon 88 feet above the fonndation, reached by an interio iron staircase

THE coffer dams of cruisers 9 and 10, building at the Columbian Iron Works, Baltimore, Md., will be filled with cellulose, which has been adopted by the navy department. The living apariments and store rooms of the cruisers are being painted with cork paint, which consists of a heavy coat of white lead and varnish, over which is sprinkled cork. It forms a non-conducting material which keeps the ship dry in warm climate and moist atmospheres.

