Canal had 564 miles of main line and 2,050 miles of minor distributaries, and irrigated 519,022 acres of crops. From this it will be seen how important a line of irrigation this canal constitutes, and how urgent the reconstruction of the aqueduct was. The new aqueduct replaces one of much smaller size, viz., five spans of 85 ft., which was damaged by a high flood in October, 1884, and completely destroyed by another high flood in July, 1885.
The Kali Naddi, for the greater part of the year, is a very insignificant stream some 50 ft . in width only, but on the date mentioned it was swollen into a rivera mile wide and in places 25 ft . deep.
In addition to the construction of the Nadrai Aque duct, all the railway and road bridges below it were also destroyed, and many villages swept away.
The proportion of the foundation to the superstruc ture of the new Nadrai Aqueduct cau be gathered from the fact that three-fourths of the expenditure of money and time were consumed by what is now hidden below the ground.
The foundations consist of 268 circular brick cylin ders or wells, as they are always called in India, all sunk 55 ft . below the river bed. There are fifteen bays of 60 ft . divided into three groups of five each by abutment piers. The abutment piers consist of a double row of 12 ft . wells spaced 2 ft . apart and the ordinary piers of a single row of 20 ft . wells similarly spaced.
The wells are all sunk through a stratum of stiff yel low clay, averaging 15 ft . thick, into a substratum of pure sand. The wells are all hearted with hydraulic lime concrete filled in by skips. and in each pier the wells, by corheling out the brickwork, are joined to gether for the superstructure of the pier.
The total quantity of well sinking was 15,019 lineal feet, or nearly three miles, and was executed by hand and steam dredging. It was commenced in May, 1886, and completed in May, 1888 . The arching was com menced in November, 1888, and tinished in April, 1889 The well sinking and arching went on night and day, the work being lighted by ten arc lights of 2,500 candle power each. Now that the aqueduct is completed it forms a most striking object in the vicinity and will, we hope, stand to bear witness in far distant ages to the beneficence of British rule in India and to the skill of our English engineers.
The solidity of the great arches and piers and the fine sweep of the bastion-like wings all unite to give an idea of vast strength and stability, while the monotony of such a large surface of facade is relieved by the ef fect of light and shade obtained by the bold corbeling out over the spandrels to form a support for a roadway on either side of the canal, and the long horizonta lines of the cornice and railings are broken up by a tower at each end and one at each of the abutment piers.
The wells were built up on wooden well kerbs laid in situ, at first in short lengths of 7 feet, and sunk by Bell's $21 / 2$ cubic feet sand dredger worked by hand through a nearly pure stratum of sand until the kerb rested on the clay, about 30 feet below river bed level; the remaining length of brickwork of 25 feet, with 8 feet of false work, was then added, and in the case of the 20 feet wells an additional load of $150-200$ tons of scrap rails was imposed to force the kerb through the stiff clay stratum into the sand below. The dredging in and below the clay was performed by Bell's 40 cubic feet dredger worked by steam hoists.
The double row of 12 feet wells in the abutments and abutment piers were similarly sunk, and Bell's 10 cubic feet dredgers worked by steam hoists were employed to take them through the clay, but as there was no room for rails, additional weight was given by an extra length of 10 feet of false brick work.
These double rows of wells, only 2 ft . apart, gave much trouble in sinking, owing to the tendency of the wells to draw together. The width of 149 ft . between the faces of the arches necessitated three shifts of the centring in each span; this was performed after a length of arohwork had been completed by lowering the centering by sand boxes on to trolleys running on three parallel lines of railway, and the whole centering was then dragged forward or shifted to another bay en bloc by a stean hoist. Mr. W. Good was the engineer of the work.

Thirty-six Tons of Pennies.
There are 72,800 pounds of pennies encumbering the vaults of the Sub-Treasury. This is more than thirtysix tons. and the coins are still accumulating. There are 10,400 bags, weighing seven pounds each. The accumulation is partly the result of the general establishment of the penny in the slot machines. The headquarters of the companies owning these machines is in this city, and all the pennies are therefore sent here when the agents make their returns. The companies thereupon unload them upon the Sub-Treasury. The Treasury Department will send these pennies to be distributed among the country banks.

THE frying sound in the telephone is caused by induction from other lines, earth currents, and static discharges.

grientifir Ammerican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors, published weerly at
No. 361 BROADWAY, NEW YORK.

The scientific American supplement

building Edition.

MUNN \& CO., Publisherstus.
lirf The affest way to remit is by postal order express maney order
rattor bank check. Make all remittances payabe to order of MUNN Coi Readers are specially requested to notify the
any failure delay, or irrepularity in receipt of papers.

NEW YORK, SATORDAY, DECEMBER 5, 1891.

TABIE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

No. 831.

For the Week Ending December 5, 1891.

THE UNITED STATES LEADS THE WORLD IN IRON The United States now takes the lead in the pro duction of pig iron. The schedule for 1890 stands as ollows, allowing for Great Britain and the United States 2,240 pounds to the gross ton; Germany, France, and other states, 2,204 pounds to the metric on:

It will be seen from the above that the American production for 1890 was more than sixteen per cent reater than that of Great Britain.
The recent report of the Commissioner of Labor says: Only twenty-five years ago Great Britain wa so far ahead of all other countries in the manufacture of these products that her manufacturers and states men did not dream that she would ever have serious competitors in the world's markets. The iron and steel consuming countries of the world were supposed to be dependent upon her for Welsh rails for their railroads, the finer qualities of Scotch pig iron for foundry purposes, Low Moor and other favorit brands of plate iron for boilers, Crown and othe choice brands of bar iron from Staffordshire, English drawn wire, English hoops and cotton ties, Sheffield cutlery and edge tools, and all kinds of iron and stee machinery, in the mauufacture of which great skill is required. At that time the Bessemer steel industry had not been established in the United States, and it possibilities were not understood even in England, where it originated, and we had but just commenced to develop our rich stores of Lake Superior iron ores and o apply our excellent Connellsville coke to their re duction. Germany lagged far behind as a producer of pig iron and steel and all their products
The basic process of manufacturing steel from highly phosphoriferous ores, with which Germany is abun dantly supplied, had not then been invented. But Great Britain was busy making steel by various new and old processes; she had an abundant supply or cheap coal; she had long known the virtues of Durham and other coke; and she had a variety of iron ores in abundance every where
Since those days the United States and Germany have rapidly and even phenomenally increased their production of pig iron and steel, and of all articles made from them. The whole world, indeed, ha greatly increased its production of iron and steel in the last twenty-five years, a result which is largely due to the extraordinary development in that period of railroad enterprises in all civilized countries, and to the invention of the Bessemer process, which has made cheap steel rails and cheap transportation possible; but the United States and Germany have made more progress than any other countries, and very much more relatively than Great Britain.

AUTOMATIC CAR COUPLERS.

Although the vertical spring hook style of couplers has been extensively adopted and its universal em ployment urged by car builders, the automatic coup lers of the link and pin style seem to find most favor with brakemen and switchmen. They are the men who are obliged to work and deal with the coup lers, and know what they are talking ahout. At the recent meeting in this city of the National Committe on Safety Appliances, Mr. D. B. Sweeney, of the Trainmen's Aid Association, favored the link and pin type The vertical hook was too dangerous. They had to go The vertical hook was the cars to open the knuckle. The uncoupbetween the cars to open the knuckle. The uncoup-
ling apparatus was always broken. With the link and ling apparatus was al ways broken. With the link and pin they knew when a car was cut, but when they
threw up a lever they could never tell whether it would open or not. There was nothing better than a link and pin.
Mr. John A. Paul, editor of the Switchmen's Journal, described vividly the duties of the yard and switch men, and the difficulties they labored under. Something should be done for them. The railroads were thing should be done for them. The railroads were, many years' experience in yard work, and preferred the link and pin. The conditions under which these men worked were getting worse, and legislation was necessary unless the railroads accomplished more. A greater number of men were hurt every year. If no thing but vertical planes were used, they would still have to go between the cars-they were out of order so much. He believed the link and pin could be as auto matic as the vertical plane. Yet, if all cars had verti cal plane couplers, the conditions would be a thousand times better than they were to-day. The switchmen favored uniformity

Mr. Heberling, of the Switchmen's Aid Association, said that they favored a uniform link and pin type or a uniform drawbar, anyway. If two cars of the M. C. B. type were set together without opening the knuckles, they were sure to break. Give them a uni-

