Merchant Navies of the world.
The estimate of the Bureau Veritas with regard to the merchant navies of the world for the present year puts the total number of vessels at 43,514 , of which 33.876 are sailing vessels of $10,540,051$ tons, and 9,638 steamers of $12,825,709$ tons gross and 8,286,747 tons net. The figures as regards the steamers stand as follows:

Nationality.	Number of Ships.	$\begin{gathered} \text { Gross } \\ \text { Tonnage. } \end{gathered}$	$\begin{gathered} \text { Net } \\ \text { Tonnage. } \end{gathered}$
English.	5,312	8,043,872	5,106,581
Grerman.	689	- 9300,754	
American.	419	533,333	375,950
Spanish	350	423,627	273,819
Jtalian	200	29,705	${ }^{183,976}$
Norwegian	371	20,	176,49
Dutch...	${ }_{230}^{164}$	177,753	115,742
Swedish	403	172.013	126,612
Danish..	197	154.497	103,578
Austrian	111	149.447	96.503
Jalanese	${ }^{145}$	123.279 98056 	$\xrightarrow{76,41258}$
Belgian... Brazilian	129	${ }_{75,970}$	48,901
Greetr.	68	\%0,435	+44,424
Portugue	41	49,364	29,564

BESSEMER'S FLUID METAL ROLLING MILL

In a paper by Sir Henry Bessemer, recently read before the British Iron and Steel Institute, is described a rolling mill for producing sheets and plates of malleable iron aud steel direct from the fluid metal. This mill, shown in the accompanying illustration, is an improved form of one patented by him in 1857, and allowed to rest without development on account of the diffculties attending the perfecting of the steel-making process.
The rolls consist of two hollow drums, L and M, to each of which a tubular steel axis conveys water for keeping the rolls cool. The brasses supporting one of the rolls are fixed, while those of the other are movable and are pressed upon by a hydraulic ram in communication with an accumulator, whereby, should the feed of metal be excessive, one of the rolls will yield to prevent undue strain, and the only fault will be a slightly increased thickness at that part of the sheet, to be removed by subsequent rolling. The rolls are preferably three to four feet in diameter, and each has a flange at one end only, thus forming, when they are in position, a trough with closed ends to receive the fluid metal. For the regular and quiet supply of the metal, a quiet supply of the metal, a
small iron box or reservoir small iron box or reservoir
is employed, having a bar or is employed, having a bar or
handle at each end, by which it is supported on the side frames. This reservoir, the construction of which is shown in Figs. 2 and 3 , is lined along its bottom with plumbago or fire clay, some ten or twenty holes about a quarter of an inch in diameter each being here neatly moulded by a row of conical brass pegs. The reservoir should be well dried, and its interior surface heated to redness prior to use, and in this state it is placed in position only when the first ladleful of metal is ready to be supplied. The ladle, R, is conveyed to the reservoir on rails, and has one or more valves or stoppers for regulating the flow.
An almost constant quantity of metal is thus delivered to the rolls, without splasking, through the several apertures of the reservoir, and these streams do not fall directly on the rolls, but into a small pool formed between thin films solidifying against the cold surface of the rolls, the metal at all times being free from floating slag. The speed of the rolls also affords a means of regulating the quantity of metal retained between them.
The sheet of metal as it emerges from the rolls is received between curved guide plates, S and T, to one of whieh a cutting blade, U, is bolted, the piece so cut passing between a second pair of rolls, V V, and thence to a third pair, W W, from which it is delivered on a table, or may be allowed to slide in to a cistern of water. The construction allows for the cooling and stacking of the plates without labor or trouble.
The thickness of the plates it will be possible to make in this manner will depend largely on the size of the rolls, it being estimated that rolls of ten or twelve feet diameter will be capable of producing plates of about three-quarters of an inch in thickness. In the production of the thin sheets, as described, their exposure to the oxidizing influence of the atmosphere, prior to their imwersion in the water, is for so brief a period that they will not acquire any scale, and in consequence of there being no overlapping of plates
in rolling, there will be but little loss of metal in shearing.

The Boot and Shoe Industry.

Special Examiner Hyer, of the Patent Office, has just returned from a tour of inspection through the great boot and shoe factories of Lynn and Haverhill, in Massachusetts, which may be said to turn out footgear for pretty nearly the entire people of the United States. He was much impressed with the gigantic scale on which the manufacture is carried on at these establish. ments, some of which have a capacity of from eight thousand to ten thousand pairs a day. A large percentage of the goods thus produced are sold to retailers at from eighty-five cents to $\$ 1.50$ a pair, although the " stock " used costs from eighty cents to $\$ 1.10$. Inas much as the labor averages thirteen cents on each pair, there is necessarily an actual loss on the cheapest grades, which are merely intended to serve as "leaders." It is an interesting fact that sixty per cent of all the shoes and boots worn in this country are retailed for less than $\$ 2$ a pair.
"Machinery," said Mr. Hyer recently to a Washington Star reporter, "has nowhere been put to more effective use for the saving of labor than in the manufacture of shoes. It is a wonderful thing to see a pair of boots turned out within a few minutes from the raw material, finished and all ready to wear. At the time of the Centennial Exposition in Philadelphia there was a contrivance exhibited which was called by its inventor the 'iron shoe maker.' It made shoes and turned them

Roman soldiers were studded with nails. Heliogabalus had his shoes covered with white linen, and Caligula ornamented his with precious stones. Sandals were worn by both sexes awong the Romans in the house, as we wear slippers. At one time the parliament of Great Britain regulated by law not only the quality of the leather, but the number of stitches to be taken in every shoe. Top boots were introduced in the sixteenth century. In China the cobbler goes from house to house and announces his coming with a rattle. In all history, as shown in pictures and bass reliefs, the shoemaker seems to have assumed the same attitude as now in doing his work. It is a very unhealthy one, and few of the craft live to old age. A hollow at the base of the breastbone is often produced by the continual pressure of the last."-Washington Star.

Ancient Egypt.

Mr. Flinders Petrie recently delivered at the Owens College, Manchester, a most interesting address on exploration in Egypt. It had been thought, he said, that the immense mounds of rubbish indicating the sites of towns had been made on purpose, but they re sulted from the natural decay of the mud brick buildings. These heaps of ruined walls and earth and potsherds rose even to eighty feet high in some places : but other ancient sites were much less imposing, and might even not attract notice on the open desert. The higher the mound the longer the place had been inhabited; and if the surface was of a late period, the earlier parts, which were most needed, were unde such a depth of rubbish as to be practically inaccessible. Much could be known at firs sight; and prospecting had now become as scientific a matter in antiquities as in geology. Knowing, by a glance at the sherds on the top, what was the latest peri od of occupation of the site, and knowing the usual rate of accumulation of a mud brick town-about five feet in a century-we could guess how far back the bottom of the mound must be dated. Other remains had different indications. If the midst of a great mound there was a wide flat crater, that was probably the temple site, surrounded by houses which had accumulated high on all sides of it. Speaking of the results of exploration, Mr. Petrie said that we now realized what the course of the arts had been in Egypt. In the earliest days yet known to us-about 4000 B. C.-we found great skill in executing acceurate and massive stone work, such skill as had hardly ever been exceed
out complete, but they were clumsy affairs, and the process was a slow one. It has been found best to ewploy for the purpose a number of different machines, which together perform the operations necessary.
"With the aid of one ingenious device one man can sew together soles and uppers for four hundred and fifty pairs a day. On what is known as the 'standard nailer' a single operator can nail three hundred pairs, the machine making its own nails by wire, pointing them. driving them and at the same time automatically regulating the length of each nail to the thickness of
the sole. With loose nails or pegs one person can do the sole. With loose nails or pegs one person can do
six hundred pairs a day, though the toes and heels must be made additionally secure afterward. One pegging machine will peg two pairs of women's shoes per minute, cutting its own pegs from strips of white birch at the same time. A thousand cords of wood are cut into shoe pegs every year in the United States. The wooden peg was invented in 1818, by a Massachu setts man named Joseph Walker.
"The Yankees have always been years ahead of Europeans in the art of making shoes. although the French excel to this day in the finest work for women's footwear. All machines for sewing shoes are of Ameri can invention. The last census showed that the manu facture of boots and shoes was the greatest single industry in America, employing the largest amount of capital and the greatest number of individuals. The employes of the trade are about equally divided as to sex. Men do the heavier part of the work, while women sew uppers, bind and fasten on the buttons. Each New England factory-most of them are owned by Boston men-has its specialty. One makes ladies' shoes exclusively, another slippers, another men's boots, another children's footgear, and so on.
"The oldest form of shoe was the simpere sandal, which was nothing but a sole. Egyptian priests wore sandals of palm leaves and papyrus, while those of the
common people were made of leather. The shoes of
ed. We found elaborate tools used, jeweled saws and tubular drills. We saw the pictorial arts as fully developed as they were for thousands of years later. Bu what led up to this we were still feeling for.

Influence of Surroundings in Producing Insanity
In the last number of the Journal of Medical Sci ence Dr. Savage discusses this question, and begins by protesting against the acceptance of what is a too widely spread notion, viz., that nearly all insanity is the outcome of direct neurotic inheritance. The influ ence of heredity is not denied or minimized, but the reat importance of environment is insisted upon. To quote the words of the author: "We are what w are in mind and body, to a great extent, as organic re sults of our forefathers; but that we are no longer naked savages is some evidence that progress and develop ment in the individual and the race may take place as the result of changing surroundings." There can be no two opinions as to the encouragement to be got from such a view. A too great insistence upon heredi ty as the determining cause of insanity must land us in a hopeless pessimism as regards treatment; whereas a recognition of the influeuce of surroundings is the first step toward the construction of a reasonable and efficacious system of therapeutics. The author also cites many examples of hallucinations and delusions which are suggested by surroundings; and while all will not be inclined to accept his dictum that disorder of function may lead to disease of tissue, there will be few who will not share his opinion as to the efficacy of restful, pleasant surroundings in the treatment o mental disorder, as compared with the virtues of "medicine out of a bottle.'

Beliss running over pulleys of small diameter at high speeds ought to be as thin and as wide as possible Orange tan leather of uniform thickness answers remarkably well.

