## A PROPOSED "WHALEBACK" PASSENGER STEAMER.

 by harold $\triangle$ VeryThrough the growth of transatlantic travel the modern steamship has developed into a floating hotel, and the great ocean fliers of to-day are well nigh as perfect as vessels of their model can be made. Approaching the ideal of a safe, speedy and commodious carrier still nearer is the design presented on the front page, of a steamer intended to lessen the time between New York and Queenstown to five days. The hull is of the steel barge pattern, almost submerged, supporting a strongly built pier beyond the reach of the wildest sea. Two longitudinal bulkheads divide the hull into three main compartments, which are subdivided by transverse bulkheads into twenty-one separate water-tight sections, without doors below the water line. The curved deck affords immunity from crushing waves above and the double bottom from perils that may lurk below. The dimensions are as follows :

| Length. | 528 ft . |
| :---: | :---: |
| load line. | 504 " |
| Beam | $72 \times$ |
| Depth. | 38 " |
| Draught | 28. |
| Displacement. | $\begin{aligned} & 14,000 \text { tons. } \\ & 490,000 \text { cu. } \mathrm{ft} . \end{aligned}$ |
| Weight of hull | 4,360 tons. |
| " superstructure. |  |
| Capacity of hull. | 20.00 |
| " double bottom | 2,300 " |
| Distance between double bottom....... | 3 ft . |
| Necessary to depress hull one inch.... | 73.3 tons. |
| Area of midship section.. | 1,713 ft. |
| .* ." plane of flotation. | 31,108 " |
| Center of gravity of displacement below water lice. | 8.5 " |
| " " ${ }^{\text {c }}$ " hall .. .. " | 12.7 " |
| Common center gravity of hull and superstructure below water Jine. $\qquad$ | 93 " |
| Height of metacenter, angle 60 | 17.4 " |
| Pressure of wind necessary to deflect to angle $6^{\circ}, 56$ foot- tornado. | lb..per square |

It will be seen at a glance that these elements give a stability not possessed by any other form of hull, and even when heeled by a tornado to the extent above mentioned, this model would have a statical stability of $23,476 \mathrm{ft}$. tons. The engines designed to drive this vesselat a speed of 24 knots an hour are of $19,500 \mathrm{I} . \mathrm{H}$.
P., three in number, of the triple expansion type, running 120 revolutions per minute, with propellers of 24 ft . pitch, 118 ft . diameter, and are to be supplied with steam by sectional boilers at a pressure of 115 pounds.
There will be numerous auxiliary engines for elec tric lighting, elevators, hoisting, ventilating, heating, etc. The superstructure is supported by five piers twel ve feet in diameter, at distances respectively of $60,180,204,228$, and 372 feet from the bow, and at distances of 132,300 , and 344 ft . are steel masts, used also as ventilators. Ranged along the deck two feetinboard and the same distance above the water line, are sockets, 21 in number, which rest upon and are bolted to the deck beam beneath, and whose base forms the deck plate. Set in and bolted to these socketsare cylindrical steel columns 10 inches in diameter, 1 inch thick, 32 feet long and weighing 2,920 pounds. They are flanged at bottom to fit sockets, and at top to contain ends of beams that form a continuous frame for base of the upper works. This frame is connected by trans verse beams to the central lattice girder that is sup ported by and bolted to the piers and masts. To cylinders whose axes coincide with those of the supports below and are 6 inches diameter, $1 / 2$ inch thick, $18 \cdot 6$ feet in height, flanged at base, middle, and top, two series of beams parallel with the first are joined, the whole forming a light yet wonderfully strong frame The beams on the lower tier are 24 feet long, 5 inches flange and half inch web; those above proportionately lighter. The space between the hull and floor beams is 24 feet.
The arrangement of apartments may be seen from the plans. The lower floor is devoted entirely to state rooms that are lighted by incandescent electric lights at night. During the day those rooms along the cen tral girder are lighted from beneath by disk grating over which an electric mat heater is placed. Accom modation for seven hundred and twenty first-clas passengers is provided for. Steerage travelers will floor are the various halls, parlors, a grand dining floor are the various halls, parlors, a grand dining
room, and as novelties a billiard parlor, baths, a laundry and ocean mail room; and for those who delight in promenades, two four feet wide completely round the floors, and that upon the roof. Passage between the hull and superstructure is accomplished by means of electric lifts, within the first, central, and last piers By the separation of hull and living apartments the passenger is enabled to avoid the smell of machinery the racket of freight handling, and all those ills that transatlantic travelers condemn. By the union of ship and hotel he is enabled to convert the voyage of three weary wonths in an open caravel into five days of luxurious ease and pleasure. The accommodations and capacity of a ship thus designed will commend it to the favorable notice of those interested in European trade and travel.

## Sorrespondence.

## Decay of Bone in the Mouth

o the Editor of the Scientific American.
While rolling the broken-off head of a bone collar button in my mouth it fell into a hollow tooth. As closed the tooth effectually, it was left there for about two months, when it was found to be tough and gluelike in appearance, like bone treated with sulphuric acid, thusshowing the effect a decayed tooth has on the others.
F. E. B.

## South Bethlehem, Pa.

## High Temperature in Fevers.

To the Editor of the Scientific American:
The following remarkable instance of the intense de gree to which fever heat may range in the human body, even during life, is reported for the information and investigation of scientists.
Quain, in his "Dictionary of Medicine," says, "a tem perature of $106^{\circ}$ indicates great danger;" but Dr. Wilson Foy relates a case in his experience in which the temperature reached $110^{\circ}$. These with some others are accounted extraordinary records of high temperature. Wunderlich noted a temperature of $112.55^{\circ}$ in a case of tetanus; but this temperature was reached after the patient expired. It is evident, therefore, that up to a temperature oil $110^{\circ}$, or even $111^{\circ}$, in some exceptiona cases, a patient may live, but we have no instance anywhere recorded of a patient surviving a higher temperature than that. The following, therefore, which is a ture than that. The following, therefore, which is a
thoroughly trustworthy and authentic account, and may at any time be verified by such as are desirous in the cause of science to inquire further into it, is worthy of record, and I therefore send you such details as am in possession of, and which $I$ have obtained from an eye witness, for a corner in your scientific paper, in view to inviting further investigation into such cases
In July last, at Naini Tal, a hill sanitarium in British India, situated in latitude $29^{\circ} 22^{\prime}$, longitude $79^{\circ} 29^{\prime}$, at an altitude of 6,409 feet above sea level, a religious lad in St. Mary's Convent was attacked with what appeared to be an ordinary fever. After a few days symptoms o typhoid fever developed, and the patient's temperature was taken by the doctor in attendance, a clinical ther mometer with a range of $110^{\circ}$ being employed. On the
application of the thermometer the temperature of the patient was found rising rapidly till the quicksil ver reached its maximum limit of $110^{\circ}$, when the regis tering tube burst. Another clinical thermometer of the same range was immediately procured and applied with the same result, and another and another. After four of $110^{\circ}$ range had burst, one of $115^{\circ}$, and $2^{\circ}$ over was procured and used, and this also burst. At this last experiment, the military surgeon in charge of the convalescent depot was also present. It is therefore in point of fact, unknown how much above $117^{\circ}$ her greater range was procurable. But the most remark able feature in the case remains to be told, and that is, the patient has made a good recovery, and is at thi resent time doing well in her convent at Naini Tal.
The lady is a German by birth, is aged 38 years, has been 12 years in India, and has a strong, robust consti tution; but to my thinking no constitution, however strong, could go through such an ordeal without super natural aid.
I am not too ready to believe in miracles, I am a skeptic, but if this is not a miracle, I should like to know science has discovered any other name for it.
I have had a long experience of fevers of all kinds in this land of fevers; but I have never heard or seen a case in any way resembling this. The patient, notwithstanding the extraordinary intensity of the fever which raged in her, was never so totally unconscious as not to be able to recognize those who were in constant attendance on her. She was at times delirious, but only for short intervals, and considering she has been ill altogether only seventy days or thereabout, her re-
covery seems to be as wonderful as the malady from covery seems to be as wonderful as the malady from
which she has suffered. The medical authorities have pronounced her case one of typhoid fever; but per haps science will be able to find an exceptional name for a fever that no heat-registering invention has bee able to gauge.
Lucknow, East India, September 21, 1891
The Fiber Exhibit at the Exposition.
The efforts which are being made to increase the production of vegetable fiber in this country will re ceive a strong stimulus from the display of fibrous plants and their products at the Columbian Exposi tion.
Group 9 of the official classification includes all of the vegetable fibers, such as cotton, hemp, flax, jute ramie, in primitive forms, and in all stages of prepara tion for spinning, su bstitutes forhemp, cocoanut fiber, and all similar substances.
This country grows annually about one million acres of flax, and a very large acreage of hemp, and these two are our principal fiber-producing plants, with the exception of cotton.

Our imports of textile grasses and fibers now amount to about 258,000 tons per annum, valued at about fqur teen million dollars. There seems to be no good rea son why a largepart of the above sum should not be paid to the home producers, which would be the case if more attention was paid to the production of the vegetable fiber in this country than has been done in the past. Heretofore the flax has been grown by the farmers of this country almost entirely for seed, a part of the straw going to tow or paper mills and bringing on an average not more than $\$ 2.50$ to $\$ 4$ a ton, the remainder, and wuch larger part, being burned or wasted. To what extent flax may be profitably grown both forseed and fiber is one of the vexed problem which it is hoped the exhibit at the exposition wil throw some light upon. Investigatione show that the average humidity of the flax-producing sections of thi country is the same as that of Belgium and other parts of Europe where the production of flax for fibe is the chief industry of the farming population, and the exhibit of flax from those countries will no doubt prove very interesting and valuable to the American farmers

Fibrelia, a new product from common flax straw, promises to have an important bearing on textile in terests in the future. By a process of manipulation the straw is reduced to a short staple very closely re sembling cotton or wool, and when mixed with either is said to add materially to the value of the product in beauty and strength. It is claimed that twenty five per cent of fibrelia mixed with seventy-five pe cent of wool made into broadcloth gives a product much more valuable than if made of wool alone.
The area devoted to the cultivation of American hemp has of late years been extended into State north of the Ohio River, and recent experiments en courage the hope that Sisal hemp may be profitably grown in Florida.
Among other fiber plants now attracting considerable attention, especially in the temperate sections of the United States, where there is not a great amount of rainfall, is ramie, a plant indigenous to Java and China, and frow which it is exported in large quanti ties to France, Germany and England, and manu factured into linen and silks. California has appro priated $\$ 5,000$ to purchase ramie roots for free distribution and as a bounty for merchantable ramie The fiber of this plant receives and retains the most brilliant dyes, is very repugnant to moths, and its tensile strength is forty per cent greater than flax. It ranks next to silk as a textile fabric. When cultivated it grows luxuriantly in the Southern States and in outhern California, and the only difficulty attendin the product is that a machine which will effectually eparate the fiber from the stalk has not been pro duced, although a number of machines have been in vented for the purpose and will be exhibited at the xposition.
The exhibits of hemp, flax, jute, ramie, etc., at the Paris Exposition in 1878 and at the Centennial in 1876 were very interesting and complete, und it is the purpose of Chief Buchanan, of the Agricultural De partment, to make this group at the Columbian Ex position equally so, and fully illustrative of the pro gress made in later years in the cultivation of fibe plants and the methods of preparing the raw material for market.

Metallochromy.
Metallochrowy is a process of direct polychrow printing upon metallic surfaces recently presented by Mr. Josz, its inventor, to the Society of Encourage ment of National Industry. Hitherto, all impressions upon metal have been obtained by the transfer of a reshly printed sheet, or by the transfer of the im pression upon a sheet of rubber to a sheet of metal To this effect, it is necessary to construct special lithographic presses in order to obtain an exact adjustmen of the colors forming the subject. In order that the printing may be done directly from a hard surface that is, the lithographic stone, upon another hard sur ace, that is, the metal, it is necessary to be able to render the metallic surface elastic enough to take the ink that the stone carries, without impasting or destroying the details of the subject. In order to reach such a result, the process employed is as fol lows:
Upon the metallic surface to be printed there is pro uced by the mechanical action of very fine sand a ine and close grain, which is diluted and cleaned by mumersion in different alkaline solutions. This rough ened and velvety surface takes a lithographic impres sion as well as paper and fabrics do. Immerliately after the printing, the sheet of metal is submitted to a temperature of 50 degrees in a special stove, the obect of which is to cause the ink to enter the pores The impression is therefore no longer superficial, but is printed in the metal itself, whose expansion and con raction it may follow without undergoing any altera tion. The metallochromic prints, covered with two coats of varnish, applied hot and fixed in a stove, pre sent the same characters of durability as faience and enamel. - La Nature
(n)

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

[^0]NEW YORK, NOVEMBER 14, 1891.
[\$3.00 A YEAR.

a Whaleback passenger steamer-designed by harold avery.-[See page 309.]


[^0]:    

