šrintifir enmerican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors published weekly at

No. 361 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year. for the U. S., Canada or Mexico.
ne copy,one year, to any foreigncountry belonging to Posta
Remit by postal or express money order, or by bank draft or check.
MUNN $\&$ CO , 3 Bil Broad way, corner of Frauklin Street, New York

 a year; combined rate for BuILDiNG EDITION, ScsENTIFIC A
and SUPPLEMENT, 89.00 a year. To foreign countries, 81.50 a year

The eafest was to remit is by postal ordere express monee order
or bank check. Make all remittances payabole order of MUU Readers are specially requested to notify the
ilure delay, or irreguarity in receipt of papers.

NEW YORK, SATORDAY. NOVEMBER 7, 1891

TABLE OF CONTEATS OF
SCIENTIFIC AMERICAN SUPPLEMENT

No. 827

For the Week Ending November 7 , 1891

1. Arch Fologr.-Vaudoux Burial Customs -By Evaene muril. chemistry.-Volumetric Analysis.-A full paper, with 1 engraving.
III. ENGINEERING.-The Stampede or Cascade Tunnel on tae
Northern Pacific R.R. B B CHARLES W. HobART. A full article, Northern Pacifich. R.-By CBARLEs N. HOBART. -A full article
 water to consideraile heights.- 1 engraving.
North posed for connecting New York City and the Jesee bridge prodetails, showing the size compared with the Forth bridge in Scotland, , Brooklyn bridge over the EEast River, Poughbeepesie bridige
over the Hudson River, and the St. Louis bridue over the Missis-

Iv. MISCELLANEOUS.-" Prese
 reading.-IIn the glass the refiected image of the printing is show
considerably magnifed. considerably mannifled.
Remains of Wonderful Animals,-An interesting paper on a subject of Thich little ef generally kno
Song Birds. - An interesting paper....
V. NAVAL ARCHITECTURE-A Description of the Presidente VI. PHOTOGRA PHY. - Kite Photography.-Interesting experiments in photographing from high altitudes.-2 engravings, illus trating Wenz's photographic kite, and a reproduction of a kite
 These lectures, which have been published in the SUPPLEmENT,
were delivered before the Society of Arts, London............ were deilivered before the eociety of Arrts, London..............
The Pototegraphic Record of Alternate Current Curves. -2 en-
VII. TECHNOLOGT.-Sodium or Potassium, New and Improved

of malleable iron and steel direct from fluid metal.;-By Sir HENRY of maileabie iron and steel direct from fluid metal.-By Sir HENM
BESSEMER, F.R.S. -A full paper, illustrated by three enkravinga,

dangers of large fly wheels.

The bursting of the 68 ton fly wheel of the grea engine in the Amoskeag mills, Manchester, N. H furnishes additional evidence, if such were needed, prove that with the means now at hand the possibility of flaws in large castings cannot be determined with
certainty. In his testimony before the coroner's jury, the superintendent of the mill said: "The remnants the superintendent of the mill said: "The remnants
of the fly wheel show very many internal flaws where of the fly wheel show very many internal flaws where
the iron is drawn badly by shrinkage in cooling, all of the iron is drawn badly by shrinkage in cooling, all of
which it was impossible to discover without destroy ing the wheel; sounding would not show the flaws If you join two cu bes of iron of equal size, one solid, the other filled with these slorinkage flaws, the parts would vary largely in weight; such tests would be impracticable in castings as large as the integral parts of this fly wheel." According to the testimony the wheel was moving at its usual rate, the same being 61 revolutions a minute, and this is strange enough when we consider that it had been in use over eight years for about three months of each year, water power being em ployed in the interim. This, like all big wheels, was composed of segments bolted together, and, of course, it is possible that the trouble began on the rim, the bolts loosening and the component parts of the wheel. or those of imperfect make, being unable to withstand the shock of the wrenching that followed.
In another recent fly wheel catastrophe, that in the power house of the Electric Street Railway Company, of Cincinnati, O., the wheel, a twenty ton one, suddenly flew apart and at a time when, so far as the engineer could see, there was not any undue acceleration of the engine's movements.
In this case there were no casualties, as at Manchester, and hence no inquest. The investigation that followed was conducted by interested persons who, notwithstanding the declaration of the engineer, who was present at the time, attributed it to a sudden withdrawal of the load and the consequent racing or "running away" of the engine. The fact that the automatic cut-off, operated bythe governor, was found to be intact might fairly be accepted as helping to sustain the assertion of the engineer, because, had the engine been relieved of its load, this automatic cut-off would undoubtedly have held the engine to within a few turns of its normal speed. It would seem, therefore, as if this, too, might be a case of defects in casting.
A recent inquiry among the makers of these big fly whe ls failed to discover one among them who knew of any test for large castings by which the presence of flaws, the result of air bubbles in moulding or improper cooling, could be discovered. About a year ago there was a report that a French inventor had devised a means of doing this by electricity, the apparatus be ing called a "schiseophone." It was said for it that it would indicate the presence of flaws in steel rails that the ordinary hammer test could not be relied upon to discover, or, to put it more correctly, that the human ear is not sensitive enough to read the warn ing that may be given in the hammer test when put to targe castings. Nothing, however, seems to have come as yet of all the promises made for this invention in segments for large fly wheels, it is not safe to use them in the vicinity of workrooms, as at Manchester.

Luminous Paints in all colors.

A German contemporary gives the following series of receipts for these paints, which may prove useful. All of these paints can be used in the manufacture o colored papers, etc., if the varnish is altogether omitted, and the dry mistures are ground to a paste with water. The luminous paints can also be used as wax colors for painting on glass and similar objects, by add ing, instead of the varnish, 10 per cent more of Japan ese wax and one-fourth the quantity of the latter of olive oil. The wax colors prepared in this way may also be used for painting upon porcelain, and are then
carefully burned without access of air. Paintings of carefully burned without access of air. Paint
this kind can also be treated with water glass.
For orange luminous paint, 46 parts varnish are 1 mixed with 17.5 parts prepared barium sulphate, 1 part prepared Indian yellow, 1.5 parts prepared madde lake, and 38 parts luminous calcium sulphide.
For yellow luminous paint, 48 parts varnish are mixed with 10 parts barium sulphate, 8 parts barium chromate, and 34 parts luminous calcium sulphide.
For green luminous paint, 48 parts varnish ar mixed with 10 parts prepared barium sulphate, 8 parts chromium oxide green, and 34 parts luminous calcium sulphide.
A blue luminous paint is prepared from 42 parts var nish, 10.2 parts prepared barium sulphate, $6 \cdot 4$ parts ultramarine blue, $5 \cdot 4$ parts cobalt blue, and 46 part lnminous calcium sulphide.
A violet luminous paint is made from 42 parts var nish, 102 parts prepared barium sulphate, 2.8 parts ultramarine violet, 9 parts cobaltous arsenate, and 36 parts luminous calcium sulphide.
For gray luminous paint, 45 parts of the varnish are
prepared calcium carbonate, 0.5 part ultramarine blue, 6.5 parts gray zinc sulphide.

A yeliowish-brown luminous paint is obtained from 48 parts varnish, 10 parts precipitated barium sulphate, 8 parts auripigment, and 34 parts luminous calcium sulphide.
Luminous colors for artists' use are prepared by using pure East India poppy oil, in the same quantity, instead of the varnish, and taking particular pains to grind the materials as fine as possible.
For luminous oil-color paints, equal quantities of pure linseed oil are used in place of the varnish. The linseed oil must be cold-pressed and thickened by heat.

Tobacco and Physical Health.

Dr. J. W. Steaver, College Physician and Instructor in Athletics at Yale University, reports that he has made a comparative study of the users and non-users of tobacco in the senior class during the past four years, and from his measurements he sums up his sta tistics as follows :

Average increase in lung capacity in users of tobacco, 0.15 liter ; non-users, 0.25 ; or an increase of 66 per cent reater for non-users.
Inflated chest measurements, in users, 0.0304 meter ; non users, 0.0364 , or an increase of 19 per cent greater for non-users.
Height, in users, 0.0169 meter ; non-users, 0.0202, or n increase of 20 per cent greater in non-users.
Weight, in users, 0.4 kilogramme ; non-users, $0 \cdot 5$, or an increase of 25 per cent greater for non-users.
With regard to the possible effect on scholarships, the statistics are: Of those who received junior ap pointments above dissertations, 95 per cent have not used tobacco ; of those above colloquies, $871 / 2$ per cent have not used tobacco ; of all who received appoint ments, 843 per cent have used tobacco; of the entire class, 70 per cent have not used tobacco.
Dr. Steaver says that these figures accord with sta tistics that he has kept for the past eight years, the greatest percentage of gain al ways being on the side of those who do not use tobacco. The greatest varia tion in the two years' widest part has not been more than 4 per cent. Some of the students who are classed among the non-users do smoke, but not oftener than once a week, or at such long intervals that the tobacco is apt to have little or no effect on them. Dr. Steaver states that the prominent athletes do not smoke or otherwise use tobacco as a rule, Calhoun being the only exception in college. All the candidates for the crew abstain from tobacco.

Preparing Waterproof Cloth.

I'hese methods may be divided into two groups. In ome, a precipitate of salts of the fatty acids is pro duced upon the tissue itself; in others, the cloth is saturated with melted or dissolved substances, which, when they are once solidified on the fiber, have the property of repelling water. If any of the forme class of methods is selected, the cloth is passed into a special machine, in which it is saturated with alumi num acetate; it is dried and passed into a soap beck It is necessary in this operation to produce a basic compound. For this purpose, there are employed equal weights of salts of aluminum and of lead. Care must be taken not to introduce too large quantities o free acid with the aluminum sulphate, since the latter contains always a certain quantity of sulphuric acid which, during desiccation, displaces the acetic acid To avoid this inconvenience, there are added per lite from 10 to 80 grms. of soda. The most favorable tem perature is 50 deg . Heating by direct steam must be avoided. For preparing the soap bath the author utilizes the fact that an aqueous solution of soap forms true solutions with mixtures of fat and wax, resins, mineral oils, and even caoutchouc. To this end he takes a ten per cent solution of gum Paraguay in oil of turpentine. The proportions to be employed for a square meter of cloth are 30 grms. tallow soap, 25 Japan wax, 15 gum Paraguay, 1 grm. good varnish. The wax is first melted, the gum and the varnish ar added, and then for each kilo. of the solid gum ther are added 0.5 grm . of a solution, saturated in heat, of potassium sulphide (liver of sulphur). The misture is stirred and boiled, when sulphureted hydrogen is liberated. A boiling solution of soap is added, when the bath is fit for use.-Em. Doring, in Romen's Journal.

Detection of Copper in Distilled Water.
Distilled water, the purity of which has been ascer tained by the ordinary methods, becomes colored yel low on dissolving in it potassium iodide. A close examination admits of the detection of infinitesimal quantities of copper, which neither ammonia nor potassium ferrocyanide had revealed. The presence of this impurity occasions the yellow coloration of the solution of potassium iodide in the water. The reagen gives a feeble yellow coloration with 1 part in 200,00 parts of water. The liquid must not contain any othe substance capable of decomposing the iodide and libe rating iodine.-Herman Thoms, in Pharm. Central halle.

Pushing the work for the world's fair.

From a recertly issued report of the Department of Publicity and Promotion of the Columbian Exposition to be held in Chicago in 1893, it is apparent that a much greater anount of work has been already done than is generally known. It is stated that all of the great buildings have been contracted forand are under construction, and on several of them work isproceediug night and day, all being pushed to completion by large forces of workmen. Insurance is placed and increased on the buildings as their construction proceeds. It is the intention to carry insurance aggregating $\$ 300,000$,000 on the buildings and exhibits. The following statement of the exposition's finances is made by the report : Resources-Stock subscriptions, $\$ 5,608,110$; city of Chicago bonds, $\$ 5,000,000$; prospective gate receipts, $\$ 10,000,000$; concessions and privilges, $\$ 1,500,000$; salvage, $\$ 1,000,000$; interest on deposits, $\$ 270,035$; total. $23,135,145$. Of the subscriptions already received, 60 per cent has been called for, and considerably more than $\$ 3,000,000$ has been paid in. The number of subscribers is over 30,000 . The $\$ 5,000,000$ in city bonds is certain to be realized in full, as Chicago's credit is excellent. The gate receipts, concessions and privileges, and salvage are necessarily prospective, and the amounts given are of course estimates. It is believed they are moderate.
The amounts thus far appropriated by the States and Territories to secure their proper representation at the fair are as here shown :

The following States have appropriations pending in their legislatures. The sums they are endeavoring to raise are :

Alabama	100,000	Oregon.................... \$10
Arkansa	100,000	South Dakota.... 80,
Florida.	100,000	Tennessee
Georgia.	100,000	Texas
Кипвая.		

The foreign nations and colonies that have so far determined to participate in the exposition, and the amounts they purpose to expend, are the following:

Argentine Rep.......\$100,000	British Gu iana............. \$15,0
Austria-Hungary 168,000	British Honduras.
Bolivia.... 150,000	Cape Colony
Brazil 445,000	Trinidad
Chili.............. 100,000	Guatemala.
Colombia 100,000	Honduras.
Costa Rica........ 50,000	Jap
Danish W.Indies....... ... 10,000	Mexic
Ecundor 125,000	Nicaragua
France..................... 400,000	Peru.
Germany.... 250,000	Salvado

This partial list foots up thirty-one nations and ourteen colonies, and appropriations aggrenating $\$ 8,630,000$. The United States government has appropriated thus far $\$ 1,500,001$, of which $\$ 400,000$ is availa ble for its building alone

RULES FOR EXHIBITORS
L. W. Rohinson, chief of the department of machinery, has formulated the rules. They have not been officially approved by the Director-General, but with a few minor modifications they will probably stand as follows
A limited quantity of steam and water power wil be furnished for the purpose of exhibiting machinery in operation, the quantity of each to be definitely settled at the time of allotment of space. Any excess will be charged for at a fixed price. Demands for such excess must also be settled at time of allot ment of space.
Exhibitors will not be allowed to exhibit any kind or class of goods except those specified in the appli cation.

Exhibitors must be manufacturers of machinery and not dealers only.

Exhibitors must provide showcases, shelvings, coun ters, fittings, countershafts, pulleys, beltings, etc., at their own expense.
Exhibitors are required to furnish the following in formation and a drawing to the scale of one-fourth inch to the foot of the plans and distribution of the objects they wish to exhibit. If machinery, actua horse power required. Cubic feet of steam used pe hour at a pressure of 150 pounds. Diameter of steam and water pipes. Diameter of discharge drain pipes The main shafts will make 120 and 240 revolutions per minute. Dimensions of space required must be given in feet and inches, without including any allow ance :or passageways. What per cent of labor per-
formed by females in the production of articles ex-
hibited. Whether the applicant is a producer o Banufacturer.
By special arrangements the installation of heavy articles requiring foundation should begin while the building is under construction.
The floor of Machinery Hall will support 250 pounds per square foot. The heaviest single piece received must not weigh more than 30,000 pounds, as facilities will not be provided for handling heavier weights.
The steam pressure supplied will be 150 pounds to the square inch. Those wishing to secure lower pres sure may do so by using a reducing valve
Water pressure will be that due to a head of 225 feet or a pressure of 98 pounds to the square inch and a head of 40 feet, or a pressure of 175 pounds to the square inch.
The line shafting will be 16 feet from the center of the shaft to the floor.
Driving pulleys are limited to thirty-six inches in diameter.
Exhibitors of steam and other cachinery who desire to offer the exhibits for use by the Exposition Company should send their applications as soon as possible. Such exhibitors may select their own men to operate this machinery. Their wages will be fixed and paid by the Exposition Company.
The Exposition Company will defray the necessary expenses of exhibitors, loaning them machines, tools, etc., for use beyond that which they would have incurred as exhibitors simply, wear and tear excepted. Platforins, counters, ornamental partitions, show caves, etc., will be at the expense of the exhibitors and must not exceed these dimensions: Show cases, fifteen feet above the floor; counters, two feet ten inches; platforms, one foot ; partitions, fifteen feet.
All exhibits of machinery in motion must be inclosed by a railing two feet and six inches in height to come inside the space. No signs will be allowed to extend over the passageway and no signs will be allowed made of muslin, linen, canvas or paper.
No fire will be allowed in Machinery Hall except by special permission. Not more than a day's supply of special permission. Not more than a day's supply of
oils or other inflammable substances will be permitted in Machinery Hall, but a suitable place for the storage of these materials will be provided.
No steam or water pipes will be permitted to extend over the passageways except when specially provided. Exhibitors not desiring to employ attendants or watchmen may leave their exhibits in the care of the department, which will assume the responsibility of their cleanliness.

Toning Ferro-Prussiate Prints.

The intense blue color of the ordinary blue print gives unnatural effects in prints from photographic negatives, also in architectural drawings where views
and elevations of buildings are reproduced. The foland elevations of buildings are reproduced. The fol found to be easy of application, and to give tones varying from a brilliant blue through violet blue to neutral tint and warm shades of gray, according to the inteusity of the action of the bath. The paper eminteusity of the action of the bath. The paper
ployed may be common blue print paper, sold ready ployed may be common blue print paper, sold ready
for use in rolls, or the specially made paper sold in packages of cut sheets by the dealers in photographic supplies. The solar printing is carried out in the usual manner. The best results are obtained with dark prints, as the intensity of the color is somewhat reduced by the toning process. The following bath are employed :
bath a.

The prints are immersed face downward in bath A until all the soluble salts contained in the paper ar dissolved and removed, then dipped into bath B until the negative turns a violet blue and the whites are clear, care being taken that the immersion in the ammonia be not continued too long, as the definition of the picture may be injured. The prints are trans ferred from the ammonia bath, placed face upward in a tray filled with bath C , and exposed to bright sunshine for from five to ten minutes, until no increase
in the strength of the picture can be noticed. The pictures are finished by toning in bath B until the desired shade of color is obtained, the picture becom ing first a brilliant blue, then violet, and finally, by prolonged action, bluish gray or neutral tint. The toning way be varied by a second immersion in the tannic acid bath C, followed by a second toning in bath B. After toning the prints are dried in the sunlight in the usual manner. The above process is spe cially applicable to prints from photographic negatives, enabling the amateur in the field, provided with
a printing frane, some sheets of prepared blue print
paper, and the above easily procured chemicalis, to test the printing quality of his negatives, with results only slightly inferior in detail and definition to those obtained by the complicated process of silver printing.

Disinfection.

According to Behring, lime has about the same ermicide value as the other caustic alkalies, and destroys the cholera spirillum and the bacillus of typhoid fever, of diphtheria, and of glanders, after several hours' exposure, in the proportion of 50 c.c. normal-bauge per liter. Wood ashes of lye of the same alkaline strength may therefore be substituted for quick lime.
It must not be forgotten that we have a ready means of disinfecting excreta in the sick room, or its vicinity, by the application of heat. Exact experiments made by the writer and others show that the thermal death point of the following pathogenic bacteria and of the kinds of virus mentioned is below $60^{\circ} \mathrm{C}$. $\left(140^{\circ} \mathrm{F}\right.$.) Spirillum of cholera, bacillus of anthrax, bacillus of typhoid fever, bacillus of diphtheria, bacillus of glanders, diplococcus of pneumonia (M. Pasteuri), strepto coccus of erysipelas, staphylococci of pus, micrococcus of gonorrhea, vaccine virus, sheep pox virus, hydrophobia virus. Ten minutes' exposure to the tempera ture mentioned may be relied upon for the disinfection of material containing any of these pathogenic organ isms-except the anthrax bacillus when in the stage of spore formation. The use, therefore, of boiling water in the proportion of three or four parts to one part of the material to be disinfected may be safely recom mended for such material. Or, better still, a 10 per cent solution of sulphate of iron or of chloride of zinc, at the boiling point, may be used in the same way (three parts to one). This will have a higher boiling point than water, and will serve at the same time as a deodorant. During an epidemic of cholera or typhoid fever such a solution might be kept boiling in a proper receptacle in the vicinity of the hospital wards containing patients, and would serve to conveniently promptly, and cheaply disinfect all excreta.-Jour. Amer. Med. Asso.

The Measurement of Velocities of Projectiles.* by captain h. capel l. holden, r.a.
The author stated that as gunpowder making and gunnery had developed into branches of science, more accurate methods of obtaining the characteristic qua lities of the explosive were required. The instruments used for determining the velocity of a projectile may be divided into two classes: 1 . Those used for deter mining its velocity in the bore of the gan; 2 , those used for measuring its velocity outside the bore. All chronographs comprise two principal organs, one for measuring time, and the other for recording the motion of the projectile. Clocks, pendulums, and tuning forks have k een employed for the former, while electrical devices have been universally adopted for the latter, except in the oldest instruments. For recording the motion of the projectile by electrical mean some sort of interruption in the circuit is used. When the movement in the bore has to be registered, a con tinuous wire is placed in the gun, the current through which is temporarily interrupted by the passage of the shot, this interruption furnishing the means of record. To obtain the record after the projectile has left the gun, upright frames placed in the path of the projectile have wires stretched over them in such a manner that, on the projectile passing through the frame, the wire carrying the current is broken. After briefly de scribing the principal chronographs which have been used, Captain Holden described in some detail those now employed at the proof butts of the Inspection Department of the Director of Artillery.
At the time the early Boulenge instruments were in troduced, the highest muzzle velocity was about 1,000 ft. per second; uow the velocities are nearly double this amount, and will probably reach $3,000 \mathrm{ft}$. per second. As an example, to show the degree of accu racy to which time has to be measured in order to ob tain the velocity of a projectile to a foot per second, the following was given: With a shot whose mean velocity between two screens placed 180 ft . apart is 1.800 ft . per second, a variation of 1 ft . above or below $1,800 \mathrm{ft}$. per second is represented by a decrease or in rease in time of only 0.0005 of a second approximately Such accuracy can only be obtained by a careful eli mination of the sources of error in the instrument used. The muzzle velocity is obtained from the recorded velocity by means of Bashford's tables, a factor being mploved which varies with the form of head of the projectile.

Recently at the Occidental Mill one-half of a log as sawed, which was 10 feet 3 inches in diameter. It was worked up into 3,900 feet of lumber. While this is not a remarkable thing in red wood logs, still a whole log that yields 7800 feet of lumber is deserving of honorable mention.-Eıreka (Cal.) Standard.

* Abstract of a paper read before the iron and Stecl Institule

