ness, and the duty of the surgeon to examine the men's about three hours and a half before the sun, and may quarters and report in writing to the captain. In the be dimly discerned as a small ruddy star, 4° east and old days the men did their four hours duty aloft and a little north of Spica. An opera glass will certainly then retired to the comforts of the roomy gun deck bring him into the field.
with gun ports open on every hand. Now they haul at tackle and falls or toil before the furnaces and retire into a rat hole under the forward hatches.
In port, with windlasses set and a draught of air below, life in the men's quarters is bearable, but on such a cruise as the Bennington is about to setout upon, the inconvenience and discomforts are intolerable. Those who have inspected the quarters on the new ships will not think it strange that the men desert in gangs at the rumor of a long cruise.
It has been suggested that the designers of these ships be made to take a cruise in them, thos getting practical evidence of their defects as to ventilation and living room.
They have spent their time devising engines and batteries; now they should try and devise a means of keeping men enough aboard to work them.

POSITION OF THE PLANETS IN NOVEMBER.

 JUPITERis evening star. He is still the leader of the starry hosts, but, before the month closes, a powerful rival enters modestly into the field to contest his supremacy. It is plain to every observing eye that our giant brother is departing. He no longer appears above the eastern hills soon after sunset, as he did when in opposition, but is high up toward the meridian when his light pierces the sky depths. He makes his transit at 7 o'clock in the middle of the month, sets soon after midnight, and holds his court in the western sky instead of the eastern. This brilliant planet is passing through the small groups of Aquarius. His retrograde or western movement ends on the 3d, when he becomes stationary, and then moves eastward, or in direct motion, until the end of the year.
The moon is in conjunction with Jupiter the day after the first quarter, on the 10 h , at $1 \mathrm{~h} .50 \mathrm{~m} . \mathrm{P} . \mathrm{M}$., being $4^{\circ} 9^{\prime}$ south. Moon and planet will make a pleasing picture when it is dark enough for them to be visible on the evening of the 10th.
The right ascension of Jupiter on the 1st is 22 h . 41 m ., his declination is $9^{\circ} 48^{\prime}$ south, his diameter is $42^{\prime \prime} .8$, and he is in the constellation Aquarius.
Jupiter sets on the 1st at 1 h .19 m . A. M. On the 30 th , he sets at $11 \mathrm{~h} .31 \mathrm{~m} . \mathrm{P}$. M

neptune

is morning star until the 29th, and then becomes even ing star. He is in opposition with the sun on the 29th at $10 \mathrm{~h} . \mathrm{P} . \mathrm{M}$. This far-away planet then makes his nearest approach, for the sun, the earth and Neptune are in line, with the earth in the middle. Observers endowed with exceptional visual powers can see
Neptune with the aid of an opera glass; but the num Neptune with the aid of an opera glass; but the num-
ber of such observers is small. He is, however, a ber of such observers is small. He is, however, a beautiful object in a good telescope, appearing as a tiny disk of a delicate blue tint. He will be found a short distance north west of Aldebaran.
The right ascension of Neptune on the 1st is 4 h . 28 m ., his declination is $20^{\circ} 6^{\prime}$ north, his diameter is 2 ". 6 , and he is in the constellation 'Iaurus.
Neptune rises on the first at 6 h .25 m. P. M. On the 30 th , he sets at $6 \mathrm{~h} .56 \mathrm{~m} . \mathrm{A} . \mathrm{M}$.
venus
is evening star. She sets an hour later than the sun at the close of the month, and keen-eyed observers may possibly find this charming star lingering in the glow of twilight, and giving a foretaste of the brilliancy of her appearance when farther away from the sun. She must be looked for $21 / 2^{\circ}$ south of the sunset
point on the 30 th. point on the 30th.
The one-day-old moon makes a close conjunction with Venus on the 2 d , at 2 h .32 m . P. M., being 13^{\prime} north, but planet and crescent are too near the sun to be visible.

The right ascension of Venus on the 1st is 15 h .7 m ., her declination is $17^{\circ} 38^{\prime}$ south, her diameter is $10^{\prime \prime} .2$, and she is in the constellation Libra.
Venus sets on the 1 st at $5 \mathrm{~h} .22 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 30 th , she sets at $5 \mathrm{~h} .32 \mathrm{~m} . \mathrm{P}$. M.

SATURN

is morning star. He is favorably situated for observation, rising nearly four hours before the sun at the commencement of the month, and six hours before the sun at its close. He rises about 2 o'clock on the middle of thie month, and may then be seen coming up in the east, a little farther east and 12° farther south than the bright star Dembola.
Tbe moon, two days after the last quarter, is in conjunction with Saturn on the 25 th at 8 h .50 m . A. M., being $2^{\circ} 40^{\prime}$ north.
The right ascension of Saturn on the 1 st is 11 h .49 m ., his declination is $3^{\circ} 20^{\prime}$ north, his diameter is $15^{\prime \prime} .4$, and he is in the constellation Virgo.
Saturn rises on the 1 st at $2 \mathrm{~h} .49 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 30 th , he rises at 1 h .6 m . A. M.

MARS
is morning star. He rises at the close oï the month

The moon is in conjunction with Mars on the 27 th at 11 h .52 m . A. M., being $2^{\circ} 3^{\prime}$ north.
The right ascension of Mars on the 1st is 12 h .26 m. , his declination is $1^{\circ} 38^{\prime}$ south, his diameter is $4^{\prime \prime} .2$, and eis in the constellation Virgo.
Mars rises on the
Mars rises on the 1 st at 3 h .45 m. A. M. On the 30 th , he rises at $3 \mathrm{~h} .24 \mathrm{~m} . \mathrm{A} . \mathrm{M}$.

MERCURY

is evening star. There is nothing noteworthy in his course as he makes his way toward his greatest eastern elongation, setting later and increasing in diameter as the distance widens between him and the sun.
The right ascension of Mercury on the 1 st is 14 h . 44 m. . his declination is $16^{\circ} 2^{\prime}$ south, his diameter is $4^{\prime \prime} .6$, and he is in the constellation Libra.
Mercury sets on the 1 st at $4 \mathrm{~h} .52 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 30 th , he sets at $5 \mathrm{~h} .24 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

uranus

is morning star. He is too near the sun to be visible. His right ascension on the 1 st is 14 h .1 m ., his declination is $11^{\circ} 47^{\prime}$ south, his diameter is $3^{\prime \prime} .4$, and he is in the constellation Virgo.
Uranus rises on the 1st at 5 h .52 m . A. M. On the角th, he rises at 4 h .6 m. A. M.
Mars, Saturn, and Uranus are morning stars at the close of the month. Mercury, Venus, Jupiter, and Neptune are evening stars.

For an Eiffel Tower at Chicago.
It is reported that arrangements have been about completed by which a tower higher than the Eiffel construction will be erected in close proximity to the World's Fair grounds at Chicago, to be finished by February 1, 1893. The designs contemplate a tower 440 feet in diameter at the base and 1,120 feet high, having three circular platforms or landings, the first 200 feet from the ground and 250 feet in diameter, the second 400 feet from the ground and 150 feet in diameter, and the third 1,000 feet from the ground and 60 feet in diameter. Above the latter will be signal service offices and departments for scientific investigation. Around the outside of the ifrst landing will be a grand colonnade fifteen feet wide, and the numerous restaurants, kiosks and booths to be provided are designed to accommodate many thousands. An offer in writing has been made by a large iron firm to put up the tower in the time stated for the sum of $\$ 1,500,000$, which is less than the cost of the Eiffel tower, the lower price being made because standard and merchantable sizes of steel can be used in the American construction. The promoters of this enterprise are said to embrace capitalists of Chicago, St. Louis, Cincinnati, Pittsburg and other places

World's Fair Items.

-The foundation work of the Administration Building is all finished, and the waterial for the iron work of the edifice itself is being received on the grounds. This building is constructed of material to last but two years, and it will cost $\$ 650,000$, although it covers a space of but 250 feet square. It is designed to represent in itself one of the noblest achievements of modern architecture, and will occupy the most commanding position on the exposition grounds. The building consists of four pavilions, 84 feet square, one at each of the four angles of the square of the plan, and connected by a great central dome, 120 feet in diamete and 260 feet high.
-Aside from the cost of the great exhibition build ings, which will not be far from $\$ 7,000,000$, the following are among the sums which have been, or will be, spent in preparation of the exposition grounds: Grading and filling, $\$ 450,000$; landscape gardening, $\$ 323,500$ viaducts and bridges, $\$ 125,000$; piers, $\$ 70,000$; waterway improvements, $\$ 225,000$; railways, $\$ 500,000$; steam plant, $\$ 800,000$; electric lighting, $\$ 1,500,000$, statuary, $\$ 100.000$; vases, lamps, etc., $\$ 50,000$; lake front adornment, $\$ 200,000$; water supply and sewerage, $\$ 600,000$; other expenses, $\$ 1,000,000$; total, $\$ 5,943,500$.
-The great extent of the fair can hardly at present be measured, but some idea of its immensity may be gathered from the fact that the space thus far set apart for exposition purposes is three times the area of the Paris exposition grounds, or about the size o Central Park, New York, between 700 and 800 acres.

The Fahrenheit Thermometer.

In a note published in the Proceedings of the Cam bridge Philosophical Society, Mr. A. Gamgee investigates the principle according to which Fahrenheit con tructed his thermometric scale
The author remarks, in the first place, that although Fanrenheit's thermometer has for a long time been employed in England and America, and that its use therein is general, technical books have not, up to the present, given any accurate information as to the principles that presided in the establishment of its
true, given the opinion, afterward admitted by several scientists, that Fahrenheit divided his scale from 32° to 212° into 180° in order to imitate the division of the arc of a quarter circle. This theory is based upon an incorrect supposition, viz., that, before Fahrenheit, Newton had proposed as the basis of the scale the freezing and boiling points of water, the interval between these two points being divided into equal degrees.
Mr. Gamgee thinks that, in his Scala graduum cal ories, Newton advances nothing that Mr. Tait attri butes to him, and, besides that, Fahrenheit fixed the basis of his scale and constructed a large number of thermometers long before Amantons discovered the tact (confirmed and pointed out precisely by Fahrenheit) that the boiling point of water remains constant under a constant pressure.
According to Mr. Gamgee, the first thermometers constructed by Fahrenheit were alcohol ones, and were closed and provided with a scale whose two points were fixed. The zero of the scale, indicating the lowest temperature that it was possible to reach, was ob tained by plunging the bulb of the instrument into a mixture of ice and salt, while the highest point of heat was determined by placing the thermometer under the armpit or in the mouth of a healthy man. The interval between these two points was divided into twenty-four parts, each of which corresponded to well marked differences of temperature, and each of these divisions was divided into four. In his later alcohol and mercury thermometers, the twenty-four nrincipal divisions were suppressed, and were replaced by a scale of 96°, from ice to human heat. The 32° of these thermometers was obtained by plunging the bulb in melt ing ice.
Fahrenheit was led to construct mercurial thermeters on making some researches upon the boiling point of water. With mercury it became necessary to crease the scale above to 600°.
The figure 212, the degree of heat necessary for the oiling of water at mean atmospheric presure, wa result that experiment alone brought out.
Upon the whole, Mr. Gamgee thinks that Fahrenheit took, as the basis of his thermometric scale, the uodecimal scale, which he was accustomed to use.Revue Scientifique.

Remarkable Test of a Torpedo Boat

An experiment was made at Plymouth, Eng., October 22, with a boom to check the rushes of torpedo boats. The boom was thickly studded with formidable teel spikes, together with a seven inch steel hawser stretched taut overhead as a balk.
'Torpedo Lieutenant Sturdee, who had disapproved the plan, offered to prove the correctness of his assertion that the device would not afford the protection desired. He guaranteed that he would either jump or force the boom, and he finally obtained permission to make the attempt.
A swift torpedo boat was loaned the lieutenant for he experiment. Upon this he built a massive arched uperstructure extending from bow to stern, intended c raise and support the overhanging hawser. Four seamen volunteered to accempany the daring lieutenant.
The lives of all concerned were specially insured for the benefit of their families by orders of the Admiralty, whose experts believed that the attempt of Lieutenant Sturdee meant almost certain death. The importance of the experiment as a means of making an actual test f the availability of this means of defense alone justi fied the risk in the eyes of the officials.
The boom having been adjusted across the mouth of the harbor, the torpedo boat started on its hazardous mission. The start was made half a mile away from the boom, and a high rate of speed was attained as the obstruction was neared. At the last moment the Lieu tenant and his men rushed below and fastened down he hatches. An instant later the boat, running at a speed of nineteen knots, struck the boom.
The concussion was terrific, and all the occupants of he craft were thrown so violently against the sides of the boat that they were painfully bruised. It seemed for a moment as though, the expectations of Lieut. Sturdee would be realized and the boat force its way through the boom. She jumped nearly clear, but before she got through, the hawser caught her and pressed her against the big spikes of the boom, which held her like a vise and tore her bottom badly. The boat at once began to make water.
The seamen worked at her some time before she could be got free. Then they started for the beach but the boat foundered before reaching it, the crew being taken off by the boats from shore. There was much excitement among the spectators, and, though Lieut. Sturdee's views had been disproved, his bravery and that of his companions was highly praised.

The great bulk of alcohol made in this country is produced at Peoria, Ill. It is made from corn. The price paid there for corn was, until lately, $371 / 2$ cents per bushel, but it has now risen to 70 cents.

