Yuntifir hamerican.

ESTABLISHED 1845
MUNN \& CO., Editors and Proprietors published weekly at

No. 361 BROADWAY, NEW YORK.

o. D. MUNN.

A. E. BEACH

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U.S., Canada or Mexico..
One copy, six months, for the U. S., Canada or Mexico
One copy,one year,to any foreigncountrybelongingto Postal Union. 1.15 Remit by postal or express money order, or by bank draft or check. The Scientific american supplement

Building Edition.

RELATIONS OF FOREIGN TRADE TO THE METRIC SYSTEM.
Several British consuls have recently warned their countrymen they were losing considerable trade in foreign countries owing to their persistent use of English weights and measures in their circulars and price lists, which were perfectly unintelligible to most of the foreign dealers, whereas their French, German, and ther competitors used the metric system, which wa familiar to everybody, and naturally attracted custom The consuls have declared that the British manu facturers are simply playing into the hands of their rivals by persisting in the use of figures which
wany foreign werchants are so wany hieroglyphics.
These warnings apply equally well to the exporte of the United States, and for their further guidanc we here subjoin an alphabetically arranged list of the principal foreign countries in which the metric system is now used:
Algeria, Argentine Confederation, Austria-Hungar Bohewia), Belgium, Brazil, Canary Islands, Chile Colowbia, Cuba, Denmark, Ecuador, Egypt, France and colonies, Germany and colonies, Greece, Guate wala, Honduras, Iceland, Italy, Malaga, Manila, Mexi co, Mozambique, Netherlands, Norway, Paraguay Peru, Portugal, Russia, Turkey, Spain and colonies, Sweden, Switzerland. Venezuela.
The use of the metric or decimal system was author zed by our laws many years ago, but the use has not yet been made compulsory, hence the majority of people cling to the old system and dislike to change although the metric is more simple and easily under stood. Our coins and monetary calculations are based on the decimal or metric system. Ten mills make one cent, ten cents make one dime, ten dimes make one dollar, ten dollars make one eagle. This is plain and simple, everybody is familiar with it, and probably nothing could induce our people togoback to the old style of pounds, shillings, and pence, which formerly prevailed in this country, and is still current in Eng land. The extension of the decimal or metric system to our weights and measures is urgently needed and can be readily effected. Ten millimeters make one centimeter, ten centimeters make one decimeter, te decinuters make one weter, and so on. This is far easier and simpler than to reckon measures as we now
do, three barleycorns make one inch, twelve inches make one foot, three feet make one yard, five and a half yards make one rod, forty rods make one fur long, eight furlongs make one mile, and so on.
The metric system is so much more convenient saves so much time, and has now become so generally adopted throughout the world, that the United State ought no longer refuse to fall into line. A very little pressure would suffice to bring about the change. It would do the business, probably, if Congress were simply to pass a law requiring that estimates, contracts and bills, specifying weights or measures, when not nade out metrically, must bear a revenue stamp of on dime. Rather than pay a smali tax, everybody would at once use the decimal system, and the change would be as smooth as the system itself.

LARGE CASTING AND LARGE FORGING.
The largest casting ever made in the United State was poured on the 13th of October, at the Bethlehe Iron Company's Works, Bethlehem, Penn.
The Hon. Secretary of the Navy, Benjamin F. Tracy accompanied by Commodore Wm. M. Folger, U.S N. Chief of tbe Bureau of Ordnance, arrived in the city the evening of the 12 th , and during the forenoon of the 13th, surrounded by the officials of the works, a well as the two naval lieutenants who look out for the government's interests at this place, they proceeded to the forge building. The scene was a busy one; the hum and shriek and roar of machinery re-echoing through the works. Locomotives darted back and forth, drawing trucks which carried huge ladles of white-hot, molten metal. The company assembled on the platform of the open-hearth furnaces ;to witness the pouring.
The mould had been prepared by digging a large pit and lining it with an iron bottom, to support the great weight of the casting. The patterns had been placed and well packed with moulding sand, and, when they had been withdrawn, the would was braced in every conceivable direction by tie rods and braces. The top of the mould came just even with the floor of the building, and was thoroughly packed in with dirt, and all leveled off. Along this dirt floor were variou troughs of iron, lined with composition.
At each end of the mould stood an immense ladle, containing over forty tons of molten metal. Toone side was the railroad track, on which, by the aid of five ocomotives, were drawn the twelve trucks, each truc carrying a ladle containing about nine tons of molten wetal. When these twelve ladles were in place, in front
of each could be seen a trough leading to the monld. On signal frow Mr. John Fritz, the general manager the two large forty-ton ladles were started, by side tapping, and two large streams of molten metal
roared toward the mouth of the monld. A moment later, and each of the t welve truck ladles tilted forward
and poured their tribute into their troughs, and thence nto the would
The fourteen streams of bright metal, the glowing tops of the ladles, and the showers on showers of sparks wade a brilliant sight in the gloomy foundry. Not an accident occurred, not a moment's delay marred the proceeding, so well planned was the undertaking, o carefully had each item beeu looked after.
The finished casting will weigh about $330,000 \mathrm{lb}$, or about one hundred and fifty tons. Of course much more metal than this was poured to allow for sinking heads, troughs, and overflows. This is the largest casting ever made in the United States and probably the largest in the world. It is to be a part of a machine which will be used in the manufacture of war material for the United States. The casting will be left in its mould for a couple of weeks or until it is perfectly cooled.
The second event of great importance witnessed by the Hon. Secretary was the forging of a tube for a hirteen inch gun
The compressed steel ingot had been bored to an internal diameter of about ten inches, its external diameter being about fifty inches. This ingot had been placed in the gas heating furnace and when taken out it was of a good welding heat. A mandrel had been placed through it and each end of the mandrel was supported by a chain hanging from a hydraulic traveling crane These cranes, moving foward, soon brought the ingot under the large No. 1 Whitworth forging press. The ram of the press descended slowly, but with the force of many tons of hydraulic pressure, and the hot steel of the ingot gave way and was pressed down. The raw lifted and the ingot was turned or rotated slightly. The pressure was again applied, and so, stroke after stroke, the steel was kneaded, and the ingot was gradually worked down to a long tube. This tube in the rough, when it left the press, was about twenty-six inches in external diameter and eleven inches in internal diameter, thus lea ving walls about seven and a half inches in thickness. It about forty-two feet long.
The ingot frow which this tube was made was cast n the Whitworth fluid compression mould, which aids in producing a homogeneous steel, free from blow holes, pits, cracks, and seams.
This tube will be rough-machined and then annealed and oil-tempered several times. Then test bars will be taken from it to see if it has the proper physical qualities, and chemical analyses made of specimens to determine the awount of carbon, silicon, sulphur, phosphorus, and manganese it contains. After passing the tests made by the government inspectors, it will be sent to the gun factory at Washington, D. C., where, with a suitable jacket, hoops, breech plug, and mechanism, it will be assembled, forming the largest modern high-powered breech-loading built-up gun that this country has produced. The assembling of guns at the Washington gun factory was fully described in the Scientific American for February 28, 1891.

The New Cunarders.

The new trans-Atlantic steamers which are to be built or the Cunard line are naturally attacting considerable interest in shipping circles. It is reported that the Fairfield Company's yard is already being cleared for the work on one of them, and that materials used in he early stages of construction are already prepared; though the construction of the vessels will be pushed with all possible speed, they will not be ready for service before the summer of 1893 . It is reported that he ships are not absolutely guaranteed to be five-day boats, but 21 knots an hour in the open sea is guaraneed by the builders, and if pushed hard it is probable that they will make a much better record. It is stated hat the Fairfield Company, who are to build these boats, offered to give the Cunard Company vessels capable of an average of $221 / 2$ knots per hour, but as considerable space for the accomwodation of first-class passengers would have to be sacrificed in order to obtain this speed, the Cunard Company decided to be satistied with a little less epeed and a better-paying boat. Provisions have been made in the design for the accommodation of 600 first-class passengers, nearly a third more than the Teutonic or Majestic.

White Cement

White cement of the same character as Portland ement is made by grinding together three parts of chalk and one of kaolin. burning at a red heat and grinding again. The cement made by this process hitherto has shown a tensile strength only about onehalf as great as that of good Portland cement, but it has the hydraulic quality and other characteristics of Portland cement, and it is to be hoped that the manufacture may be so improved as to increase the tensile strength to the point required for making artificial stone. If a white cement can be found for a watrix it will be easy to obtain aggregates of light color by atilizing white sand, marble dust, white talc, and so on, suitable for making a concrete which could be used in place of marble.

How Toilet Soaps are Made in Germany. Owing to the different conditions of the oil market in Europe as compared to America, the raw materials for the soaps made there are somewhat differently regarded in Germany than here. Cocoanut oil and palmkernel oil largely predominate there, while wool fat, linseed oil, horse fat, and recovered greases are given special attention in connection with the many problems which confront the German manufacturer in regard to the proper procedure in the many soaps which he makes on a small scale. For it must be understood that there the number of even comparatively large factories is exceedingly small when compared to that of the very small factories that make their boiled soaps in batches of 3,000 to $4,000 \mathrm{lb}$. or less, in a kettle heated by an open fire, and with hardly as much as an indistinct recollection of having heard that in some parts of the world soap is crutched by machinery. Besides the difference in the raw materials used mostly, and the small scale on which the German manufacturer generally operates, there is also the difference in climate as well as of usage and popular taste, which calls for one kind of soap in one country and for other kinds elsewhere; so, for instance, boiled-down soaps are used to a much greater extent in Europe than they are here, and again, as owing to their moist climate soaps dry less rapidly than they do here, such kinds are greatly made as would prove almost insoluble in our climate after storing for some time. Then, too, soft soaps are made in Germany in neredible quantities.
But, to come to our subject of toilet soaps. It will be seen from the following description by Dr. Bering, a German soap manufacturer, that in the matter of toilet soaps the difference between the countries is less marked, only that they make a much larger proportion of their toilet soaps by the cold process. In a detailed description of the process, Dr. Bering writes the following, from which sowe of our readers can perhaps gain a useful wrinkle or two :
The soaps turned out by our perfumers are made either directly or indirectly by remelting or by milling. In the two last named processes soda soaps are used which must be free from odor and perfectly neutral, must be easily melted on heating, and-in spite of greater solubility-must yield a more abundant and solid lather than the boiled soaps. [We presume the author meant to say "the ordinary boiled soaps," since the remelted and the milled soaps are most generally boiled soaps.-Ed. A. S. J.]
In the first named process the fats are melted at the lowest possible temperature, not above $65^{\circ} \mathrm{R}$., and one-half of the lye to be used, at sp. gr. $1 \cdot 33$, is run in while stirring steadily; after one-half to one hour, according as the mass shows a tendency to become solid, the remaining lye is added, and when the mass appears to be perfectly homogeneous throughout, the color and perfume are stirred in. Now the soap is run into rather strong wooden frames which are covered inside with linen cloths of a close texture, and sufficiently large that the entire block of soap can be covered with them. The square forms consist of side pieces about $11 / 2$ to 2 feet long and 1 inch thick, and a bottom of the same thickness. The side pieces are provided with pegs that fit exactly into corresponding boles in the bottom and walls, so that they can be easily put up or taken apart. Iron braces resting in notches on the side pieces give the frames the necessary strength to hold the batch of soap of say 1 cwt . After framing the soap, the whole is covered with thick cloths in order to keep in the heat which develops. As soon as the soap has become solid the cloths are removed, the soap is allowed to get cold, the side pieces are then taken off and the linen cloth is removed off The soap is now ready for cutting and pressing, care being taken to warm the bars previously if they have
become too hard, in order to avoid cracking. After become too hard, in order to avoid cracking. After
pressing the cakes are trimmed in order to remove any unevenness on the edges.
The fats used are lard, tallow, cocoanut oil, palm oil, and less frequently alwond oil. The lard and tallow must be previously purified, and especially the latter has to be freed of its disagreeable odor. In running the melted grease into the kettle it is passed through a cloth. The manner of adding the colo depends on the nature of the latter, heavy, earthy, or metallic colors, such as umber or vermilion, being added only when the soap has acquired a thick consistency, while dissolved colors may beadded while the soap is still thin. Very few colors only can be added before all the lye has been run in and saponification has begun. Aniline colors almost disappear at firs under the action of the alkali, but return after cooling.

Marbling of the soap is done by stirring up the required color in melted cocoanut oil, running it into a funnel closed at the lower end by a finger, and letting the contents run over the soap as it is run in layers
into the frame. When the frame is full a stick is drawn in fancy figures through the soap to distribute the color.
Practice is the best teacher, not only in the use of different fats, whether cocoanut oil alone, or with tal low or lard, or with both, is to be employed, but also
in deciding whether soda lye alone shall be used or potash lye added to it. Those who work intelligently will soon find which will bring them to the result they desire.
The second process, remelting, which is largely practiced in England, consists in finely chipping the tallow soap procured from the soap maker, melting it over a very slow fire while steadily stirring, adding the perfume, mixing well, and framing. If a soap smells too strongly of tallow it may be purified by melting it over a very slow fire or in a water bath, together with one-third its weight of water, preferably rose water, and adding a swall quantity of salt to separate the soap again; run it through a sieve, as close as possible, and let cool. Repeat if necessary.
In the matter of soap, of course, cheap goods are always wanted and the demand was supplied by incorporating more and more water in the soap. Cocoanut oil soap is especially adapted for this purpose, not only taking up considerable water itself, but communicating the same property to other fats. Such soaps, however, by the evaporation of the water, soon lose their shape and appearance.-Amer. Soap Jour.

Horticulture Industries.

Census Bulletin, No. 109, contains a preliminary re port, prepared by Mr. J. H. Hale, special agent, under the direction of Mr. Mortimer Whitehead, special agent in charge of horticulture, upon the nursery industry of the United States, which has for the first time been made a subject of census investigation. The material from which these statistics are compiled was obtained direct from the nurserymen, upon schedules specially prepared for that purpose, and by personal visits of special agents to nursery establishments in all parts of the country. These figures are subject to revision before publication in the final report.
From the tabulations in this bulletin it appears that there are in the United States 4,510 nirseries, valued at $\$ 41,978,835.80$ and occupying 172.806 acres of land, with an invested capital of $\$ 52,425,669.51$ and giving employment to $45,65 \%$ men, 2,279 women, and 14,200 animals, using in the proprgation and cultivation of trees and plants $\$ 990,606.04$ worth of implements. Of the acreage in nurseries, $95,025 \cdot 42$ were found to be used
in growing trees, plants, shrubs, and vines of all ages in growing trees, plants, shrubs, and vines of all ages;
and the figures based upon the best estimate of the nurserymen make the grand total of plants and tree $3,386.855,778$, of which $518,016,612$ are fruit trees, 685, 603,396 grapevines and swall fruits, and the balance nut, deciduous, and evergreen trees, hardy shrubs and roses. The largest acreage is devoted to the pro duction of apple trees, viz., $20,232.75$ acres, number ing $240,570,666$ young trees, giving an average of 11,890 per acre, while the plum, pear, and peach have, re spectively, $7.826 \cdot 5.6,854 \cdot 25$ and 3,357 acres, producing 88,494,367, 77,223.402, and 49,887,894 young trees, or an average of $11,307,11,266$, and 14,861 trees to the acre.
Horticulture has been making wondrous strides in Wis country during the last quarter of a century
While most of the first trees and plants were of ne cessity brought from the mother country by the early settlers, their production from seeds and by budding grafting, and layering was begun here early in th colonial records.

Food before Sleep.

Many persons, though not actually sick, keep below par in strength and general tone, and I aw of the opinion that fasting during the long interval between supper and breakfast, and especially the complete emptiness of the stomach during sleep, adds greatly to the amount of emaciation, sleeplessness, and genera weakness we so of ten weet.
Physiology teaches that in the body where is a per petual disintegration of tissue, sleep., g or waking; it is therefore logical to believe that the supply of nourishment should be somewhat continuous, especially in those who are below par, if we would counteract their emaciation and lowered degree of vitality; and as bod ily exercise is suspended during sleep, with wear and
tear correspondingly diminished, while digestion, astear correspondingly diminished, while digestion, as
similation, and nutritive activity continue as usual the food furnished during this pericd adds more than is destroyed, and increased weight and improved gen eral vigor is the result.
All beings except man are governed by natural in stinct, and every being with a stourach, except man, eats before sleep, and even the human infant, guided by the same instinct, sucks frequently day and night and if its stomach is empty for any prolonged period cries long and loud
Digestion requires no interval of rest, and if the amount of food during the twenty-four hours is, in quantity and quality, not beyond the physiological limit, it makes no hurtful difference to the stomach ing, but it does make a vast difference in the weak and emaciated one's welfare to have a modicum of food in the stomach during the time of sleep, that, instead of being consumed by bodily action, it may during the
interval improve the lowered system; and I am fully satisfied that were the weakly, the emaciated, and the sleepless to nightly take a light lunch or weal of sim ple, nutritious food before going to bed for a prolonged period, nine in ten of them would be thereby lifted into a better standard of health.
In my specialty (nose and throat), I encounter cases that, in addition to local and constitutional treatment, need an increase of nutritious food. and I find that by directing a bowl of bread and milk, or a mug of beer and a few biscuits, or a saucer of oatmeal and cream before going to bed, for a few months, a sur prising increase in weight, strength, and general tone results; on the contrary, persons who are too stout or plethoric should follow an opposite course.-Dr. Wm. T. Cathell, in the Maryzand Med. Jour.

Process of Sizing Paper.

The advantage of using aluminate of soda for saponifying the rosin used for size, instead of soda ash or caustic soda, is said to lie in the fact that in filling the paper its alumina serves the same purpose as the alumina of the alum generally used, rendering it prac ticable to dispense with alum entirely, and in the case of its use together with aluminate of soda giving an excess of alumina, which is a valuable addition to the pulp at this stage of its manufacture. The further advantage of using soluble salts of magnesia and cal cium instead of alum to decompose the rosin soap is that these salts are neutral, while alum is acid, that they are cheaper than alum, and in case of the mag nesia salts the precipitated magnesia is a valuable ad dition to the pulp.

A new method of precipitating alumina in the pulp in the beating engine is closely allied to this proces and consists in adding aluminate of soda to the sapo naceous solution of rosin mixed with pulp, together with the sulphate or chloride of magnesia, the chloride of calcium or the sulphate of alumina used to precipitate the rosin from the soap and form with it the sizing compound. Where these substances are used in solu tion they should be added separately.

The sulphuric or hydrochloric acid of the abovenamed salts will combine with the soda resinate or soap, freeing the resin acids (pinic, abietic and sylvic), and also with the soda of the aluminate of soda, pre cipitating the alumina; at the same time the magnesia lime or alumina of the sulphate or chloride used is precipitated, and thus an excess of alumina or mag nesium aluminate which serves as a filler, besides the size fo
cured.
The reactions incident to the process may be given as follows : $2 \mathrm{NaR}+2 \mathrm{NaAlO}_{2}+2 \mathrm{MySO}_{4}=2 \mathrm{Na}_{2} \mathrm{SO}_{4}+$ as follows: $2 \mathrm{NaR}_{2}+2 \mathrm{NaAlO}_{2}+2 \mathrm{MgSO}_{4}=2 \mathrm{Na}_{2} \mathrm{SO}_{4}+$
$\mathrm{MgRR}_{2}+\mathrm{MgAl}_{2} \mathrm{O}_{4} ;$ and when aluminum suiphate is $\mathrm{MgR}_{2}+\mathrm{MgAl}_{2} \mathrm{O}_{4} ;$ and "hen aluminum sulphate is
used, $12 \mathrm{NaR}+6 \mathrm{NaAlO}_{2}+3 \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+12 \mathrm{H}_{2} \mathrm{O}=$ $9 \mathrm{Na}_{2} \mathrm{SO}_{4}+4 \mathrm{AlR}+4 \mathrm{Al}_{3} \mathrm{O}_{3}+\left(12 \mathrm{H}_{2} \mathrm{O}\right)$.

Remedy for Pliylloxera.
The introduction of American plants to replace hose restroyed by parasites in French vineyards ha not arrested the use of insecticides for the protection of French vines still attacked by Phylloxera, and for \mid this purnose carbon bisulphide (either pure or dissol ved in water), sulpho-carbonates, and submersion continue to be employed with more or less success. The carbon bisulphide is by far the more efficient, but is too volatile and does not diffuse with sufficient rapidity. When tile and does not diffuse with sufficient rapidity. When,
however, it is mixed with vaseline, its volatility is rehowever, it is wixed with vaseline, its volatility is re-
duced and its diffusibility is increased, the former proving advantageousin light and calcareous soils, the latter in heavy soils, in accordance with theoretical con siderations. The vaselined sulphide is applied in the same way as the ordinary sulphide, depositing some a the foot of the vine stock and spreading the rest over the surface; this treatment is found to be effectual with it Phylloxera is no longer seen in the roots, vege tation is luxuriant, and numerous new rootlets indi cate a decisive increase in vitality; the manuring on a est tract of land had not been altered for six years herefore the improvement was solely due to the insec ticide.-P. Cazeneuve.

A New Local Anasthetic

Dr. C. Redard, Clinical Professor at the Geneva School of Dentistry, speaks highly of chloride of ethy as a local anæsthetic. It is a colorless, mobile liquid, having a peculiar and pleasant odor and a sweetish burning taste. Its sp. gr. is 09214 . It is slightly soluble in water, but dissolves readily in alcohol. It is sent out for medicinal use in hermetically sealed glass ubes containing a little more than two drachms each When required for use the point of the tube is snipped off, and the warmth of the operator's hand is suf ficient to cause a very fine jet of the chloride to be pro jected on the part to be anæsthetized. Up to the pre sent its use has been confined to dentistry and as an external application in neuralgic affections, but there is little doubt that in a short time its value will be ested in general surgery. Its action is similar to tha of methyl chloride.

