Degeneration and Evolution.
Mr. H. G. Wells, writing for the Gentleman's Maga ine (London), says: Perhaps no scientific teaching has been exposed to a greater amount of popular mis conception than the doctrine of evolution. In the popular conception, life began with the amœba, then came jelly fish, shell fish, and a miscellaneous mass of invertebrates; then real fishes and amphibia, reptiles, birds, mammals, and man, the last and first of crea ion. This is not the teaching of science. On the con trary, biology, along with advance, teaches retro gression as its essential complement. Isolated cases of degeneration have long been known. It is only recently that the enormous importance of degeneration as a plastic process in nature has been suspected and its entire parity with evolution recognized. In fact, the path of life so frequently compared to a steady ascent, an indication of an inevitable tendency to higher and better things, is distinctly repudiated by scientific observers. The sounder view is that living species have varied along divergent lines from intermediate forms and by no means necessarily in an upward direction.
The best known and perhaps the most graphic and typical illustration of the downward course is to be found in the division of the Tunicata. The untrained observer would probably class it near the oyster and the mussel, and a superficial study of its anatowy wight even strengthen this opinion. As a matter of fact, however, these creatures are far more closely related to the vertebrata, a fact exhibited in the details of their development. It is a matter of common knowledge that living creatures in the course of their ewbryonic development repeat, in a more or less blurred and abbreviated series, their generalized pedigree. For instance the developing chick or rabbit passes through, a fish-like stage, and the human fortus wears an undeaiable tail. In the case of these ascidians (the Tunicata) the fertilized egg cell destined to become a fresh individual follows an entirely different course from that pursued by the mollusks, the dividing and growng ovum exhibits phases resembling in the wost remarkable way those of the lowliest among fishes, the lancelot, or amphioxus. The method of division, the formation of the primitive stomach and body cavity, and the origin of the nervous system are identical, and a stage is attained in which the young organism displays-or simulates-vertebrate characteristics. It has a notochord, or priwary skeletal axis, it displays gill slits behind its mouth, as do all vertebrated animals in their earlier stages, and the origin and position of its nervous axis is essentially vertebrate. In these three independent series of structures the young ascidian differs from all invertebrate animals, and manifests its high descent rom the vertebrates. It is an evident case of retrogression
Like a tadpole, this animal has a well developed tail, with which it propels itself vigorously through the water; it has serviceable sense orgens, and appears in this, its earlier stages, to be full of vigorous, enjoyable life; but scarcely is this stage attained before the animal undergoes a process of retrogression. It develops suckers, by means of which it attaches itself to the rocks, its tail is absorbed, eye and ear atrophy, and the skin secretes the coarse inorganic-looking " test; " the transient glimpse of vivid animal life is forgotten, and the creature settles down for life to a were vegetable existence. In some cases the degradation has been a strategic retrogression-the type "stoops to conquer." This is, perhaps, most manifest in the case of the higher vertebrate animals. It is one of the best known embryological facts that a bird or a mammal starts in its development as if a fish were in the making, and that later the organs get twisted and patched to fit a life cut of water-nowhere organs built specially for this very special condition. There is nothing like this in the case of a fish. There the organs are frow the first recognizable sketches of their adult forms, and they develop straightforwardly, but the higher types go a considerable distance toward the fish, and then turn round and complete their development in an entirely opposite direction. This turning is evidently precisely similar in nature, though not in effect, to the retrogression of the ascidian after it pisciform or larval stage.

If a zonlogical investigator could have visited th earth during the upper Silurian period, and with prophetic eye could have singled out the ancestors o man, he would have found them, not among the dom inant placoid fishes of the Silurian sea, but in the Dipnoi or mud fish, swimming in the pluvial waters, or inert and caked over by the torrid mud. He would have found in conjunction with the purely primitive skull, axial skeleton, and fin possessed by these Silu rian mud fish a remarkable adaptation oi the swim ming bladder to the needs of the waterless season. It would have undergone the minimum amount of alte ration to render it a lung, and blood vessels and other points of the anatomy would show correlated changes. Here we have the old story of degeneration over again; the wud fish had failed in the struggle, they were less active and powerful than their rivals o the sea, and they had taken the second great road of
preservation-flight. just as the ascidian has retired frow an open sea, too crowded and full of danger to make life worth the trouble, so, in the older epoch, did the mud fish. They preferred dirt, discomfort and survival to a gallant fight and death. Very properly, then, they would be classed in our zoolorist's scheme as degenerate group. But some of them have risen in the world again; they came out of the rivers, gave birth to the amphibia of the coal, which gave place presently to the central group of reptiles, frow which sprang divergently birds and mammals, and finally the last of the mud fish family, wan-the heir of all the ages.

AN IMPROVED NECK YOKE

The yoke center for connecting the neck yoke with the pole of a vehicle, as shown in the accompanying illustration, has been patented by Messrs. David H. Gotshall and Herbert Petit, of No. 507 Second Street Astoria, Oregon. The yoke is of the usual construction, and in elbow lags attached by bolts to its under side are journaled the trunnions of a circular plate having a depending flange, which extends around all the front side of the plate, and is doubled under right angles to receive the head of a pole ring. Th head may be readily slipped into a recess of the plate, and a neck between the body of the ring and the head comes opposite the bentportion of the flange, so that the ring may have all necessary movement. The ring is prevented from accidental removal by a pin extending through the plate and into the head of the ring, but there will be little strain on the pin, the lateral strain from the flat head coming on the flange of the plate The ring is lined with leather or other suitable mate rial to prevent wear and rattling. This yoke center is

GOTSHALL \& PETIT'S NECK YORE.

designed to be safe, durable, and inexpensive, moving reely in relation to the

Modification of the German Patent Law
An amendment of the patent law of 1877 has been
passed by the Reichstag, and went into force on the 1 s of October. The chief point to be noticed in the new la wis that the examination of patents with regard to novelty is not to be abolished. The new law does not decide what amount of invention is patentable, so that this question wust be settled in each case by the Patent Office as heretofore. Publication, if wade more than a hundred years ago, is not to act in anticipation of a patent. Patents taken out in foreign countries are to act in anticipation against the inventor, and those claiming rights under him, only after a lapse o three months, and thus an extended period of time is allowed by the act for an application for a patent in Germany. If an invention is stolen frow another per son, and an application for a patent has been made the inventor is able not only to oppose the granting o a patent to the applicant, but to obtain a patent for his own application. The patent fees may be paid for the whole duration of a patent in advance, so that th lapse of a patent through delay in the payment of fees may be rendered impossible. If a patent on which th full fees have been paid should be afterward annulled the fees will be returned to the patentee. An applica tion for the annulling of a patent shall not be made when the patent has been in existence wore than five years. For the determination of this point, however a period of three years is provided. The very high fees now payable for a German patent have not been diminished by the new act, but it is provided that uch a lowering of the fees may be made by order of Federal Council. The important provision that patent may be revoked after the expiration of three years if the patentee fails to carry out his invention in Germany to a suitable extent, or at least to do every thing that he can to carry it out, remains in force, and should be particularly noticed by foreigners. The rganization of the Patent Office is to be so regulated y the new act that there may be greater security for proper and efficient examination of patents. Befor an application is refused, the applicant is to have an
opportunity of answering objections to the granting of a patent. If he should fail to obtain a patent, he may then support his claim by oral evidence. At the pre hwinary examination expert witnesses way be called
inventor had made may be presented. If the decision of a judge puts a new aspect on the case, the applicant is to have an opportunity of answering any objection raised. A proviso which is of great importance to chewical industries is that where proceedingsaretaken to patent a new material, every material of similar manufacture is regarded as included in the claim until proof to the contrary is shown. The damagespayable proof the The Patent Office, Berlin, was established at its new The Patent Office, Berlin, was established at its new
building in April last. This new office is in every building in April last. This new office is in every
respect suitable for its purpose, whereas the old one was too small. The public obtain a great advantage from the new arrangement, since the important technical library is now open to all persons from 9 A . M. to 9 P. M.

Lumber at Portland, oregon.
The Oregonian, in speaking about the lumbering interests of Portland and vicinity, says: The principal forest tree indigenous to Oregon soil is the fir. For heavy frame work of all wooden structures, for For heavy frame work of all wooden structures, for
bridge timbers, and even for boat building, the fir is the best timber in the world. It has all the tenacity of fiber of the best oak, without the propensity to split of the latter, and its lasting properties, when exposed to all the severity of weather, are not equaled by any other available timber in the world. It has been found by actual experiment that a piece of fir timber, when submitted to a heavy strain, did not break as soon as a piece of well seasoned oak of the same dimensions. It is only within the last five years that the Union Pacific, one of the greatest of the transcontinental lines, became convinced that fir was the saf est, most economical, and strongest timber for wooden bridges that could be obtained in the United States, and Portland-cut fir is now regularly shipped by this company as far east as Omaha, for use in their new reconstructed bridges. Large quantities of this same wood are now used by this company in the construc tion of cars for their line
The average price at the Portland mills, for both rough and dressed lumber, is about $\$ 14$ per 1,000 feet. This price may vary a little at times, but long year of experience in this line has convinced the mill men of this city that lumber cut here cannot be sold pro fitably on an average for less than these figures.
The supply of logs for the local mills is now obtained from the banks of the Columbia River and its tributaries north of Portland. Along the banks of the up per Willamette there is a supply of good timber, bu this timber cannot reach Portland, owing to the ob structions to floating rafts in the falls of the Willam ette, at Oregon City, twelve miles north of Portland The large rafts of logs from the Columbia are now towed up to the Portland mills by steamers regularly engaged in this traffic, at the rate of about 75 cents per 1,000 .
Up to within a year past the Portland sawmills en joyed a large and steady sale of their product to al points on the Union and Northern Pacific between Portland and the Missouri River. Last season most of his trade was cut off from the Portland mills, owin o the scarcity of cars furnished by the railroad companies for the transportation of this lumber East. 'Th umberwen of Portland have a great cause for com plaint against the transcontinental lines of roads ou of Portland the present season, in the matter of dis criminating freight rates on lumber in favor of the outh, as against Portland. A delegation of the Port land lumbermen, headed by Mr. H. R. Duniway, one of the youngest but brightest men in this business in the Northwest, recently went East with a view of lay ng their complaint before the trafic managers. Chair wan Walker, of the Western Traffic Association, ha called a meeting of the traffic managers of the differen railroads in the association for this month, and it is he hope of the lumbermen of Portland that new rate will be made on the shipment of lumber which will be ntirely satisfactory to the Portland mills.
In addition to the cutting of fir, cedar is sawed in wall quantities by the local mills, and oak and ash re sawed, to a limited extent, by small wills in Port land. Along the low lands of the Columbia and Willamette Rivers are immense forests of cottonwood, wood that is specially valuable for box making and or the manufacture of wood pulp for paper making This latter wood is now sent to Portland in conside able quantities for the purposes above named.
The sawing of lumber in Portland furnishes steady employment to about 800 men, and yearly pays out in wages $\$ 600,000$. There is about $\$ 1,900,000$ invested in the saw mill plants of Portland, and the yearly sales of lumbe. made by these mills will approximate $\$ 2,500,000$.

The tide tables for the Atlantic Coast of the United States, together with 206 stations on the Atlantic Coast of British America, for the year 1892, published by the United States Coast and Goedetic Survey, are now ready for issue, and copies can be obtained for twenty cents at the agencies of the survey in this city, o by addressing the offlee at Washington.

Thought.

We do not fully understand or at least are not agreed as to the nature or character of normal mentality. Two or three generations ago it was believed to consist in the activity of a soul or spirit, which was euthroned sowewhere in the brain. No explanation of the modus operandi of such activity eventuating in thought, as independent of the body, was apparently ever deemed nec
sclentific inquiry
In wore recent times, and especially sirice the mi croscope has revealed to us the wondertully complex and highly organized texture of the brain; and wodern physiological research has made known more perfectly the functions of many parts and organs of it, the old theory has been rejected, and a leap has been made to the other extreme. A theory has been accepted by some to the effect that the whole thought process consists simply in the molecular activity of this highly organized cell-structure of brain. The hypothesis that a soul or any special entity exists within the brain or elsewhere in the body is a snare and a delusion and without proof. As a working theory for elucidating the phenomena of mind it is worse than useless. Perceptions, memory, reason, judgment, all consist of mere movements or vibrations of different kinds or degrees of multitudinous nerve fibrils and cells, which are composed of matter in its most highly organized form. Attention and will are only different forms of this same activity of nerve tissue as it becomes affected through external or internal impressions, while under the influence of the blood. In the words of one of its most vigorous advocates, "that which
thinks, reasons, wills; that w hich is consciousness in thinks, reasons, wills; that which is consciousness in tity, of the existence of which we have ne evidence whatever, and of the need of which as an hypothesis he is not conscious.'
On the other hand, however, there are some who still feel conscious of the need of an additional element in any hypothesis which is assumed as a working basis for elucidating the physiology of the thought process. They are unable to accept mere asse and wuch less for demonstration. They freely admit the dependence of mind upon the brain and nervous system in its exhibitions, and that no such processes a memory, reason, attention, and will, can be perfected and projected to other minds except by the agency o the brain; also that these several activities of the mind are defective and imperfect, weak or strong largely in proportion as the brain is in a normal o abnormal condition. They also admit that the hy pothesis of molecular activity only has the merit o simplicity, and if true ought soon to place us on van tage ground in elucidating the physology of mind But, on the other hand, they cannot remain indifferen to the fact that any hypothesis, to be accepted as reasonable, must harmonize with and cover the phenomena to be explained. Now, does molecular activ ity, or the vibration of cells and fibrils upon each other present any resemblance to thought? Such vibration presupposes and consists simply in movement. This movement may occur with the inconceivable rapidity of light, but, after all, it is only movement, and i there results from or in connection with that wove ment of the anatomical elements of brain, something of a nature unlike motion, then it becomes necessary to add another element, which resides in the material affected by movement, to explain the phenomena pre sented. ${ }^{\bullet}$ This element must be akin, in its nature, to that which results, namely, thought. The nature of movement is simple and homogeneous in whateve realm of matter it may appear, and, so far as we know it becomes only motion ; but thought, as it appears in reason, will, imagination and judgment, has no resem blance to mere motion. It may be attended by or be dependent upon it, but in its essence and qualities it is so unlike it that the two cannot be compared. Mere movement of cell, whether simple or complex in its constitution, therefore, becomes as unscientific as an explanation of thought as mere movement of spirit.

Such considerations are thought to require that, in the solution of the thought problem, another element must be added. This resides in the brain and nervous system, and in the processes of thought, reflection memory, and judgment, there exists a correspondence or parallelism of action between the cell and this addi tional element. The one may act upon, or be acted upon by, the other through impressions frow without, and in this action and interaction, the quality and character of thought becomes modified, approved or disapproved, and in some measure changed.
Such, then, in briefest words are the hypotheses which, have been advanced as explanatory of norwal mentality. How far either of them may or may not be likely to meet with future demonstration, it is not my purpose to argue, even if it were a legitimate sub ject for such an occasion, but simply to call attention to the fact that neither of these hypotheses has yet been accepted by all; and also that physiology has not yet vouchsafed to us any seientific demonstration
on this matter.-Henry P. Stearns, M. D., address before the Association of Medical Superintendents, etc.
the proposed race between fast steam yachts The trial of speed shortly to come off hetween the two fast steam yachts Vawoose and Norwood, over an 80 k not course in Long Island Sound, has attracted a large degree of public atteution, particularly among
all who are in any way interested in yachting. The all who are in any way interested in yachting. The course is of sufficient length to thoroughly test the qualities of the racers, and is laid due west from Fisher's Island to a point opposite the Larchwont Club house, near the western end of the Sound. Our tirst page il lustrations give a good idea of the general appearance of the two boats, accompanied with drawings of their macuinery, in which connection is also presented a view of the Cushing, our fast torpedo boat, which yachtsmen generally had hoped would be a participant
in the race, but which the government officials could in the race, but which the government off
not, under the navy regulations, consent to
The Vamoose was built by the Herreshoffs, of Bristol R. I., for Mr. W. R. Hearst, of San Francisco, and her cost is said to have been $\$ 65,000$. She is 112 feet 6 inches long over all, and about 108 feet long on the water line, her extreme beam being 12 feet 4 inches and her great est draught 4 feet 11 inches. Her hull consists of a steel frawe, uncovered in the interior of the boat, and with au outer covering of two layers of pine, the inside one of which is seven-eighths inch thick white pine and the other five-eighths inch thick yellow pine, there being nothing in her in the way of finish or decoration.
Her engine is quadruple expansion, and there are five Her engine is quadruple expansion, and there are five cylinders, of the following diameters : one of $11 / 4$ inch es, one of 16 inches, and three of $221 / 2$ inches each, the stroke, cowmon, being 15 inches. The propeller shaft is $5 \frac{1}{4}$ iuches in diameter. The condenser is of copper and is 5 feet 3 inches long and 31 inches in diameter containing 498 feet of tubing, the circulating pump being worked by an independent little engine. The engine and its equipment weighs $131 / 2$ tons, and is de

propeller of the famoose.
signed to develop 800 horse power. The boiler is of he Thornycroft pattern, and is 8 feet 4 inches long and feet 6 iuches in diameter. It has three main drum and 8.500 feet of cold drawn steel tubing. Forced
araught is afforded by a fan working up to 1,000 turns a minute. The smokestack is 8 feet high above the deck and is 36×21 inches in diameter. The boat is lighted by electricity generated by a Riker motor. She has a hree-bladed Seise propeller, shown in one of our views. It is 54 inches in diameter, and drops 21 inches below the lowest part of the keel. It is designed to be re volved 400 times a minute to propel the boat at full peed.
The Norwood was built by C. D. Mosher, of Ames bury, Mass., for Norman L. Munro, of New York. She is only 63 feet 2 inches long over all, and about 60 fee long on the water line. She is 7 feet 2 inches beaw
anidships, and her greatest draught is 22 inches, her amidships, and her greatest draught is 22 inches. her draught forward being only about 9 inches. A cross early of each boat at the midship section shows thicknesses of mahogany on a strong oak frame, and has a steel keelson. The stern is cut away to make oom for the propeller, which has three blades, and is 36 inches in diaweter. It has a pitch of 7 feet 6 inches, and is designed to be driven at the rate of 500 turns winute. The engine is of the triple expansion type, the cylindersbeing 9 inches, $141 / 2$ inches, and 22 inches in diameter respectively, and the stroke 9 inches. At 500 revolutions a minute the engine is designed to de Thornycroft type, but with important modifications. It is 7 feet 4 inches long and 5 feet high, the working pressure being counted at 200 pounds and over. The ondenser is 6 feet long and 18 inches in diameter The smokestack rises 3 feet 9 inches above the top of the boiler, and it is 18 inches in diameter. In cruising trim the boat is covered with an awning which may
be inclosed with glass, but in racing order she is be inclosed with glass, but in racing order she is
stripped to the hull.

Table Customs of Our Ancestors
A thousand years ago, when the dinner was ready to be served, the first thing brought into the great hal was the table. Movable trestles were brought, on which were placed boards, and all were carried away again at the close of the meal. Upon this was laid the tablecloth, which in some of the old pictures is represented as having a handsowe embroidered boraer. There is an old Latin riddle of the eighth century in which the table says: " I feed people with many kind of food. First I am a quadruped, and adorned with handsome clothing ; then I am robbed of wy apparel and lose my legs also." The food of the Anglo-Saxon was largely bread. This is hinted in the fact that a domestic was called a "loaf-eater," and the lady of the house was called a "loaf-giver." The bread was baked in round, flat cakes, which the superstition of the cook marked with a cross, to preserve them from the perils of the fire. Milk, butter and cheese were also eaten. The principal meat was bacon, as the acorns of the oak forests, which then covered a large part of England, supported numerous droves of swine. Our Anglo-Saxon forefathers were not only hearty eaters, but unfortunately deep drinkers. The drinkiug horns were at first literally horns and so must be immediate ly emptied when filled; later when the primitive hor had been replaced by a glass cup, it retained a tradition of its rude predecessor in its shape, for it had a flaring top while tapering toward the base, so that it, too, had to be emptied at a draught. Each guest was furnished with a spoon, while his knife he always car ried in his belt; as for forks, who dreamed of them, when nature had given man ten tingers? But you will ee why a servant with a basin of water and a towe always presented himself to each guest before dinner was served and after it was ended. Roasted meat was served on the spit or rod on which it was cooked, and the guest cut or tore off a piece to suit himself. Boiled meat was laid on the cakes of bread, or later on thick عlices of bread called "trenchers," from a Norman word meaning "to cut," as these were to carve the meat on, thus preserving the tablecloth from the knife, At first the trencher was eaten or thrown upon the stone floor for the dogs which crouched at their master's feet. At a later date it was put in a baske and given to the poor who gathered at the mano gate. During the latter part of the middle ages, the wost conspicuous object on the table was the salt cellar. This was generally of silver in the form of a ship. It was placed in the center of the long table, at which the household gathered, my lord and lady, their family and guests, being at one end and their retainers and servants at the other. So one's position in regard to the salt was a test of rank-the gentlefolks sitting "above the salt" and the yeomaury below it. In the houses of the great nobles dinner was served with much ceremons. At the hour a stately proces sion entered the hall. First came several musicians followed by the steward bearing his rod of office, and then came a long line of servants carrying different dishes. Some idea of the variety and profusion may be gained from the provision made by King Henry III. for his household at Christmas, 1254. This ncluded thirty-one oxen, one hundred pigs, thre hundred and fifty-six fowls, twenty-nine hares, fifty inerabbits, nine pheasants, fifty-six partridges, sixty eight woodcocks, thirty-nine plovers, and three thou sand eggs. Many of our favorite dishes have descended o us from the middle ages. Macaroons have served as dessert since the days of Chaucer. Our favorite winter breakfast, griddle cakes, has cowe down to u frow the far-away Britons of Wales, while the boys have lunched on gingerbread and girls on pickles and elliss since the time of Edward II., more than five hundred years ago.

A Remarkable Ferryboat

One of the most extraordinary boats on the American lakes is a passenger car transfer ferryboat operated in the Straits of Mackinac by the Duluth South Shore, and Atlantic Railroad. It has an enorm ous capacity for carrying cars, but its peculiarities are its strength, its shape, and the number of its steam engines. It carries twenty-four steam engines for the performance of the various requirements of its daily business. The hull of the boat is as soiid as the walls of an old-time block house. The bow rises from the water so as to hang or slant over it as if it were a ham oer-and that is what it was built to be. The boat is an ice breaker, intended to keep a channel open in the traits during the winter, or to wake one whenever is pushed into the massive ice that forms in that cold region. The big boat advances toward the ice and shoving her nose upon its edge, lifts herself upon it. Then a screw propeller under the overhanging bow performs its work of sucking the water from under the ice to enable the boat's weight to crush it down the more easily. Thus the destructive monster makes her way steadily through the worst ice of the semi-polar winters of that region, climbing up on the ice, crushng it down, scattering it on each side. and making no more of it than if it were so wach slush.-IIon Age

