Jrintific ghmericam.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors published weerly at

No. 361 IBROADWAY, NEW YORK.

o. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN

 One copy, one year, for the U. S., Canada or Mexico..One copy, six months, for the U. S., Canada or Mexico
One copy.one year,to any foreign country belongingto Postal Union. 1400 Remit by postal or express money order, or by bank draft or check.
MUNN $\&$ Co., 361 Broadway, corner of Frauklin Street, New York.

nanish Edition of the Sciontries, 811.50 a year

UFT The safest way to remit is by postal order, express money order,
draft or bank check. Make all remittances payable to order of MUNN ơO Readers are specially requested to notify the publishers
ny failure delay, or irregularity in receipt of papers.

NEW YORK, SATORDAY. OCTOBER 3, 1:91

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 822
For the Week Ending October 3, 1891.

$$
\text { Price } 10 \text { cents. For eale by all newedealere }
$$

1. ANTHROPQLOG X.-The Study of Mankind-A Review of Prof: II.

real and imaginary speed of steam yachts
There seems to be ground for the fear that storie about steam yacht speed, like fishermen's tales, will be come the synonym for exaggeration. There was good illustration of this recently. The Norwood, a tight lit the steam launch of uncommon speed, crosses the bow of and runs away frow the Sandy Hook twin serew steamboat Monwouth, and is heralded far and near with waking extraordinary speed, variously estimated at between 24 and 25 wiles an hour. Then the Vawoose, designed by a rival builder, does the same for the Hudson River steamboat Mary Powell, and is credited with the same or even more speed than the Norwood. The builder of the Norwood informs the public that his craft, while on a trial trip on a Massachusetts river, made 30 miles an hour for two consecutive hours before witnesses, whose names and confirmatory statement he appended. As to the Vamoose, it is declared in cold type that " The contract called for a speed of 25 wiles per hour, and while in her two trials she did not quite reach this speed, her owner is confident that she can make between 26 and 27 miles an hour under favorable conditions."
Perhaps she cau. Perhaps her rival can do the same, or even better. We hope to see each of them realize the maximum that is expected. But, putting aside hopes and promises, let us set to work to discover just what each has done up to the present time in these waters, and then we can put a peg in at that point. and thus be able to determine hereafter just what improvement is wade
The steamboat Monmouth, which the Norwood out ran or the course between the Narrows and Sandy Hook, is not wuch faster than the old St. John. When she has a strong ebb tide with her she makes the 21 wiles run frow New York to Sandy Hook in about 55 winutes, which, if we estiwate the speed of the current at $21 / 2$ wiles an hour, gives a speed of something less an 20 wiles an hour for the monmouth. Thus a craft 20.5 miles could reaty wouth if starting, as the Norwood did, close astern. As to the 30 miles an hour during the trial trip in Massachusetts waters, the witnesses, there is reason to believe, were altogether unused to waking tests for speed and very much exaggerated what they saw, though no doubt without any intent to deceive.
It is, indeed, curious how easily an inventor and his friends can deceive themselves as to the speed of a boat. We remewber sending an expert to test a stean yacht once which was alleged to have made 26 miles an hour, and the best that could be forced out of her proved to be 15 miles an hour.
As to the alleged race between the Vamoose and the Hudson River steamboat Mary Powell, in which the former readily overhauled the bigger craft, we have been informed by the Powell's waster that she was not at that time racing, nor ever does engage in such contests while on her regular trips with passengers aboard We are satisfied that this is really the case, and, more over, it is evident that with a boatload of passengers running from side to side, the craft meantime listed heavily to port or starboard, she could not wake even ordinary speed. Again, the Mary Powell, as is well known, has never, since rebuilding, been as speedy as formerly, and it is not likely that she was making more than 18 or $181 / 2$ miles an hour when the Vawoose came up. Hence to beat the Powell, loaded with freight and passengers while running her regular trip. can scarcely be considered a remarkable feat for a steamer built by one of the cleverest designers in the country with a special view of speed.
If the speed of these two boats is to be reckoned by what the inventor or owner says they can make or by circling harbor and river traffickers presumably speedy there is no limit to what the imagination way picture But if perforwance is that amount of actual work that can be sustained by statistics, neither the Norwood nor Vamoose has yet shown much better speed than 20.5 or 21 statute miles an hour.

SHOP RULES.

The majority of shop rules, although intended to secure orderly conduct, efficient service and a har monious forwarding of the work in hand, quite as fre quently interfere with superintendence as assist it. Rules often fail where they set forth facts and penal. ties relating to common honesty, order, disobedience and the willful, malicious, or accidental destruction o property, or relate to defects in work. The instance Where the rules do not fit will be found to be the grea majority of cases, and arbitrarily to force the rules to much harder work than it would be if the managewent were left free to decide for the right unhampered 134 by any rules whatever. No business or body of twen ican be managed by the blind application of set rules, 41 any more than a fleet of ships can be steered by one ${ }^{3140}$ rudder. Every craft obeys its helm, but yields ac cording to its peculiarities of build and wotive power so every man can be ruled if his peculiarities be un derstood and a reasonable allowance made for them.
If a concern could possibly have a full and complete
set of rules to meet every case and every variety of fault, and to cover every interest of the business, and be fair to every employe, these rules could not execute themselves. They would not bea satisfactory equivalent for an energatic superintendent or a faithful foreman. The responsibility of superintendence cannot be evaded by the printing of rules.
Here are two rules that indicate about all that need be said in a general way to the ewployes of any concern, and that leave the management free to consider every case on its whole merits.

roles.

1. In consideration of the fact that each and all employes of this establishment are regularly paid such wages as have been wutually agreed upon as a fair equivalent for their full services within stated hours, the management requires as full and as faithful a rendering of the stated service from each of its employes as it renders to them the stated sums in payment therefor.
2. Every question that may arise between employes and overseers, or relating to work, discipline, order, honesty, and every other question affecting the establishwent, will be decided on its merits by the officers, having in view the interests of the business.
These rules are not intended to serve as exact patterns for all shops, as special additional rules may be needed for each particular business, but the above are sufficient to indicate that the necessary regulations for a shop may be made very few and brief, and to emphasize the fact that rulesare good only as they are explicitly stated and energetically enforced.

The Expense of Government.

Some very interesting statistics in regard to the overnment's account with thepeopleare published by Edward Atkinson in the current issue of the Forum. The total amount of the normal cost of the government proper of the United States for the fiscal year ending June 30, 1889, was $\$ 146.478,144$. These expenses included the entire cost of the civil service and of the wilitary establishment, including fortifications and river and harbor improvements, and of the navy including appropriations for the construction of new vessels. This entire amount, however, great though it is, is covered by the duties which were paid on liquors and tobacco. The amount of this revenue was $\$ 148,883,788$.
It will be seen, therefore, that were it not for the war and its accompanying train of burdens, the en tire expenses of our government could be met by the taxes on liquor and tobacco alone.
The tables indicate that since 1871 the revenue from this source has increased more in proportion than the increase of population.
The other items of expense and revenue for the year ending June 30, 1889, will also be of interest. Th expenses are:

Indian accoun	86,892,20]
Interest on public debt.	41,001,484
Arrears of pensions settled	21,442,349
Current annual pensions.	66,182,429
Total.	\$135,518,469
The expenses of government before mentioned.	146,478,144
The revenues are :	
From duties (other than liquore and tobacco)....	\$204,851,854
Sundries, internal taxes.	978,611
Nominal profit on purchase of silver ballion.....	10,185,264
To this should be added revenue on wines, spirits, beer, and tobacco..	148,883,788

The entire expense of government during that year was $\$ 281,996,615.60$. The entire revenue amounted to $\$ 387,050,058.29$, and the surplus was $\$ 105,053,442.69$. The changes of ratio of the national debt account to he pension account is very interesting.

In 1871, the interest on the public debt was...... $\$ 125,576.56$

 The pensions for fiscul year ending June 30, 1891. 124,415,961

Prevention of Yellow Fever by Inoculation.
At a recent meeting of the Academy of Sciences Paris, a paper was read on the preventiveinoculations f yellow fever by M. Domingos Freire. The author has iucculated 10.881 persons with cultures of Micro coccus amaril. The mortality of those so vaccinated was 0.4 per cent, although the patients lived in dis tricts infected with yellow fever, while the death rate of the uninoculated during the same period was from 30 to 40 per cent. These results have led the goveri oent of the Brazilian States to found an institute for the culture of the virus of yellow fever and other infer tious diseases, and to appoint M. Freire the director.

Utilization of Old Tin Cans.

According to W. L. Brockway's invention, waste tin plate, fruit cans, etc., are heated to $1,000^{\circ}$ Fah. in a urnace in which a reducing atmosphere is maintained. It is claimed that in about from three to seven miuutes the tin and solder are completely separated from the iron and fall to the bottom of the furnace, while the iron is left in such a condition that after cleaning, cold rolling. and annpaling it is suitable for applications in which a tough high-class iron plate or foil is required.

The Government Timper Tests. omprehensive timber tests have been inaugurated culture, concerning which we have received the follow ing information
 To define the objects of the work more in detail, some of the questions which it is expected ultimately to solve may be formulated as follows
 What are the essential working properties of our various woods, and by what circumstances are they in luenced?
 What influence does seasoning of different degree have upon quality?
 How does age, rapidity of growth, time of felling, and after treatment change quality in different timbers? In what relation does structure stand to quality? How far is weight a criterion of strength?
 What macroscopic or microscopic aids can be devised

 or determining quality from physical examination? What difference is there in wood of different parts of the tree ?How far do climatic and soil conditions influence quality?
In what respect does tapping for turpentine affect quality of pine timber?
It is also proposed to test, as opportunity is afforded, the influence of continued service upon the strength of structural material, as, for instance, of members in bridge construction of known length of service. This series of tests will give more definite information for the use of inspectors of structures.
Besides these problems, many others will arise and be solved as the work progresses, and altogether a wealth of new knowledge regarding one of our most useful materials must result. It is proposed to publish results from time to time.
The collection of the test material is done by experts (Dr. Charles Mohr, of Mobile, Ala., for Southern timbers). The trees of each species are taken frow a number of localities of different soil and climatic conditions. From each site five trees of each species are cut up into logs and disks, each piece being carefully marked, so as to indicate exactly its position in the tree; four trees are chosen as representative of the average growth, the fifth, or " oheck tree," the best developed specimen of the site.
Disks of a few young trees, as well as of limbwood, are also collected for biological study. The disk pieces are eight inches in height and contain the heart and sapwood of the tree from the north to the south side of the periphery. From fifty to seventy disk pieces and from ten to fifteen logs are thus collected for each species and site.
A full account of the conditions of soil, climate, aspect, measurements, and determinable history of tree and forest growth in general accompanies the collection from each site.
The disks are sent, wrapped in heavy paper, to the Botanical Laboratory of the University of Michigan, at Ann Arbor (Mr. F. Roth in charge), to be studied as to their physical properties, their macroscopic and microscopic structure, rate of growth, etc. Here are determined (a) the specific weight by a hygrometric method; (b) the amount of water and the rate of its loss by drying in relation to shrinkage; (c) the structu ral differences of the different pieces, especially as to the distribution of spring and summer wood, strong and weak cells, open vessels, medullary rays, etc.; (d) the rate of growth and other biological facts which may lead to the finding of relation between physical appearance, conditions of growth, and mechanical properties.
The material thus studied is preserved for further examinations and tests as may appear desirable, the history of each piece being fully known and recorded. The logs are shipped to the St. Louis Test Laboratory, in charge of Prof. J. B. Jonnson. They are stenciled off for sawing and each stick marked with dies, corresponding to sketch in the record, so as to be perfectly identified as to number of tree, and thereby its origin, and as to position in tree. After sawing to size, the test pieces are stacked to await the testing. One-half of every log will be tested green, the other half atter thorough seasoning. A determination is made at the time of testing of the amount of water present in the test piece, since this appears greatly to influence results.
From each tree there are cut two or three logs, from each log three or four sticks, two of standard size, the other one or two of larger size. Each standard stick is cut in two, and one end reserved for testing two years later after seasoning. The standard size for the sticks is 4 by 4 inches and 60 inches long for crossbreaking tests. There will, however, be made a special series of cross-breaking tests on a specially constructed beam testing machine, gauged to the Water-
town testing machine, in which the full log length is town testing machine, in which the full log leagth is
utilized with a cross section of 6 by 12 up to 8 by 16 inches, in order to establish the comparative value of beam rests to those ou the sinall test pieces. It is expected thar, in the average, 50 tests will be made on each species and site.

All due caution will be exercised to perfect and insur the accuracy of methods, and besides the records which are made directly in ink into permanent books, avoiding mistakes in copying, a series of photographs, exhibiting the character of the rupture, will assist in the ultimate study of the material, which is also preerved.
Such work as this, if done as indicated, and well done, will never need to be done over again. The re-
sults will become the standard the world over. The sults will become the standard the world over. The
strength and value of a given species or even stick strength and value of a given species or even stick
will then no longer be matter of opinion, but a question of established fact, and we will learn not only to apply our timbers to the use to which they are best adapted, but also what conditions produce required qualities, thus directing the consumer of present supqualities, thus directing the consuiner of
plies and the forest grower of the future.

The Direct Conversion of Heat into Electricity.

That electric currents can be developed by the direct application of heat to the junction of two different metals, which is the fundamental principle of the thermopile, was discovered by Seebeck in the year 1823. As regards the theory of the subject, Clausius suggested in 1880 that "by the molecular motion, which is termed heat, electricity is driven from one materia to the other:" and Kohlrausch's theory of 1875 is somewhat similar in assuming that the electric current is in some way connected with the flow of heat, and vice versa. The discoveries of later years, culminating in the researches of Hertz, prove, however, that th electric current is merely the result of a certain vibra
tory tory wotion of the luminiferous ether, and, therefore
in accordance with the principles of the conservation in accordance with the principles of the conservation
of energy, a certain definite quantity of heat can be converted into a certain definite quantity of electricity without either loss or gain of energy, and it is this meaning that is given to the subject of this paper, conversion by a dynamo machine being termed "in direct."

Proceeding then to calculate the absolute efficiency of the ordinary means of producing the electric current by a steam-driven dynamo, the electrical energy de veloped is shown to be only 6.4 per cent of the energy existing in the coal burnt in the boiler; but even this low efficiency is eighteen times greater than the direct conversion of heat into electricity as furnished by a Noe and Clamond thermo-battery, where the efficiency works out at only 0.35 per cent of the mechanical
equivalent of the gas burnt. If the high efficiency of equivalent of the gas burnt. If the high efficiency o the dynamo and steam engine in themselves, as manu factured at the present day, be considered, it is clea that not much greater results can be expected in that
direction, and the author has for some years been experimenting in other directions, therefore, for the perimenting in other directions, there
direct conversion of heat into electricity.
The principal idea acted on at first was the heating of a certain metallic salt in a platinum crucible, which should form the positive pole of the element, and a carbon rod immersed in the molten substance the negative pole ; this substance would part with its oxy gen to the carbon, and then be reoxidized by contact with the air; and with this form of apparatus, a mix ture of caustic soda and carbonate gave an electro"sodium blast"generated at the carbon point burning at the surface with its characteristic yellow flawe, acat the surface with its characteristic yelow flame, ac
companied with slight explosions. For the similar potash salts the electro-motive force was between $0 \cdot$ and 0.31 volt, the flame being violet and the burning more violent, and forming a small display of fireworks. high aption of lead oxide resulted in a womentary of thelectro-wotive force, and then a sudden collaps duced falling to the bottom and eating through the platinum. The author was surprised also to find that at the junction of the platinum connection wire the crucible was also severely pitted, as the current had never been short-circuited, and he has no valid ex planation to offer therefor.
After these experiments, the results of which did not promise any simple solution of the problem, the author set himself to improve, if possible, the thermobattery, and for which purpose attention was directed to the following particulars:

1. The adoption of durable materials
2. That the electro-motive force and specific conduc ivity should be as high as possible.
3. Improvements in the form of the element.
4. Improvements in the application of the heat, i. e., a higher efficiency in the production of the heat itself Subsulphide of copper, in spite of its high electro motive force, gave, on account of high specific resist ance, a weaker current than materials which gave only half its electro-motive force, and it was also found that, by a species of dry electrolysis, granules of metallic copper were formed throughout the body of the material, and its use was, therefore, discarded. A form of battery is described, and which was exhibited ot the meeting, consisting of tubes of nickel and a special
*R. J. Gulcher. Sitzungsber. der Akad. de
1891, 88 ; Proc. Inst. Civil Eng. 1u5, iil. 82-84.
antimonial alloy, which was found to be very durable This consisted of fifty elements in series united in one casing, and gave an electro-motive force of 35 volts . and an internal resistance, when hot. of 0.4 ohw, with a consumption of $71 / 4$ cubic feet of gas per hour, and the absolute efficiency is 1.08 per cent, or three times that of the existing thermo-batteries. Such a battery is almost exactly equivalent to two Bunsen elements. and though it is far below the dynamo in efficiency, still it may be suitable for various swall installations and for experimental work, owing to complete absence of polarization, as the electro-motive force does not fall on short circuit. The durability is enhanced by a regulator applied to the gas supply to prevent ny accidental overheating.
The author concludes by stating that he hopes to produce cells which are the outcome of still later re searches, and in which the efficiency has been raised to over 5 per cent, and thus almost capable of com peting with the dynamo. The description of the con struction is withheld; but it is stated that one form is capable of continuously furnishing current for eight 16 candle power lamps at a consumption of 4.5 lb . of coke per hour. This success the author hopes still further to advance, and thereby exceed the efficiency of the dynamo system as a converter of heat into electrica energy.

Results from Scientific Kites.

The Anerican Meteorological Journal for July con tains an article on Franklin's kite experiment, by A. McAdie. After giving various details respecting Franklin's experiments the inthor describes similar experiments recently carried on at the Blue Hill O b. servatory, near Boston, the chief advance being thit at every step the electrical potential of the atmosphere was measured by an electrometer. The kite was sent up on several days, and at a height of 1,000 feet sparks over $1 / 8$ inch in length were obtained; while abnorma movements of the stream of water from the electrome ter during electrical disturbance al ways foretold when a flash of lightning was about to occur.-Cloud heights and velocities at Blue Hill Observatory, by H. H. Clayton. This paper contains the results of cloud observations made at Mr. A. L. Rotch's observatory during the last five years. The average heights of some of the principal clouds were : nimbus 412 meters, cumulus (base) $1,558 \mathrm{~m}$., false cirrus $6,500 \mathrm{~m}$.. cirrostratus lus (base) $1,558 \mathrm{~m}$., false cirrus $6,500 \mathrm{~m} .$. cirrostratus
$9,652 \mathrm{~m}$., cirrus $10,135 \mathrm{~m}$. The cumulus is highest at $9,652 \mathrm{~m}$., cirrus $10,135 \mathrm{~m}$. The cumulus is highest at
Blue Hill during the middle of the day. The Upsala observations show that the base of the cumulus, as well as the cirrus, increases in height until evening, but neither of these conclusions apply to the observa tions at Blue Hill. The average velocity found for the cirrus (82 miles an hour) is twice as great as that found at Upsala.
The extreme velocity was found to be 133 miles an hour. A comparison between wind and cloud velocity shows that below 500 meters the wind velocity is less than the cloud velocity. Above that, the excess of the cloud velocity increases up to 1,000 meters, and then decreases again till about 1,700 meters, after which it steadily increases. This decrease between 1,000 and 1,700 meters is very probably due to the fact that the clouds between 700 and 1,000 meters were mostly observed during the worning, when the cumulus moves most rapidly, and that the clouds between 1,000 and 1,700 weters were mostly observed during the afternoon, when the cumulus moves slowest. - Meteorologi cal kite-flying, by W. A. Eddy. This is an account of some experiments made at Bergen Point, N. J., to deterwine the vertical extension of warm air currents by means of self-recording thermometers carried by a kite string. Experiments showed that an altitude of 1,800 feet could be obtained by using one kite, and that many hundred feet could be added to the altitude by lifting the weight of slack string by fastening on larger kites. It is estimated that by this means an larger kites. 1,0 feet was obtained. The minimum temperature at an altitude of about 1,500 feet, on February 14 last, was only 2 deg. lower than at the surface.

New style of Arc Lamp.

M. Xavier Wertz, of New York, has produced a combination arc and incandescent lawp which may develop into a successful article. The carbons are placed in an exhausted glass globe, and burn so slowly that no feeding is required. A short, thick, hollow carbon is connected to a conductor, and inserted in a globe. The second carbon passes inside the first, having a solid core and round head, which rests upon the cylindrical carbon. The space between is filled with an insulating layer of asbestos, which prevents any curreut passing except at the upper surface of the cylindrical carbon, where the two carbons touch. At this point of contact an arc is formed of sufficient size to produce a light of considerable power. The lamp is intended for high tension series working, and may be fitted with a cut-out and used on ordinary are iamp circuits.

