§rieutific ${ }^{\text {ghmericau. }}$

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

Cf The safest was to remit is by postal order, express money order,
araft or bank check. Make all remittances pasabie to order of MUNN Readers are specially requested to notify the publishers in case of
failure, delay, or irregularity in receipt of papers.

NEW YORK, SATORDAY, SEPTEMBER 26, 1891.

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT
No. 821.
For the Week Ending September 26, 1891.
Price 10 cent. For asle by all newadealere.

1. ARCHITECTURAL-The Neer Labor Exchanke in Paris.-WIth 13112
 round circuits, methods of ninserting the cables, etco
III. ENGINEERRGG-Railroad
IV. Marine engineering.-The French Armored Turret shid

 V. MISCELLANEOUS-The Littie House. An article giving vari-

ix. technoloat-The

 City
safety

safety.

This fire, taken in connection with the many which have preceded it, recently caused a spirited debate in the English Parliament. The debate was started by an inquiry as to whether the government intended taking any steps to prohibit the carrying of cotton on passenger ships. In replying to this question, Mr. Balfour said that, in regard to spontaneous combustion being a cause of fires in cotton cargoes, he thought that as the result of inquiries made not only by the Board of Trade, but by the underwriters, by Lloyds and by the shipping community themselves in England and in other countries, this idea was, if not discredited, at any rate much less generally held now than was the case a few years ago. Of the 171 cargoes in which fires had occurred during the last ten years, 81 occurred in the port of loading, 45 in the port of discharge, and 45 during the voyage. If spontaneous combustion were generally the cause, it was ob-
vious that it would occur after the cotton had been vious that it would occur after the cotton had been
allowed a little time to heat, and not so much in the allowed a little time to heat, and not so much in the
early days after loading. Mr. Balfour said further that he had examined the tonnage of the cotton which was loaded at the different ports in America and compared it with the number of fires which had occurred in ships coming from each of the ports and he found that the number of fires was not very disproportion ate to the number of tons at each port, and he thought that the fires did not occur, so far as America was con more than another. The origin of the fires was more than another. The origin of the fires was
wrapped in obscurity. There might be cases of spontaneous combustion, and some fires had occurred through electricity being generated between the iron bands and the cotton.
It is stated that, while there have been one hundred
and seventy-one fires in cotton cargoes from this country to Europe during the last ten years, only four fires have taken place in cotton brought from India up to 1887, and since that date there has not been a single occurrence of that kind. The quantity of cotton
shipped from this country, however, is very greatly in excess of that received in Europe from the East.
Edward Atkinson, the well known writer on eco nomic subjects, has recently called attention to the alarming increase in the number of fires on ships loaded with American cotton. He says: "American more wastefully and more dangerously than any other great staple of any kind or than any other kind of cotton in the world. From the time it passes the gin until the time it reaches the factory, the bale is a bused It is bady made; it is badly covered; it is badly cut;
it is badly broken; it is rolled in the mud; it is exposed to the weather, and is always in a condition in which it may become most liable to the impregnation of cottonseed oil, and thereby become liable to spontaneous combustion." Mr. Atkinson says further that if oily locks oil is extracted where the Cotce such im pregnated fibers of cotton are in the center of the bale no danger may ensue, but the contrary is true when it is on the end or side, and these portions become broken, so that air may enter the interstices among the fibers, making the right combination of fiber, oil and oxygen, causing rapid oxidation, which is known as spontaneous combustion. "Fires have occurred in risks under my supervision which could be directly traced to this cause," says Mr. Atkinson. "Locks of cotton saturated with cottonseed oil have been sent to me from factories which, when put into our special apparatus for oxidation or for aeration, have been set on fire spontaneously."

In support of the statement that the persons who pack the cotton are guilty of great carelessness, it is shown that at cotton mills where each bale is carefully examined before it is used there have been found oily cotton, cartridges, broken pistols, matches, beer bottles, pieces of grindstones, old hammers and the like. coarse gunny cloth, the fibers of which are so far
and well covered cotton is much less likely to catch fire than that which is put together in a haphazard way, and the British Board of Trade reports that it was one of the difficulties encountered in their inquiries that if a spark fell upon cotton, it was often proved that the fire ran along the edges of the bales until it came upon some half packed bale, where it settled.

While persons interested in shipping claim that cotton is just as safe a cargo as anything else, it is seen that special precautions are taken to guard against fire. One of the officials of the Norddeutschen Lloyd line recently stated that when cotton is carried in one of the steamships of that company it is placed in a special apartment, where a fire can be flooded out speedily. A representative of the White Star line stated that great care was taken with cotton. No smoking was allowed while the men were stowing it, and it was placed away from the boilers. When it has to remain for any time on the wharf it iscarefully covered and watched.
Some months ago a fire occurred on the Britannic while the vessel was at sea. The ship wasstopped and a few bales were thrown overboard. The fire was be-位这 to have been in the cotton, but it was not known sactly what started it. Within a month or so of this ccurrence there was a small fire on the Britannic as she lay at her pier. It was supposed that oil had gotten into some cotton; since which time orders have been given not to accept oil, resin, and other inflammable goods as freight, wo matter whether there is any cotton in the cargo or not.
The underwriters, who annually pay out in losses for fires in cotton cargoes many times the amount of premiums received from such risks, have naturally given considerable attention to tracing the causes of such fires. An officer of one of the largest companies in New York stated recently to the writer that the numerous fires which have occurred in cotton cargoes are, in large measure, due to lack of care in packing the staple in bales and stowing it in the holds of ves sels.
The

The English Parliament has gone so far as to consider the question of prohibiting steamships which take passengers from carrying cotton. If such a law were enacted, a profitable line of business would be made unavailable for these vessels, whereas if the cause of the numerous fires is really due to careless handling of the cotton in this country, of which there seems to be very little doubt, the rewedy should be promptly applied here, so that this menace of fires in cotton carplied here, so temoved.
goes be remover
the contagion and rapid spread of leprosy.
In continuation of the article in the last Scientific american (Sept. 19), I desire to point out the most likely cause of the introduction of the taint into nonleprous blood, and to call attention to a danger which I believe is now becoming imminent. Agnes Lambert, whose recent epitomization of the literature of this subJect has attracted much attention in England, has these pertinent words to say: "Is it not, then, a wonderful thing, not that a cure has not yet been discovered for leprosy, but that with men of science it is still an open question whether leprosy is communicable or incommunicable, contagious or hereditary ; whether it is due to insufficient and bad food, or bad climate and dirt, or all combined; to a lack of meat or the absence of vegetable diet ; to the use of salt fish or the want f salt? Such, however, is the case !" As Drs. Sir Morell Mackenzie, Vandyke Carter, Sir Erasmus Wilson, Munroe, Wynne, and Rev. Ignatius Grant have pointed out or tacitly admitted in their writings, this ancertainty and the rapid spread of the contagion in he last quarter of a century is very directly attributa le to the unfortunate haste which led the Royal Col lege of Physicians of London to issue their misleading and now famous report in 1867. The many data of a egative character, which came in to the college hrough the medium of the world-wide consular and colonial service of the English government, were allowed to outweigh the comparatively few of a positive aature, though the latter were of a most unmistakable kind. So they reported that it was not to be regarded as a contagiousdisease and that there was no pathological arrant for lazar houses, segregation or any laws af ecting the freedom of the leper. To again quote Mackenzie: "The leper houses throughout her Ma esty's domain were thrown open. Each discharged its measure of pollution into the stream of healthy life ear it. * * If leprosy slew its thousands before, it jas slain its tens of thousands within the confines of the British empire since 1867."
Where Great Britain led, there nearly all of the Americas, save where French or German influence were more potent, followed; and the consequence has been the fearful strides which this disease has made Since then the terrible fate of Damien and many of his ollowers; of Keanu, the Hawaiian convict, who was given the choice between inoculation with the leprous virus and death, and who, choosing the former in 1885 was in 1888 far advanced in the tortures of the disease; and scores of less famous cases, completely dis-
prove the stand then taken by the Royal College, and t is doubtful if to-day a single one of their coumittee of that time could be found to defend that position in the light of recent facts. That report, however, forever did away with any of the theories which had for so long done duty in attewpting to account for the exsiting cause of leprosy. That it thrives in frigid Norway and Upper Canada, along the torrid Amazons and n Ceylon; in interior India, where fish is rarely eaten, nd in the West Indies, where it is the commonest ani mal food; in Oahu, where cleanliness is now reduced almost to perfection, quite as well as in Hayti, where the word clean wust have become obsolete; as well among the pork-eschewing Jews of Jamaica as the pig-loving natives of Tahiti, proves that in climate, soil, and food we will hunt in vain for its origin.
Dr. Wynne, of the Robben Island leper farm, Cape Colony, sheds wuch light on this obscure subject, when he writes: " Until I came to Robben Island, I was not aware that this [cowmunication of leprosy to animals] wight be possible, for I had never even heard of its being probable. ${ }^{*}{ }^{*}$ Two years ago I shot ome two dozen pigeons. * * Among them I found two suffering from leprosy, with the bowed legs and incurved claws and with nodular or hypertrophied articulations. * * From time to time leper mice have been caught in the leper wards, presenting the usual characteristics of leprosy. * * I am indebted to Cæsar Africanus for calling my attention to some young pheasants suffering from the same affection. * An old turkey cock may be seen to-day prowling about the doors of the leper wards affected with unnistakable leprosy. Several young turkeys limp about with him showing the same symptoms."
There is but one way in which pigeons, turkeys, mice, etc., could become thus tainted, $i . e .$, by eating food handled by lepers. And this should speak volumes to the people of the United States on this question. If the terrors of trichinosis can warrant our French and German cousins in closing their markets to our pork, what may we not claim as our right to legislate regarding the leper-handled products of the north torrid zone which is just south of us? Trichina kills one patient, and quickly ; lepra, while it usually results in a living death that may last for a score of years, is too apt to leave its seed behind in the innocent progeny. I know it will at once be urged that we have been getting tropical fruits and other supplies from the West Indies in large quantities for over two decades and that no harm has yet resulted. To this I would reply that it is a well known characteristic of this disease that it may lurk in the system for many years before becoming apparent even to the victim.
Cases are on record where a wife has lived for ten years with a leprous husband, before any indication of the taint was observable in her; or where children have almost reached maturity before its inherent ef fects became manifest. Father Damien was some years with the lepers of Oahu before he discovered his own impending doom by spilling scalding water on his foot and finding that it gave him no pain; a French creole, never suspected of nor suspecting the leprous taint, had a deep hole eaten into his thigh by rats during the night, and not until it was discovered did he realize that eight years before he must have contracted the contagion which had thus killed sensation ; and, further, it may be replied to this claim that these case prove not alone that the taint is long in manifesting itself, but that medical skill is often deceived for years by the symptoms of the disease. I myself have acquaintance with an American physician, a graduate of one of the leading medical schools of this country, and a licentiate of the Royal College of Physicians, who married into a leprous creole family in the West Indies, though the taint had maimed the bride's father, was very observable in a sister and had carried a brother to an early grave. Yet he was blinded to its nature and confidently announced his ability to cure the trouble, which he considered to be of a mild scrofulous nature. He has since that had dread cause to repent his very imperfect diagnosis. I mean no disrespect to American and English medical men when I emphatically state that I do not believe that there is one in one thousand of their number who is able to detect leprosy in its early stages; and perhaps not one in ten of that'small number would know what it was best to do with a leprous patient.
Even to-day, the men in New York who have to dea with this problem in carrying out the laws affecting contagious diseases are not agreed as to whether a loathsome, pest-ridden Chinaman shall be isolated or allowed the same freedom as is given to the uncon taminated. In Jamaica, one member of the Royal College sends all patients coming under his notice to the Lepers' Hospital, at Spanishtown, while a local magistrate, acting under the results of the College's report for 1867 , allows a woman whose fingers are fast disappearing to sell fruits and nuts to the passing school cnildren. In St. Kitts the medical authorities allow a leper to teach school, and in Trinidad a medi cal board recommend entire segregation. A railroad in India leaves one terminus from a station where a leper punches the tickets and hands them back to the travel-
ing public, and at another station a leper, whose hands are so far gone as to compel him to wear gloves in the
streets, cooks the food at the railway restaurant. Yet, bet ween these stations there is a segregation settlement where leprosy is sternly dealt with. These are from among many instances of the present total lack of agreement and knowledge on the part of the AngloSaxon medical profession in this respect.
In this country we consume over $\$ 4,000,000$ worth of bananas, over $\$ 2,000,000$ of oranges, over $\$ 1,600,000$ of minor tropical fruits, over $\$ 15,000,000$ of tobacco, and smaller quantities of other like products, which come from lands were leprosy is well known. I have fre quently stood on wharves in Jamaica and noted pro nounced cases of leprosy going by in ceaseless rounds carrying bananas from the store house to the loading vessel. I have stood in a South Cuban port and watched a leper, with but three fingers left on the right hand, and those badly eaten with leprosy, rolling cigarettes for exportation. The researches of Dr Armauer Hansen, of Norway, the discoverer of the leprous germ, bacillus lepro, are quite sufficient to show that bananas or tobacco so handled are far from being safe articles of importation. Unless special precautions are taken to avoid eating the exposed parts of the banana, not completely covered with the skin, the risk, though it may be very, very slight, nevertheless existent. The cigarettes should be entirel shunned. The American-made article is sufficiently in let him content himself with the domestic product.
If this is a danger-and I believe I have greatly un derstated it-have we no right to notify such countries as Trinidad, Dewerara, Barbados, Haiti, Jawaica, Cuba, Mexico, and others whence we desire a constantly increasing supply of food products, that the time has come for them to deal with this problem in a firm and enlightened manner, if they would retain our trade It is bad enough to visit a presumably enlightened land, such as Janaica, for instance, and find a part ner in whom the taint is becoming evident facing you for the dance at a governor's ball ; frow that the panic-stricken dancer may flee, though with hands on which the skin is unbroken, he probably runs no risk if his ablutions be thorough afterward. But how shall we be protected against the employment of lepers in the handling and manufacturing of our food products? That surely calls for attention from our Stat Department.
H. P.

POSITION OF THE PLANETS IN OCTOBER. JUPITER

is evening star, and, though losing a little of the prestige that marked his course in August and Sepember, still retains his position as monarch of the starlit October nights. Observers will notice a change in the time of his appearance. He is high above the horizon when it is dark enough for the stars to come out, and sets in the small hours of the morning. He is on the meridian at 8 o'clock, and sets about half past 1 o'clock on the 31st. His diameter has decreased about $5^{\prime \prime} .0$ since opposition, but it makes no percepti ble difference in the brilliancy of his light. The prince of planets is leaving us, and traveling toward the sun the earlier rising and setting and the lessening dia neter are the tangible proofs of his obedience to th great central orb, who sways his course as irresistibly The moon is in conjunction with Jupiter three day before the full, on the 14 th, at 6 h .46 m. A. M., bein $3^{\circ} 57^{\prime}$ south.
The right ascension of Jupiter on the 1 st is 22 h . 48 m ., his declination is $9^{\circ} 14^{\prime}$ south, his diameter is $6^{\prime \prime} .2$, and he is in the constellation Aquarius.
$J u p i t e r$ sets on the 1 st at 3 h .29 m. A. M. On the 31 st , he sets at 1 h .22 m. A. M.
uranus
is evening star until the 25th, and then morning star. He is in conjunction with the sun on the 25 th , at 6 h . A. M., when he makes his appearance on the sun's estern side and commences his role of morning star The synodic period of Uranus, or the time it take him to travel from conjunction to conjunction, is 369
days, while his sidereal period is 84 years. It will be oticed that the more distant a major planet is from the sun, the shorter is its synodic period, for, the slower the planet moves, the less space will the earth, after completing a revolution, have to travel to come nto line. with the planet and the sun. In the case of Jupiter, the synodic period is 1 y .34 d .; for Saturn, it is 1 y .13 d .; for Uranus, it is 1 y .4 d .
Uranus while evening star is in conjunction with Venus on the 17 th at 1 h .40 m. A. M., being 21^{\prime} south He is in conjunction with Mercury on the 26th, the day after he becomes morning star, at 7 h .31 m . A. M eing 10 ' south.
The right ascension of Uranus on the 1st is 13 h .53 ., his declination is $11^{\circ} 7^{\prime}$ south, his diameter is $3^{\prime \prime} .4$ and he is the constellation Virgo.
Uranus sets on the 1st at 6 h 。 30 m . P. M. On th 1st, he rises at $5 \mathrm{~h} .5^{\prime} \mathrm{m}$. A. M.
is moraing star and is slowly making his way toward the earth. Saturn overtakes and passes him on the 12 th , when the planets are in conjunction, at $10 \mathrm{~h} .2 \overline{5}$. P. M., Mars being 52^{\prime} south.
The right ascension of Mars on the 1st is 11 h .14 w , his declination is $6^{\circ} 11^{\prime}$ north, his diameter is $4^{\prime \prime} .0$ and he is in the constellation Leo

Mars rises on the 1st at $4 \mathrm{~h} .7 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31st, he rises at 3 h .44 m. A. M.

saturn

is morning star. The noteworthy event in his October course is the reappearance of his ring on the 30 th . The plane of the ring then passes through the sun, its northern surface comes into the light, and the southern surface enters into shadow. The ring con tinues to open until in about seven years it is open to its widest extent, then gradually closing, it becomes again invisible about 1906. Saturn rises at the closeof the month three hours and a half before the sun, and may be found north of the star Beta Virginis.

The moon is in conjunction with Saturn on the 1st, the day before her change, at 7 h .26 m . A. M., being $2^{\circ} 59^{\prime}$ north.

The right ascension of Saturn on the 1st is 11 h .36 m ., his declination is $4^{\circ} 41^{\prime}$ north, his diameter is $15^{\prime \prime} .0$ and he is in the constellation Virgo.
Saturn rises on the 1st at $4 \mathrm{~h} .32 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31st, he rises at 2 h .52 m. A. M.
venus
is evening star. There is little to be said of her as she makes her slow progress eastward frow the sun keeping so close to him that there is only an interva of twenty-seven minutes between sunset and the time of her disappearance below the horizon.
The new moon of the 2 d is in conjunction with Venus on the 3 d , at 2 h .18 m . A. M., being $2^{\circ} 36$ north.

The right ascension of Venus on the 1st is 12 h .45 m . her declination is $3^{\circ} 30^{\prime}$ south, her diameter is $10^{\prime \prime}$, and she is in the constellation Virgo.
Venus sets on the 1 st at $5 \mathrm{~h} .47 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31 st , she sets at $5 \mathrm{~h} .21 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

mercury

is morning star until the 27 th, and then evening star He is in superior conjnnction with the sun on the 27 th at $9 \mathrm{~h} .35 \mathrm{~m} . \mathrm{P}$. M., when he completes his syno dic revolution of 116 days, and comes into line with the earth and sun, being beyond the sun and at his greatest distance from the earth.
The moon is in conjunction with Mercury on the 1 st at 2 h .12 m. A. M., being $3^{\circ} 31^{\prime}$ north.
The right ascension of Mercury on the 1st is 11 h 34 m ., his declination is $4^{\circ} 41^{\prime}$ north, his diameter is $6^{\prime \prime} .2$, and he is in the constellation Leo.
Mercury rises on the 1 st at 4 h .29 m . A. M. On the 31st, he rises at 6 h .47 m . A. M.

NEPTUNE
is morning star. His right ascension on the 1st is 4 h . 30 m ., his declination is $20^{\circ} 6^{\prime}$ north, his diameter is .5 , and he is in the constellation Taurus
Neptune rises on the first at $8 \mathrm{~h} .27 \mathrm{~m} . \mathrm{P}$. M. On the 31st, he rises at $6 \mathrm{~h} .29 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.
Mars, Saturn, Uranus, and Neptune are morning stars at the close of the month. Jupiter, Venus, and Mercury are evening stars.

Railway Conductors, Exhibit and Fair.

A unique sort of an exhibition and entertainment is to be held at New Haven, Conn., during the week cow mencing October 12, for the benefit of a society of railway conductors and the members of their families. I will be an exhibit and fair under the management of officials of different railway divisions in Connecticut including the New York, Hartford, Shore Line, Air Line, Northampton, Naugatuck Valley, Housatonic Danby and Norwalk, and New Haven and Derby, and others. Inventors and wanufacturers of railway ap pliances and supplies of all kinds are invited to exhibit their productions, applications for space to be madeato Mr. John McCarthy, 63 Church Street, New Haven.

A Bow Propeller.

An exhibition of a method of propulsion devised by Mr. Thomas Mills, of Queensland, was recently give n Glasgow. Mr. Mills' invention consists in the plac ing of the propeller at the bow instead of the stern of the ship. He states that he has made the change for two reasons-first, that the revolution of the screw propeller in its ordinary position at the stern of the vessel produces a vacuum, which must be filled by the nrushing water ere the ship obeys the forward im pulse ; and second, that the water at the bow of a ship offers resistance to its movement. Mr. Mills thus places his propeller at the bow. The shaft is carried through the bow, and carries a conical propeller with diameter nearly as great as the beam of the ship The outside of the cone consists of webs projecting a right angles to the surface, and arranged in a spiral The action is thus a boring action

