The Actual Nomber of Tubercle Bacilli which may be Present in Tuberculous Sputum. Dr. George H. F. Nuttall describes in the last num-
ber of the Johns Hopkins Hospital Bulletin a method ber of the Johns Hopkins Hospital Bulletin a method by which he has been able to make accurate estimates of the actual numbers of tubercle bacilli present in tuberculous sputum. His communication is accompanied by cuts of the apparatus used. The methods heretofore employed for estimating simply the relative number of tubercle bacilli in sputum are condemned as unscientific. Nuttall's observations for the first time give us an idea of the enormous number of tubercle baciili which a patient may expectorate in the course of twenty-four hours. In three cases undergoing the Koch treatment observations on the numbers of bacilli in the sputum were made every few days. In the first case the patient expectorated $2,000,000,000$ bacilli during the twenty-four hours. After the patient was inoculated with tuberculin the number rose to between $3,000,000,000$ and $4,000,000,000$. After the inoculations ceased the number fell to what it had been originally. In the second case the number of bacilli varied be tween $20,000,000$ and $165,000,000$ on the days preceding the Koch inoculations, rose irregularly to $283,000,000$ after the first inoculation, and fell to only 265,000 by the time the sixteenth inoculation had been reached. The third case showed a decrease from $70,000,000$ before the inoculations to $12,000,000$ and $19,000,000$ after the treatment had been begun. A great rise in the number of tubercle bacilli in sputum was observed in the case of one patient (not undergoing the Koch treatment) to occur simultaneously with the appearance of elastic tissue. The number of bacilli in this case rose from between $300,000,000$ and $400,000,000$ to over $4,000,000,000$. The accuracy of the method is shown by a number of test and culture experiments. Nuttall believes his method will prove valuable in any experiments where it is desirable to introduce a definite number of organisms into culture media, disinfectants, etc. In point of accuracy, it far surpasses the loop method generally ewployed. With such organisms as the tubercle bacillus this method will enable the experimenter to determine the number he is inoculating into an animal in a way that has not been possible hitherto. Inoculations made under such conditions will clearly show the difference in degree of virulence possessed by various organisms, as also the relation between the number of bacteria introduced and the progress of the disease. This method, finally, brings us a step nearer to solving the problem of the significance of involution and degeneration forms of bacteria.-N. Y. Med. Jour.

RACK ATTACHMENT FOR THEATER CHAIRS.

A nove' sack for attachment to the backs of chairs or seats in theaters, public halls, and places is shown in the annexed engraving, Fig. 1 being a perspective view of a chair with the attachment applied, Fig. 2 a plan view of the attachment, and Fig. 3 a side elevation of the hat support
This device affords a convenient support for a coat or other outer garment, a place for an umbrella or cane, and a standard for retaining a hat.
The principal part of the rack consists of a bar hinged at one end to one of the chair posts, curved outwardly for receiving the ambrella handle, and con-

HERMANN'S ATTACHMENT FOR THEATER CHAIRS.
nected by a standard with the longer curved portion designed to receive a coat. The rack is pivoted to owing in an inclined plane, so that it will close auto matically, and thus be prevented from offering any ob struction to a free passage through the row of seats.
Although the rack is designed to close automatically a hook is pivoted to the side of the chair for engagir: the end of the rack arm and preventing it from swing ing out accidentally
To the free end of the rack arm is attached a stand ard, as shown in Fig. 3, having its upper end curved over to form a hook for receiving the turned-over porover to form a hook for receiving the turned-over por-
tion of the hat brim, as shown in Fig. 3. To the leg of
the chair below the curved portion of the rack designed for receiving the umbrella handle is secured a drip cup, in which the tip of the umbrella is placed
This invention has been patented by Mr. George Hermann, 34 E. 10th St., New York.

A WARSHIP RAMS A WHALE

While cruising with the Channel squadron, write an officer of H. M. S. Immortalite, at nine o'clock on he morning of the 26th of May, in lat. 38 deg. 7 min N , long. 9 deg. 19 min . W, steering $\mathrm{S} 1 / 4 \mathrm{~W}$ (about

midway between Sardinia and the African coast), and going at a speed of thirteen knots, we struck a whale about forty-five or fifty feet long, with our ram. It was unable to clear itself, which necessitated our going full speed astern, when the whale sank. It must ave been asleep. At the same time we noticed an ther quite close on our starboard bow.

Rifie

In the Edinburgh Medical Journal, Mr. James B Simpson records the case of a member of a rifle club, a trongly built slate quarrier, thirty years old, who after having fired several shots at 200 yards, feeling "kick" not severe enough to cause actual pain, fired everal more at 500 yards, lying down and resting on his elbows, and finally a shot at 600 gards. likewise in the prone posture. This shot broke the clavicle nea its middle. The fracture was treated according to Sayre's method, and healed well. "When he recnver ed," says Mr. Simpson, "I asked the man to show me how he held his rifle while firing at 500 and 600 yards On his raising the 'sight' and lying down and taking aim, the explanation of the fracture was clear. In stead of holding the butt of the rifle well on to his shoulder, he rested the upper end of the butt directly n the most prominent part of the clavicle. One could easily pass one's hand between the lower two-thirds of the butt and the man's chest, and it was therefore clea that when he fired all the force of the recoil came upon the clavicle. The farther he retired from the target the more he necessarily elevated the muzzle of th rifle, and consequently the more did the upper end o the butt rest upon the clavicle, until at 600 gards so entirely was this the case that the bone gave way under the concentrated force."

Integrity of quality.

Probably it is of as much importance to know how to retain a market as to 'now how to get it. Integrity of quality in goods is indispensable.
Not many years ago English manufacturers of cot ton goods came near ruining valuable markets for such goods in the East, by sending to these markets miserable, sleazy, light weight goods loaded with size to give them artificial weight and the appearance of better cloth. These markets have never been the same to them since. Lost confidence is not easily restored. If, as a celebrated English statesman once remarked, " confidence is a plant of slow growth," it is certainly also a hard plant to nurse back into vigorous life when its roots have been cut by commercial deceit. A case in point occurs to us.
The late B. T. Babbitt, the famous and wealthy manufacturer of soap, established his business on the basis of strict commercial integrity, and his name was always honored among New York merchants. Some wenty years before his death, he made the European tour, leaving at the head of his business a young man of great energy and executive ability, but, as the sequel will show, of rather elastic principles. It was ar anged with this deputy that in addition to his regula salary he might have during Mr . Babbitt's absence a certain share of all the profits of the business, where-
upon immediately, as soon as his chief was out of sight,
he put into practice a scheme of adulteration of the soap without a corresponding reduction of price. The soap seling freely upon the strength of its former re putation, the immediate returns were large, and th profits (?) divided unto the enterprising schemer from this selling out of his chief's business were, before Mr Babbitt's return, enough to enable the trusted agen to retire with sufficient capital to start and conduct a large manufacturing business of his own. In narrat ing to the writer this disagreeande episode not many years after its occurrence, Mr. Babbitt said it cost him nearly a quarter of a million of dollars to remedy the injury to his business thus effected by a few month of sharp practice. He sent to his customers, all ove the United States, letters requesting a return of the inferior goods, which he replaced with those of stand ard quality, and by a judicious but enormous expendi ture in advertising gradually recovered the lost trade

cotton Oil in Lard.

The authors use Bechi-Hehner's silver nitrate test and Labiche's lcad acetate reaction. For the forme test 10 grms. of the filtered anhydrous lard are heated with 5 c. c. of silver nitrate solution (1 part silver nitrate, 200 alcohol, 40 ether, and 0.1 part nitric acid) in the water bath for fifteen minutes, shaking continually. The mixture, according to its proportion of cotton seed oil, turns more or less deeply reddish brown to black. Pure lard, poppy, olive, and sesame oils are not affected. For the Labiche test, 25 grms. o the clear melted sample are mixed with 25 c . c. of a solution of lead acetate, heated to 35°, and well mixed after the addition of 5 c. c. ammonia. The emulsion thus obtained, if cotton oil is present, soon shows a yellowish red color, which becomes more intense afte standing for a day. Poppy-rape, sesame oils, and pure lard are not affected.-A. Bujard and J. Waldbauer Zeit. Ange. Chemie.

GUNNER'S ARM REST.

An arm rest for the use of sportsmen and others in shooting offhand is shown in the annexed engraving The rest is made portable, and when desired for use it is attached to an ordinary cartridge belt and supported by a strap extending over the shoulders.
The rest consists of three principal parts, a sleeve having a clip for engaging a loop on the belt, a ratchet bar sliding in the sleeve, and a U-shaped bar attached to the ratchet bar for receiving the arm of the gunner The sleeve is provided with a spring bolt which strikes the clip and holds it on the loop of the belt, and it is also provided with a spring key which engages the ratchet bar so as to hold the arm loop at any desired height. In addition to the key, the sleeve is provided with a thumb screw which enters a groove in the back of the ratchet bar and prevents the ratchet bar from turning. It may also be used for clamping the bar, hus affording additional security
The device may be extended by simply pulling the arm loop upward, but to reduce its length the spring key which engages the ratchet bar must be pressed before the bar can be moved downward. At the upper and lower ends of the ratchet bar there are square notches for receiving the spring key. When

SPROUL'S ARM REST FOR GUNNERS.

he key is in engagement with these notches, the bar prevented from moving in either direction
By the use of this device the arm is held steadily in an extended position, so that shooting may be done offhand as accurately as when firing over a stationary gun rest. For further particulars about this useful in vention, address the patentee, Mr. Robert B. Sproul or Mr. David S. Dickson, of Quartz, Montana

Erratum.-In Mr. Wyatt's interesting article on phosphates in last issue, the analysis of South Carolina phosphates contained an error. " Phosphates of iron and alumina" should read oxides of iron and alumina

The Phosphate Beds of Our Southern States,

by francis wy 4 tr, ph.d.

(Continued from page 407.)

the florida phosphate deposits.
While, however, it is a very good thing to find abundant phosphate mines, such mines are of little value without the necessary capital for their exploitation. This capital not being forthcoming in the South, it has followed that our great Northern capitalists and bankers have been lately much attracted by tempting offers to share in the benefits of the discovery. Expert chemists and mining engineers have, therefore, had plenty of work in the "Land of Flowers," and my own examinations as one of these have extended during the last two years over every county on Gulf of Mexico, from Tallahassee to Punta Gorda.
One of the first difficulties I encountered was the fact that up to date we have no record of a systematic or correct geological or topographical survey of the State. It will, consequently, be of interest to re mark that, in its topographical aspect, Florida is lowlying and gently undulating, the highest point being not more than 250 feet, and the average about 80 feet above sea level.
The elevated points or ridges are composed entirely of sand, and are covered with a very luxuriant growth of tall pines. The depressions or valleys, especially when situated along the coast, are composed of a mixture of calcareous marls and sand, from which outcrop. at irregular and frequent intervals, large and small bowlders of limestones, sandstones, and phosphate rock. These valleys are principally known in the country as "hammock land," and are said to be very fertile. When uncultivated, however, they are covered with a dense, wild growth of vegetation, characteristic of the swamp. With the climatic conditions f shall make no attempt to deal, for they are too widely known, but of the geological aspect I may say that the entire State appears to be underlaid, at greatly varying depths, with u pper Eocene limestone rock, and I am therefore of the opinion that the first emergence of Florida must be dated from that period.
Duringthe succeeding Miocene submergence there was deposited upon these limestones, more especially in the cracks or fissures resulting from their drying up, a soft, finely disintegrated calcareous sediment or mud.
The gradual evaporation of these Miocene waters brought about the formation, principally in the neighborhood of the rock cavities and fissures, of large and small estuaries. These estuaries were replete, swarmtiles, and marine plants. They were, besides, heavily charged with gases and acids, and their continuous charged with gases and acids, and their continuous concentration ultimately induced a multipitity on
readily conceivable processes of decomposition and final metamorphism.
In the estuaries and banks thus formed by the deposition and evaporation, or subsidence, of the M10cene seas we shall find the origin of our phosphate of lime, and, disregarding all other hypotheses, I consider that we are practically contemplating: 1. A foundation of Upper Eocene limestone rocks very much trend N. E. and S. W. 2. Irregular beds, pockets, or banks of Miocene deposits, dried and hardened by exposure, and alternately calcareous, sandy or marly ; generally phosphatic, and sometimes entirely made up of decomposed organic debris, the phosphoric acid being combined with various bases (lime, magnesia iron, alumina, etc.)
After the disappearance of the Miocenesea, there came some gigantic disturbances of the strata, There were upheavals and depressions. The underlying limestones were probably again split up, and the Miocene deposit was broken and hurled from the surface into yawning gaps, and from one fissure to another.

Now came the Pliocene periods or end of the Tertiary, and then the seas of Quaternary age, with their deposits and drifts of shells, sands, clays, marls. bowl ders, and other transported materials, and the accompanying alternate or concurrent influences of cold, heat and pressure.
Taking the whole of these phenomena broadly into consideration, it must be concluded that those portions of the phosphatic Miocene crust which did not fall into permanent limestone fissures or caverns at the time of the disturbance of the strata became at length very
thoronghly broken up and disintegrated. They were thoronghly broken up and disintegrated. They were
rolled about and intermised with sand, clay, and marls, and were deposited with them in various mounds or depressions, in conformity with the violence of the waters, or with the uneven str
which they were transported.
Occasionally this drifting mass found its way into very low-lying portions of the country, say into those regions where considerable depression was brought about by the sinking and settling of the recently disturbed mass. At other times it was rolled to and deposited on slightly higher points. In the first of these cases we find a vast and complete agglomeration, com parable to an immense pocket, of broken-up phosphate
rock, finely divided phosphate debris, sands, clays, and marls, all heterogeneously mixed in together. In the
second case, we find the phosphate in large bowlders, sometimes weighing several tons and intermized with
bu bu^{\wedge}-elatively small proportions of any foreign sub stances.
Considering these facts, I form the opinion that the feature in the Florida deposits of phosphate to be most particularly brought out is that the formation consists essentially of: 1. Original pockets or cavities in the limestone filled with hard and soft rock phosphates and debris. 2. Mounds or beaches, rolled up on the elevated points, and chiefly consisting of huge bowl ders of phosphate rock. 3. Drift or disintegrated rock covering immense areas, chiefly in Polk and De Soto Counties, and underlying Peace River and its tributaries.
At the present time the work of exploration or pro specting may be said to have extended all over the State in each of these varieties of the formation. Actual exploitation on the large scale by regular mining and hydraulic methods has been commenced at various points, and a very careful study of these workings has In one of the mines in Maries inave just formulated.
In one of the mines, in Marion County, for example there is an immense deposit of phosphatic material, proved, by actual experimental work, to extend over combination of the "original pocket" and the " mound" formation, and the superincumbent material, principally sand and marls, has an average depth of about 10 feet. The phosphate immediately underlies it, sometimes in the form of enormous bowlders of hard rock, cemented together with clay, sometimes in that of a white, plastic, or friable substance resembintegration of the hard rock by rolling, attrition, o concussion. The actual thickness of the entire bed is still somewhat uncertain, but thedepth of the quarries is not more than 50 feet, and yet a little over two acres of the land have already yielded more than 20,000 tons of good ore, without signs of exhaustion.
Directly outside the limits of these quarries the " pockety" and "mound " formations seem to abruptly erminate, and the deposit assumes, over a wide area the form of an unimportant drift, which sometime crops out at the surface, and which has been followed in all directions over the immediate vicinity without leading to another pocket of similar value.
Identical geological phenomena being prevalent in nearly every section of the country, I consider mysel warranted in declaring that the Florida land phos phates of high grade occur in beds of an essentially pockety,
Sometimes the pockets will develop into enormous quarries, and will probably yield fabulous quantities of various merchantable qualities. At other times
they will be entirely superficial or will they will be entirely superficial, or will contain the phosphate in such a mixed condition as to render profitable exploitation impossible.
This capriciousness or uncertainty will be somewhat less in the case of the "pebble" or drift deposits, since they have been proved to exist at various depths and in varying thicknesses, with comparative regularity ver a very extensive area.
The actual chief working center for this variety is Peace River, which rises in the high lake lands of Polk County and flows rapidly southward into the Gulf of Mexico. Its course is extremely irregular, and its bottom is a constant succession of shallows and
deep basins. deep basins.
Lakes Tsala, Opopka and Chillocohatchee, and Paines and Whidden creeks are its chief tributaries and the main sources of its phosphate deposits; the pebbles being washed out from their banks and born along their beds by the torrential summer rains.
The exploitation of the pebbles is performed by means of a 10 inch centrifugal steam suction pump placed upon a barge. The pipe of the pump, having been adjusted by ropes and pulleys, is plunged ahead from the deck into the water. The mixture of sand and phosphate sucked up by it is brought into revolving screens of varying degrees of fineness, whence
the sand is washed back into the river. The cleaned pebbles are discharged from the screens into scowsand loated down to the "works," where, after being dried hot air, they are once more screened and are then eady for market. The total cost of raising, washing drying, screening and loading on the cars is one dol
lar and seventy-five cents.
Four or five companies are actively working on this plan, and several more are preparing to enter the field.
The pebbles, when freed from impurities and dried, are of a dark blue color, and are hard and smooth, in diamet size from a grain of rice to about one inch scope to be entirely organic, and they are intimately nixed up with the bones and teeth of numerous ex tinct species of animals, birds and fish.
These river deposits all proceed from the banks of sand and debristo which I have alluded as "drift," and which are situated on the higher lands in Polk
entral points of the dried-out deposits, the petbles being of the same size, but of a lighter color. They are embedded in a matrix of sand and clay, in which they form the proportion of about 20 per cent in weight o the mass. The thickness of the deposit is exceeding ly uneven; in some places it reaches 20 feet, while in others it dwindles down to a few inches.
As would be expected in this species of formation he chemical composition of Florida phosphate is far from regular. In some regions perfectly white, in others blue, yellow or brown, it is in many instances practically free from iron and alumina, while at others it is heavily loaded with these commercially objection able constituents. A large proportion of the land rock is very soft when damp, but becomes so hard when dried that it has long been used by the natives, ignorant of

g stone

averages are selected with care from he results of several hundreds of complete analyse nade either by myself or by my assistants in Florida and New York. The samples in every case were taken from the exploratory pits in all the different counties and marked before leaving the ground with full deails of their origin.
They have been classed as bowlders of hard rock phosphate, or cleaned, high grade waterial ; bowlders and debris, or unselected material, merely freed from dirt; soft white phosphate, in which no bowlders are found ; pebble phosphate from Peace River, as sent to market; pebble phosphate from Polk County drift beds, washed and screened.

	Phosphate	$\begin{gathered} \text { oxides of } \\ \text { ranand } \\ \text { alamina } \end{gathered}$	Silica and silicates	${ }_{\text {Cerbonic }}^{\text {acid. }}$
Iders Caraf	80.49	2.25	$4 \cdot 20$	$2 \cdot 10$
Rowler (237 samplee)	74.90	$4 \cdot 19$	$9 \cdot 25$	190
Soft white phaosphaie	$65 \cdot 15$	$9 \cdot 20$	$5 \cdot 47$	$4 \cdot 27$
Petble from Peäe				
				${ }^{3} 60$
Polk Co. (92 samples)				170

I have now written enough to show that the point of most importance in the working of Florida phosphates, especially of the land deposits, will be the careful selec tion, by conscientious and capable superintendents, of the different qualities at the quarries. There being no present market for the highest grade in this country, it will all have to be shipped to Europe. The rock will, therefore, require to be crushed to a uniform size, to facilitate sampling, and then well washed and thorough y dried, in order that all the iron and alumina so indiscriminately and unequally mixed up with it in the orm of clay may be practically eliminated before shipnent.
The maximum limit accepted by European buyers is 3 per cent, and nothing but experience in actual work daily guided and controlled by the results of chemica analysis, can be relied upon to keep the material within these bounds. Even the most accomplished expert who examines the beds for the first time, and without a full knowledge of the variability of their composition in regard to this iron and alumina, would be sure to go wrong and commit the most fatal blunders. Ther an be no doubt that Florida is the theater of a big "boom," and that it is passing through a critical period f its history. Fertilizer manufacturers from all ove the world are hurrying toward its sandy plains, in the hope of acquiring its phosphatic treasures. They find these scattered in all directions, as well in the rivers as in the lands, and so embarassingly variable in grade that they are brought to a halt by the questions Where
found ?
My own opinion of her phosphate mining, as will have been gathered from my remarks, is that it will prove extremely profitahle to those who purchase and work its fields with judgment; but that it will certainly turn out in the highest degree disastrous to such as a low themselves to be led away by excited first iu pressions. The interior is still practically unsettled and traveling is attended by the greatest difficulties and inconveniences. The negro labor is far from plen tiful; there are few wagon roads suitable for transpor tation purposes; and the railroad facilities are alto gether inadequate, the companies being poorly pro vided with freight cars. Under these circumstances the natural difficulties or impediments to Florida phos phates are at present rather discouraging, and it only when these have been cleared away, by the grad ual development of the State, that the ores of all grades will begin to come forward in large quantities.
Their average richness in phospboric acid is, on the whole, very satisfactory, though somewhat less than we were led to expect by the first reports, and a large proportion of the output will compare favorably with nany other phosphates extremely popular with fertilzer manufacturers. Although more than a hundred companies have been aiready formed, with an ag
tons have yet been shipped to European ports. The tons have yet been shipped to European ports. The
bulk of this has, however, found a ready market at good prices, and it is quite certain that when speculation gives way to legitimate work, the constanly increasing demand will make of Florida the largest contributor to the world's supply.
drawing of financial bills by the casanova APPARATUS.
The system of paying loans by obligations redeemable in a certain number of days through drawing lots has been greatly developed in our day, and is tending to increase to a still further degree. Some of these loans, those of the city of Paris, for example, are redeemable in a period of ninety-nine years; while others, such as the bonds issued on the occasion of the Universal Exposition of 1889 , have fixed for such redemption a period of only seventy-five years. In certain cases, the obligation, issued generally at 500 francs, or at a slightly smaller figure, will be redeemable at 1,000 francs, and, in other cases, at its face value. Again, these annual drawings often include the distribution of prizes of more or less value, and which sometimes reach the respectable figure of $50,000,100,000$, and even 500,000 francs
The simple expose that we have just given authorizes us now to claim that the operations that are to concur in the preparation and definitive establishment of the system of drawing such values. to which fate (sometimes ungrateful) may reserve a fortune under the form of a bonds, which were $1,200,000$ in number) be forgotten, and let the public by any means be apprised of the error, and we shall see our drawing exposed to just and very disquieting demands. Who knows whether or not the blind wheel of fortune stopped before the unfortunate forgotten num ber?
Were it a question of a simple lottery, there would be less trouble. A hidden sin is half pardoned; in this case it would be entirely so. In fact, the lottery differs from the drawing of redeemable bills in that, for the latter, the entire series of
the corresponding subscribed obligations, must have made their exit from the wheel that contains them in a given period. If, for example, five hundred obligations are redeemed annually, the wheel will still have to contain, from the time of the last drawing, five hundred numbers, and not four hundred and ninety-nine, or even less. If the five hundred numbers are not presented to be called off, with entire accu racy, the putting of the numbers in the wheel has been imperfectly done in the beginning, or else former drawings have been incorrectly executed. In a word, there have been numbers forgotten or mislaid-forgotten at the mo ment of filling the wheel, or lost at the time of the annual drawings. There is no way out of this dilemma On both out of this dilemma. On both hands, the operationwill have been faulty, to the highest degree, and every bearer of a thrown-out obligation will have the right to render legally responsible for it the society, city or state that has assumed the reponsibility for it before its bond holders.

We frankly admit that we were never aware of the many inconveniences that we have just detailed until we had an opportunity of being present at a drawing -say at the putting of the tickets in the wheel, and at their extraction from their happy domicile. An opportunity of observing these curious operations was offered to us last year at the time of the fete that the
large prize, should be surrounded with the minutest|nothing to do but receive the best wishes of our con and most mathematical precautions. Let a single one freres. As the press lottery was but a tombola, the of the innumerable numbers (sometimes more than a 14,413 nunbers remaining in the wheel were destroyed. million, as in the drawing of the prizes of the exposition Let us dwell in detail upon this wheel that we have

Parisian press gave at the Continental Hotel for the benefit of a relief fund for widows and orphans. Aside from the fete itself, concert, ball, and exhibitiou ve had got up a lottery of 15,000 tickets winning 587 different prizes. The drawing of these 587 prizes was done on March 15, in the presence of three delegates, Messrs. Victor and Henry Simond and Mr. Ranc. The putting of the numbers in the wheel had been effected on the previous evening by means of the Casanova apparatus, which we represent herewith. Everything proceeded wonderfully well, and Mr. Casanova had

Fig. 1.- PUTTING THE NUMBERS OF A DRAWING INTO THE WHEEL, BY MEANS OF THE CASANOVA APPARATUS. 1. The number rolled up. 2. The number open. 3. The unrolling of the number.
in length and a little in length and a little ovess one and a half inche width, to which adheres a very light piece of linen carrying the figures, and which terminates in a smal brass rod, which later on will be rolled around the sheet. The figures 1, 2, 3 in the corner of Fig. 1 show the number; unrolled completely at 2 , and wholly

At 3 the operator is unrolling the brass c.vlinder
Now as to fitting the wheel. Let us refer for this to Fig. 1. Let us follow attentively the operations that are to carry the mechanically rolled numbers from the boxes in which they are primarily placed up to the wheel, in passing through the glass cylinder which we see in the foreground. The numbers, wholly open, are classified in advance by fifties in boxes. As the apparatu consists of absolutely identi cal machines, each serving to put one hundred numbers in the wheel, we shall examine but one of them.
The operator, who has within reach the box of num bers to be put into the wheel stands in front of a rectangu lar box, divided into ten equal parts by ten steel rods split lengthwise, and equidistant from each other.
In the longitudinal slit in the rods, the operator fixes the metallic numbers, ten to a rod-say a hundred numbers to ten rods. Fig. 1 represents the phase of the operation in which these hundred numbers are thus stuck in the slit in the rods, the brass tail of the number being upward.
So much for the placing of the tickets. At this moment, an examiner sees to it that these hundred tickets are complete in their place, that not a single one of them is missing, and that they belong
not a number less, between its glass ends. One more, hat is difficult; one less, that has been seen. How ever this may be, absolute exactitude in the method
of filling the wheel is necessary before all else. That is not all yet. Other misfortunes may happen. Fo example, at the time of a drawing, a delicate hand as been seen to enter the wheel, and draw two num is therefrom. Two, be it understood, instead o night the unfortunate numbers, one of gight have been the winner, had got stuck togethe through their roughness, and were taken out as Which is to be put back into he wheel? Which shall be sacrificed when it has been so near the fortune? Solomon himself would have been perplexed-especially had he been the owner of several ob ligations, or even of but a ingle one! Along with ex actitude in filling the wheel it will be necessary to see also hat the number itself be of intelligent and irreproachable make, and so established that tshall be irremissibly isolated from its neighbor, rolled artis tically, with the figure per ectly legible and firmly glued In a word, in the primitive peration, as well as in the annual operations, it is neces sary to avoid every chance o irregularity and complaint.
We can now examine Mr Casanova's systemı at our ease. In the first place, as to the number itself: This is admirably gotten up, and in uch a way as not to be ex posed to various inconveni ences, and particularly to the inconvenience of bunching inconvenience of bunching hat we mentioned above. It is formed of a very light sheet of brass one and a half inche
rolled up at 1 , as it is in the wheel after its extraction from the wheel.
 Fig. 2.-GENERAL VIEW OF THE PUTTING OF THE NUMBERS OF A DRAWING INTO THE WHEEL BY MEANS OF TWELVE CASANOVA APPARATUS OPERATING SIMULTANEOUSLY.
out at the epoch of the annual drawings, is, of course, to the same hundred series. He can read them, or ask carefully sealed after the numbers have been inserted the operator to point out to him or even to deliver to nd every time the effective numbers have been re- briefly, the minutand every time the effective numbers have been re- him any number of the hundred. Briefly, the minut-
moved. The wheel is provided with two, or even est verification is at his disposal, and no chance exists hree, locks, several keys to which are placed in the of seeing a number doubled or absent or blank. ustod locks, several keys to which are placed in the ap those appointed to preside at the drawing. Before everything else, then, it will be this wheel hat it will be necessary to look after with the strictest attention. In the first place, not a number more, ust alluded to. It may be seen to the left of Fig. 1 It is about twenty-four inches in diameter. The two ads of it are of plate glass, that allow the number hat it contains to be seen. The periphery of the wheel is of copper. Four handles permit of maneu
vering it and of making it revolve in order to mix up vering it and of making it revolve in order to mix up
the numbers, the dispersion of which is still furthe hastened by metal fans arranged within for this pur pose.
The aperture that serves for the introduction of the
numbers, and that will permit later on of taking them
numbers, and that will permit later on of taking them
of seeing a number doubled or absent or blank.
Second operation: the rolling of the numbers. As each of the ten rods that carry the numbers is movable around its axis, it is capable, through a winch within reach of the operator, of making as many re-

