THE COLUMBIAN WORLD'S FAIR, 1893.
So great was the strife for the Fair site, and so prolonged the dissensions between the Chicagoans themselves and between them and the National Commissioners after it had been decided that the Fair should be held in Chicago, that it is probable few people are prepared to fully realize the great amount of work which has been already done in practical predone in practical preparation for the Fair, and the bright prospect at present ahead that
the Exhibition will be the Exhibition will be
promptly opened in the spring of 1893. The financial outlook, on which all else mainly depends, has already come down to a solid basis of nearly ten milbasis of nearly ten million dollars of appro-
priations for the Fair, priations for the Fair,
including those frow the several States, the city of Chicago, and the General Govern-ment-although many States which are certain to make large appropriations have not as yet taken final action. In addition to this sum the managers of the Fair count upon very large prospective resources from the gate receipts, from concessions and privileges,
and from salvage. The resources obtainable from the last three sources were estimated on April 1, by Mr. Lyman J. Gage, of the First National Bank of Chicago, and President of the Exposition Company during its first year, as high as eleven million dollars. This showing undoubtedly affords a large financial basis on which to proceed in the erection of buildings and preparing for a great display, and that the time which has thus far elapsed has not been unprofitably occupied by the management is proved by the published plans of buildings and arrangements. These have been so far completed that almost everything in the way of buildings is ready for the contractors' estimates, while contracts for some of the main buildings are already a warded.
The work of preparing the grounds, consisting of some 600 hundred acres of uneven park land, has been virtually completed, except the dredging of the lagoon, the canal, and the basin, which the contracts specify shall be finished early in July About transportation facilities, by weans of steam roads and trees, which had to be cut down, and the black oakth frow this tract collected and spread, 85,000 cubic yards being put on and around the site of the natural island, and 120.000 yards on the territory south of the buildings. The ground level or grade of the grounds is $41 / 2$ feet above datum, or about $51 / 2$ feet above the level of the lake. On the $41 / 2$ foot grade are the sites for the liberal arts, fisheries, government, agriculture, machinery, and electricity buildings. 'The horticulture, transportation, and woman's buildings are on the 6 foot level, the machinery and mines buildings on the 7 foot level, while the administration building is 14 feet above datum, or about 10 feet above the grade of the grounds. About 600 men, 2.5 teams, and 6 dredges have, and 6 dredges have been at work most of the
time since April 1, the dredges being operated night and day, and the earth thrown up by thew being used to fill in building sites and uneven areas of the grounds. The basin being eycavated will be about 1,500 feet be long by 350 feet wide, and will intersect a
sanal half a mile in length and 150 feet
 Lake Michigon Park has a frontage of two miles on the center of the city and its general park and boulevard system by more than 35 miles of boulevards from 100 to 300 feet in width. The Fair grounds are all with in the limits of the city of Chicago, about seven miles

MODEL OF THE BATTLE SHIP ILLINOIS.
wide. The bauks of the canal and basin will be architecturally treated, while the shores of the lagoon will be natural and receive landscape treatment
Although nearly all of the Fair buildings will be in Jacksou Park, in which the lagoon, canal and basin are located, as shown in our views, Washington Park is are located, as shown in our views, Washington Park is

THE MACHINERY HALL.
the lake also wakes it particularly appropriate that, as a portion of the government exhibit, a full-sized model of one of the new coast-line battle ships be shown here. To all outward appearances it will be a genuine battle ship. It will rest on a foundation of piles, and will be surrounded by water, having the appearance of being moored to a dock. It will be built of brick covered with concrete It will serve the double purpose of housing the naval exhibit and showing how our sailors live aboard ship. The dimensions of the struc ture will be those of the actual battle ship-343 feet long and 69 feet 3 inches wide amidships. It will carry no sails nor spars. It will cost about $\$ 100,000$, whereas the ships of which it is to be an exact mode cost $\$ 3,000,000$. It will present a complete ob ject lesson, and prove that the sailors of the United States Navy are the best paid, best fed, and best treated sailors in the world.
The structure will have all the fittings that belong to the ac tual ship, such as gutus, turrets, torpedo tubes torpedo nets and boows, with boats, an Plaisance, 600 feet wide, connecting the two, in all 1,037 /chors, chain cables, davits, a wnings, deck fittiugs, etc. Jang, gether with all appliances for working the same. Offi ers, seamen, mechanics, and marines will be detailed by the Navy Department during the exposition, and the discipline and mode of life on our naval vessels will be coupletely shown. The detail of men will not, how ever, be as great as the complement of the actual ship the object being mainly to have expert janitors and showiuen for the valuable public property It is expected, however, to give certain drills, especially boat, torpedo and gun drills, as in a vessel of war.
The main machinery building, represented in one of our views, and of which Peabody \& Stearns, of Boston, are the architects, has received very high praise, which is appa rently well deserved. It will be 850 by 500 feet, and cost $\$ 450,000$. It is located at the extreme south end of the park, wid way between the shore of Lake Michigan and the west line of the park. It is just south of the Administration building, and its north west corner approaches within a few rods of the big transportation loop.
The building is spanned by three arched trusses and the interior will present the appearance of three rail road train houses side by side, surrounded on all of the four exterior sides by a fifty foot gallery. The trusses are to be built separately, so that they can be taken down and sold for use as railroad train houses. In each of these long nave there is to be an elevated traveling crane running from end to end of the building for the pur pose of moving ma pose of moving ma chinery. These platforms will b built when the expo sition opens, so tha the visitors way view from them th exluibitions beneath Steam power for this building will be sup plied from a powe house adjoining the south side of the building. The two exterior sides adjoin ing the grand cour are to be rich and palatial in appear ance.
All of the build ings on this grand plaza are designed with a view to wak ing a grand back ground for displays and in order to con form to the genera richness of the cour and add to the festa
appearance, the two facades of the Machinery Hall on 82 feet wide, within which will be one of the grand same height, is a continuation of the central rotunda, the court are rich with colonnades and other features. entrances to the building. The general design is in 175 feet square, surrounded on all sides by an open The design follows classical models throughout, the the style of the French renaissance, and it will be a colonnade of noble proportions, it being 20 feet wide details being followed from the renaissance of Seville dignified and beautiful specimen of architecture as be- and 40 feet high, with columns 4 feet in diameter. This and other Spanish towns, as being appropriate to a fits its position and purpose among the various struc- colonnade is reached by staircases and elevators from Columbian celebration. An arcade on the first story tures by which it will be surrounded. The first great the four principal halls and is interrupted at the admits passage around the building under cover, and, story will be in the Doric order, of heroic proportions, angles by corner pavilions, crowned with domes and as in all the other buildings, the front will be formed of staff colored to an ivory tone; the ceilings will be enriched with strong color. A colonnade with a cafe at either end forms the length between Machinery and Agricultural halls, and in the center of this colonnade is an archway leading to the cattle exhibit. From this portico there will be a view nearly a mile in length down the lagoon, and an belisk and fountain in the lagoon will form the southern point of this vista.
The Machinery Annex will stand inside the great transportation loop, west of the Adıinistration Building, unless the plans are changed so that the Electrical Building may occupy that space, as the electricians desire. The annex will cover nearly nine acres. It will be entered by tunnels and bridges from the Machinery Hall and the Administration, Mines, and Transportation buildings. It is to be a simple building, built of wood in an economic manner. Its type is that of a mill or foundry. It is to be annular in form, the diameter being 800 feet. In the inner circle will be a park, in which visitors, fatigued by the hum of machinery, may rest. The annular form chiefly commends itself, because the circle of the electrical elevated railway can run constantly around the entire main nave, and passengers in it can thus see the exposition without leaving the cars. Electrical power will be used in the annex and steam power in the main building.
 groups of statuary. The third stage consists of the base of the great dome, 30 feet in height, and octagonal in form, and the dome itself, rising in graceful lines, richly ornamented with heavily moulded ribs and sculptural panels and having a large skylight of glass to light the interior. At each angle of the octagonal base are large sculptured eagles, and among the springing lines are panels with rich garlands. The interior features of the building will even exceed in beauty and splendor those of the exterior.
In this building each of the corner pavilions, which are four stories in height, will be divided into offices for the various departments of the administration, and lobbies and toilet rooms. The ground loor contains, in one pavilion, the Fire and Police Departments, with cells for the detention of prisoners; in the second pavilion, the offices of the ambulance service, the physician and pharmacy, the Foreign Department and the Information Bureau; in the third pavilion, the post office and a bank; and in the fourth, the offices of public comfort and a restaurant. The second, third, and fourth stories will contain the board roows, the committee rooms, the rooms of the director general, of the Department of Publicity and Pronotion, and of the United States Columbian Commission.

Small Propeller Screnve the Best.
"The swall size of the screw," said a boiler maker to a representative of the power house, containing the tremendous display of \mid surrounded by a lofty balustrade and having the great $\mid \mathbf{N}$. Y. Tribune, "is not due to the perception of any boilers, while in the adjoining portion of the annex tiers of the angle of each pavilion crowned with sculp- inventor of its greater effect as compared with a larger building will be established the voluminous plant of ture. The second story, with its lofty and spacious engines and dynamos. This will be the largest and colonnade, will be of the Ionic order most interesting display of electrical power ever made. It is possible that gas may be used beneath the boilers instead of coal for fuel.
The Administration Building is said to be, architecturally, the gem of the Exposition. It will be located at the west end of the great court in the southern part of the site, looking eastward, at the rear of which will be the railroad loop and the great passenger depot. The first object which will attract visitors on reaching the grounds will be the gilded dome of this great building. To the south of the Administration Building will be the Machinery Hall, and across the rreat court in the great court in ront will be the Agricultural Building to the south and the Manufacturers Building to the northeast.
The Administration Building will cost $\$ 650,000$, and is constructed of material to endure but two years. The ar chitect is Richard M Hunt, of New York President of the American Institute of Architects. It will cover an area of 250 feet square and consist of four pavilions, 84 feet square, one at each of the four an gies of the square of the plan and connected by a great central dume 120 feet in diameter and 220 feet in height, leaving at the center of each facade a recess

ADMINISTRATION BUILDING. one, but purely to accident. When I first engaged in the machinery business, screws for steamers were made as large as possible, it being the theory that the as large as possible, it being the theory that the into three principal stages. the four pavilions, corresponding in height with the was placed on Lake Erie with a screw so large that these blades of the propeller broke at the welding, reducing the diameter by more than twothirds. To the surprise of the captain the vessel shot for ward at a speed such as had never been at tained before. Engineers then experi mented with small propellers and discovered that they were much more effective than large ones.

Cunliffe Lister one of the new En glish peers, laid the foundation of his great wealth by mechanical inventions. His first great hit was a wool-combing machine, and his second was a device for utilizing silk waste, which had previously been sold at a cent a pound, in making silk plush Unlike many of this class of men, he did not begin life a poor boy, but had a father endowed with sense and means, who gave him a mill instead of a university educa tion. Originally it was intended to make a parson of him-the usual destiny of a fourth sol of a country gentle man.

The Phosphate Beds of Our Southern States.

by francis watt, ph.d.

The chemistry of agriculture is that branch of the science which investigates into the nature and properties of soils and plants and which determines the relation of one to the other and the veritable composition of each. If we hand over a grain of wheat to the botanist, he can discern in it nothing but a tiny, yellow opaque, and brittle seed, whereas if we passit yellow opaque, and brittle seed, whereas if we pass it
to the chemist, he will discover by analysis that it is composed of a woody fiber, starch, gum, sugar, fat and protein. Again, a geologist may examine the soil, and designate the different ages to which it belongs and the various rocks from which it is derived, but without the chemist, he is unable to determine its actua constituents, and hence, cannot foretell, before any cultivation has been attempted, whether it is destined to be fertile, or of what kind of vegetation it is best able to promote the growth.
The application of chemistry to agriculture is thus naturally indicated. By its aid we obtain from the soil and from plants, at the lowest possible expenditure of time and money, the highest possible quantity of those substances indispensable to our physical wellbeing.
If production is to be cheap, it must be rapid and plenteous, yet, as we all know the progress of unaided nature is slow and methodical, and so, chemistry, by investigating the laws which govern the development of all living things, and by carefully observing the facts alliving things, and by carefully observing the facts acquired by the practical experience of centuries, has
found the means by which the farmer may assist and found the means by which the farmer may assist and
hasten the natural processes. The work is, of course, still far from complete, hut we are at least familiar with the elements essential to plant growth. We know how these elements are distributed, what portion of them is or should be contained in our soils, and what soils are most propitious for different kinds of plants.
Sixty years ago the science of agriculture was unknown. Our grandfathers could not understand why lands once so fertile and productive should show signs of approaching exhaustion. The light only came to us after we had studied how outdoor plants live, whence they obtain their food, of what elements that food is composed, and how it is conveyed and absorbed into their organisms. In point of fact we have discovered that the manner of life in plants is very similar to the manner of life in animals and man. They require certain foods in stated proportions which pass through the process of digestion; they must breathe a certain atmosphere, and they are subject the influences of heat and cold, light and darkness.
The tissues of their bodies, like ours, are composed of carbon, hydrogen, oxygen, nitrogen, and certain mineral acids and bases, such as phosphoric and sulphuric acids, lime, potash, magnesia, and iron. Since, therefore, it is admittedly necessary for man to constantly absorb a sufficiency of these elements in the form of food, it follows that similar food is required by plants for similar purposes.
Having determined the elementary composition of plants, investigators directed their attention to the analysis of soils, in order to establish comparisons between virgin or uncultivated lands and old varieties which had long been tributaries to every kind of culture.
It was found that in the former there is an abundance of most of the dominating mineral ingredients discovered in plant organisms, whereas in the latter they either exist only in minute proportions or are lacking altogether.
This is a most important stage in our progress ! Argument is no longer necessary to prove that if agriculture is to continue to be the basis of national wealth and prosperity, means must be found of restoring to our soils the chief mineral element yearly taken away from them by the crops. This chief mineral element is phosphoric acid; and, since it plays the most im portant part in the functions of vegetation, it is necessarily the one most liable to be rapidly exhausted.
The following figures, compiled from official reports will serve to emphasize the argument :
PHOSPHORIC ACID TAKEN FROM THE SOIL PER ACRE and per annum.

An average crop of wheat $\begin{gathered}\text { takes............. } \\ \text { maize }\end{gathered} \quad$ " $\ldots \ldots . . .{ }_{80}$ pounds.

These are, of course, only a few examples, but they will suffice for present purposes, and it is perhaps hardly necessary to add that if, according to the nature of the crop desired, a sufficient proportion of phosphoric acid be not present in the soil, the plants will languish, various malignant diseases will declare themselves, and death will inevitably ensue before the reach maturity.
Now comes the practical question : How may all this loss be repaired, and whence are we to derive all the
practical answer is: By hastening to further develop our immense deposits of phosphate of lime!
It was somewhere near the beginning of the present century that the farmers of England began to use crushed bones as a manure. Just why and how they had been brought to do so is shown in an article pubished in a scientific journal in the year 1830, the writer saying: "As to the earthy matter or phosphat of lime contained in the bones, we may disregard it. It is insoluble and indestructible, and cannot serve as a manure, even in a darup soil and with a combination of circumstances analytically stronger than any of our known chemical processes.

The fact is that bones, after having undergone a certain internal process of fermentation, ultimately contain about two
per cent of gelatine. As this is the only substance to which they can owe any fertilizing activity, they may be practically looked upon as valueless."
These were the opinions of sixty years ago! They were born of ignorance and were fostered by vanity and prejudice. Sixty years hence, what will our own uccessors think of our knowledge of the same subject? All generations produce some thinking men, and thus, thirteen years after the publication of the article just quoted, that is to say in the year 1843, the light came ! The Duke of Richmond was a practical and enthusiastic farmer; he made an exhaustive series of experiments on his soils with fresh and degelatinized bones. His results proved beyond doubt that they both owed their virtue, not to gelatine, or fatty matters, but to their large percentage of phosphoric acid! Other in-vestigators-notably Boussingault-having confirmed and elaborated the Duke's conclusions, there was soon such a run upon bones as to exhaust the rather limited supply. Attention was thus drawn to the deposits of mineral phosphates which had been already discovered in several directions, and thence may be dated the development of phosphate mining as an industry, the pursuit of which has proved so remunerative to capital and labor. The mode of occurrence of the best known deposits of phosphate of lime may well be termed eccentric. They have been found in rocks of all ages and of nearly every texture. Sometimes they are very pure, semetimes their combinations are extremely variable. Here they are found in veins, there in pockets, and here again in stratified layers or beds in connection with fossilized debris of all kinds deposited by the ancient seas. England, France, Germany, Belgium, Spain, Portugal, Norway, Russia, the West Indies, Canada, etc., all have workable and more or less productive phosphate mines, the commercial value of the products being estimated on the basis of their contents in tricalcium
The circumstance that cent
The circumstance that farmers are not in a position to restore to their soils year by year in a natural form all the phosphoric acid taken from them by their crops has caused the demand for phosphatic manures to go on increasing with such steadiness and rapidity that the sources of supply, even for European necessities, have latterly become quite inadequate. Fresh deposits of the material are, therefore, being sought after with industrious care all the world over, and at tention has thus been specially directed from abroad as well as from at home to the practically inexhaust ble deposits of this country
Such being the case, a brief outline of the mode of occurrence in our chief centers of production, to gether with some outlines of the methods of mining, preparation for the market, mining cost, and facilitie of transportation, will probably be interesting to a large number of readers.
With the theories which have been formulated from time to time by different authorities as to the true origin of all thesedeposits I shall have nothing to do but, after describing those which I have personally examined, I shall present my own opinions and conclu sions, based on a study of the various exploitations and on the results of my own chemical and physical exami nations of samples which I have personally selected.
The Tertiary strata, in which our workable phos phate deposits are found, may be broadly said to hug the coast of the Atlantic Oceanand the Gulf of Mexico from New Jersey to Texas; the phosphate itself, how ever, according to the present state of our knowledge being wost plentiful in South Carolina and in Florida The discovery of the South Carolina phosphates dates back as far as 1860; but it was not until some seven or eight years later than this that a mining company could be organized to test the practicability of working them on the commercial scale. Since the eminently success ful initiative of this pioneer company, however, thein dustry has progressed with such leaps and bounds tha are actually engaged in it, and have thus raised the status of South Carelina to that of the most productive phosphate region in the world. The geological forma tion of what is commonly called its phosphate "belt" is made up of quaternary sands and clays. These over lie the beds of Eocene marls, upon whose surface and intermixed with which is found the phosphate deposit. The presumed total area covered by this characteristic
extending from the mouth of Broad River, near Port Royal, in the southeast, to the head waters of the
Wando River in the northeast. Its major axis is parallel to the coast, and its greatest width is in the neigh borhood of Charleston.
Whether the deposit is continuous or not over the whole of this zone, it certainly varies considerably in depth and thickness. In many places I have seen it 3 feet thick and cropping out at the surface, whereas in others it has dwindled down to a few inches, or wafound at depths varying frow 3 to 20 feet. These two conditions, thickness of deposit and depth of strata, taken together with the richness of material in phosphoric acid, are the chief points for consideration in
the economic working of the Charleston phosphate beds on an industrial scale.
The most approved and generally adopted method of ascertaining the importance and value of the deposits is that of boring and pit sinking. A careful topographical survey is first made of the country. Then commences a systematic series of bore holes from any point that may be arranged, by means of a long steel borer or rod, specially designed for the purpose. The boring rod is worked down through the upper strata until it is arrested by the solid bed of phosphate. Directly the slightest resistance is offered to its passage it is drawn up, and the distance it has traversed is measured with a foot rule. The measurement having been noted, the rod is again let down, is forced through the resisting strata, and is then again withdrawn and weasured. The difference between the first and second measurements is taken as representing the thickness of the phosphate bed. These bore holes are practiced at distances of 100 feet apart over the total surface to be examined. The results obtained with the rod are verified and confirmed by a series of exploratory pits-10 feet long by 5 feet wide-which are dug over the course of the bore holes at intervals of 500 feet. 'The bore holes are driven to a maximum depth of 15 feet, and no pits are at present sunk on those portions of the land where at that distance no phosphate has been encountered. Immediately after removing the overlying strata the phosphate is carefully removed, its depth and thickness measured, and an average sample of the rock and nodules secured and laid aside for analysis.
The practically invariable nature of the superincumbent material, throughout the entire belt, as shown by the digging of a large number of pits under my direction, is represented in the following table, the figures being averages, compiled from my field note book :

| | | |
| :--- | :---: | :---: | :---: | :---: | :---: |

So faras I have been able to discover, no systemati cal investigation has been made of those lands which contain the phosphate deposit at a greater maximum depth than 15 feet, it having been hitherto considered impracticable under present conditions of abundant surface supply, and consequent low mining cost, to conduct a profitable exploitation at any greater depth. A far wider area of lands than those actually classed A far wider area of lands than those actually classed of phosphate, lying under a considerably greater ac cumulation of the quaternary strata. I aw quite dis posed to adopt this view as representing the facts, and do not hesitate to predict that means will soon be found of turning them to good account. The phos phate found in the bottoms of all the rivers which how through the "belt" is of practically the same chewical description as that of the land; having, in fact, been merely washed out from its original beds It has, however, been worked the more extensively of the two sources, and has proved to be of greater com mercial value, since it is obtained by the simple and nexpensive progress of dredging, and is thus raised and washed free from all adhering impurities by one and the same operation.
Both the rock and nodules from these rivers and land deposits occur in very irregular masses or blocks of extremely hard conglomerate of variegated colors, weighing from less than half an ounce to more than a ton. The mean specific gravity of the waterial is $2 \cdot 40$, and the rock is bored in all directions by very small holes. These holes are the work of innumerable crustaceæ, and are now filled with sands and clays of the overlying strata. Sometimes the rock is quite smooth or even glazed, as if worn by water, at others it is rough and jagged.
Interspersed between the nodules and lumps of conglomerate are the fossilized remains of various species
of fish, and some animals, chiefly belonging to the Eocene, Pliocene, or post-Pliocene ages.
Very careful analysis of a large number of the samples of land rocks taken from the pits above described, made in my laboratory, under my own supervision, gave, after being well dried at $21 i^{\circ} \mathrm{F}$., the following averages:

Moistare, water of combination, and organic matter lost on ignition..	8.00
Fhosphate of lime	$57 \cdot 68$
arbonata of lime.	68
Phosphate of iron and alumina	6.60
Carbonate of magnesi	0.78
Salphuric acid and fluorine	1.80
Sand, siliceous matters aud undetermined.	10'64

These figures suffice to show that the grade of this phosphate is not extremely high, but it is admirably adapted for the purpose of manufacturing commercial fertilizers, and will, therefore, long continue to maintain a leading position as a raw material in the markets of the world.
Before it can be made available for industrial pur poses, it is made to pass through three distinct and successive operations: 1. Mining or excavating. 2. Washing it free from sand and other impurities. 3. Kilning, to free it from moisture. Taking these in their order, it is customary to establish a wain trunk railroad starting at the river front, or on the bank of some convenient stream, and passing right through the center of the property to be exploited.
Alternate laterals can be run off at right angles from any portion of this main line, at distances of say 500 feet, in conformity with the nature of the ground. Between and parallel to these laterals, a ditch or drain is dug to a depth extending 4 or 5 feet below the phosphate strata. From this main drain the excavators start their lines at right angles to the later-
als, commencing at one end of the field and digging trenches 15 feet wide and 500 feet long, the work being so arranged that the men are stationed at intervals of 6 feet. Every man is supposed to dig out, daily, "a pit" 6 feet long, 15 feet wide, and down to the phosphate rock. The overlying material is thrown out to the left hand side of the trench. The phosphate itself is thrown out to the right, and taken in wheelbarrows to the railruad cars which pass at either end of the trench. The water drains fronl the trenches into the underlying ditch, and is then pumped out by means of a steam pump worked by a locomotive engine. The pump and the engine are
secured to connected railway platforms, and run along the railroad track, from one ditch to another, as occasion requires. The cars, loaded with the crude phosphatic material dug out of the pits, are run down to the washing apparatus, constructed at an elevation of some 30 feet from the ground, and generally consisting of a series of semicircular troughs 20 to 30 feet long, set in an iron framework at an incline of some 20 inches rise in their length.
Through every trough passes an octagonal ironcased shaft, provided with blades so arranged and ciistributed as to form a screw with a twist of one foot in six, which forces the washed material upward and projects the fragments against each other. The phosphate laden cars are hauled up an incline and their contents dumped into the bottom trough, where the phosphate encounters one or more heavy streams of water, run off at the bottom, but overflows at the higher end near where it enters. When sufficiently washed, the phosphate is pushed out upon a one-half inch mesh screen ; the small debris being received on oscillating wire tables below. It is now ready for kilning or dryng, and of all the methods hitherto adopted for this important process, that of simple burning or roasting, in an ordinary kiln, such as is generally used in the manufacture of bricks, has been found at once the ost rapid, effective and economical.
The rock is built on layers of pine wood, and owing to its containing a considerable quantity of organic matter, it readily lends itself to combustion and quires but a short time to become quite red hot
The kilns are made sufficiently large and so arranged as to allow free passage to a train of cars, which, running on the main line of railroad, can be loaded in the kiln, run down to the landing place, and discharged directly into the barges or boats on the river. With a properly constructed plant, regular drainage, and efficient management, the total cost of producing one ton of South Carolina phosphate in clean, dry, raarket able co

The present selling price for dry phosphate, with an verage mean analysis of 57 per cent tribasic or bone phosphate of lime is $\$ 7$ per ton of $2,240 \mathrm{lb}$. on wharf at Charleston.
As I have already said, the quantity of phosphate mined and sold in South Carolina during the past few years has been continually increasing until it has now reached the figure of about 500,000 tons per annum. Assuming that the unexploited deposits sti, cover an area of some thirty miles, and that they will yield the present average of 750 tons of phosphate to the acre we may count upon a reserve of about $14,000,000$ tons. With a constantly growing demand for "fertilizer" purposes, it would, therefore, seem as if the mining resources of the State would be exhausted in from fifW to twenty years.
With a probable appreciation of these figures and acts, the efforts of the wealthiest mining companies now in the field are naturally directed toward the appropriation of all available and readily accessible deposits, and there is no doubt that while asquired on reasonable terms and worked with economy their exploitation will continue to be attended with very profitable results.
The dividends distributed during the past year by some of the companies, whose figures have been pub lished, amounted to a trifle less than $\$ 500,000$, and it is significant of the rapid intellectual growth and commercial and industrial development of the South that of the total phosphate mined in the State, more than one-fifth is actually used in Charleston for manufactur ing purposes. About one-third of the balance is ex ported to Great Britain and Germany, and the remain der is principally sent coastwise to Richmond, Balti more, Philadelphia and New York.
When the great benefits accruing to South Carolina and its people from this industry are appreciated, it will not appear strange that active search for phos phate beds of similar value should have been stimulat ed in the adjoining States, and that the most intense not to say mad, excitement has manifested itself since the discovery some two years ago of the Florida phosphate deposits.
Note--The Florida phosphate beds will be falls treated in the follow. (To be continued.)

The glaze upon enameled cards is made by pressure upon a polished plate or rollers. The composition is chalk, clay, and a little starch. Good work is not possible without elaborate accessories.

RECENTLY PATENTED INVENTIONS.

 Engineering.System of Street Car Propul-sion.-Frederick G. Wheeler, Montclair, N. J. Com-
bined with the engine cylinders is a water chamber and a system of circulating pipes, with condensers arranged a system of circulating pipes, with condensers arransed with the exhaust ports of the cylmders, an auxiliary condenser being arranged on a higher level, while a pump connects the lower condensers and the water water to circulate through a series of tubes back to the water chamber, while the water of condensation is led back to the water chamber, forming a complete circu-
lating system. The invention is an improvenent lating system. The invention is an improvenient on a former patented invention of the same inventor in tha
class of motors in which the water is heated in class of motors in which the water is heated in stationary boile

Railstay Appliances.

Gondola Car.-Ferdinand E. Canda, New York City. This invention provides for the use of the car body, the ends of the rods beng provided with screw threads and nuts, the anchorage of the rods being made in the ends of the side buards and through iron castings formung anchor blocks, made in such form as to be completely clamped and held in place by the side boards, thereby being rendered secure against beirg pulled out. This improved lateral support is wholly
outside of the interior surface, and none of the avail. able space of the car is occupied by the ruds or fixtures.

Electrical.

Battery.- Jacob O. Brinkerhoff, Hackensack, and Milten E. Smith, Rutherford, N. J.
Combined with a copper cylinder forming one of the Combined with a copper cylinder forming one of the
electrodes is an exciting fluid formed of an antimoniouschloride and in contact with the inner and outer surfaces of the cylinder. The inventors claim for this battery long life, high voltage, and no creeping or corroding. The exciting agent may be used in liquid or solid form and applied to one or both electrodes, in the common jar battery the electrodes extending into the
antimonious chloride, while in the porous cup batteries antimonious chloride, while in the
only one electrode is immersed.

Mechanical Appliances.
Barrel Hooping Machine. - Max Rosenow, Peoria, Ill. This invention provides attach-
ments for the ordinary iron hoop driving or trussing ments for the ordinary iron hoop driving or trussing
machine, whereby the machine can be readily adapted machine, whereby the machine can be readily adapted
for the driving of wooden hoops on barrels, providing also suitable means whereby the chine or head hoops can oe more effectually placed on the barrel without
danger of crushing or breaking them.

WOODEN HoOP Loces
WOODEN HoOP Locks. - The same
for cutting the locks in wooden hoops in a quick and the time they are cut, the machine also spreading the positive manner. Combined with a revolving cutter butt of
head is a hoop-clamping device arranged at right angles vester.
 pivotally supported and vertically adjustable in rela-
ion to the cutters. 'The hoops, after baving one end ion to the cutters. The hoops, after having one end
cut into a lock, are held by their lock cut to the forked edges of gauges, which set ther uncut to th roper position for cutting.
Oil Cup. - Thomas McEntee, Jersey City, N. J. This is a lubricating device especially adapted for oiling the crank pin of a marine or other engine, or any moving portion of machinery requirin constant and reliable oil feed, and where the oil It has a needle valve for adjustment to give the required feed, and the cup is made of sufficient size to supply oil for twenty-four hours, or as longas may be desired, the quantity of oil in the cup being always indicated by a gauge tube.
Plumb and Level. - William J. Garner and Thomas Cunnaughton, Latourell Falls Oregon. This invention covers a combination devic having an extensible support that can be lengthened or
shortened, combined with one or more spirit levels and a plumb line and bob, the level being supported by the stock and arranged transversely of and adjacent to the bob, while a suspension device is connected with the bob and extended upwardly, being secured at a
point above the level. At one edge of the stock is spirit Jevel and at the opposite edge is a swinging

Watch Maker's Roller Remover -Michael L. Sheeban, New York City. This is an im proved device for removing and replacing the rollers watch balance wheel staffs or pivots, the inventio disengaged from the staffs or pivots of balance whet in an expeditious and convenient manner, without disturbing the hair spring or injuring the pivote or ruby

Mechanical Movement. - Israel F. vort, Allentown, Pa. In a suitable frame is mounted sove which is secured a post supported by radial bars, a gear wheel meshing with the lower gear wheel and connected to the post by a universul joint, with other
novel features, the device being designed to furnish a simpie means for multiplying speed and transmitting power.

Agricultural.

Corn Harvester. - Thomas B. rame Radnor, Ohio. Combinec with a gathering meane hinged to swing laterally, and having yielding
molding it normally parallel with the rows of corn, are upper and lower endless belts carried by the frame, and a stalk-cutting mechanism below the lower
belts for cutting the stalks as they pass between the belts for curting the atalks as they pass between the
belts. The stalks are held in an upright position at
linton Lanker, St. Joseph, Mo. This invention con-
sist charging on to an incliued elevator provided with raking arms traveling over the grated bottom of the elevator to carry the potatoes upward, a discharge spout being arranged transversely below the elevator. The machine
gathers the potatoes, separates them from the soil and gathers the potatoes, separates them from the soil and
weeds, and delivers the cleaned potatoes to bags or other receptacles carried on the machine.

Miscellaneous.

Bleaching. - Honore Korwin de Pawlowski, Paris, France. This invention provides an
apparatus for the bleaching of vegetable and animal matter, and the washing and scouring of wool and other substances, either woven or yarn or fiber, with the voidance of manipulation. Combined with a series of vats containing liquid, and conoected with each other
below the level of the liquid, are two vacuum receptacles, placed on a higher level than the vats and connected with them below the level of the liquid, to effect alternately an automatic displacement of the liquid in the ${ }^{\text {vats. }}$
Cane Juice Filtration. - Leon Boyer, New Orleans, La. This is an improved apto make the juice so clean that the custom of using ormake the julce so clean that the custom of using
lime to neutralize the acid in the juice can be so simplified as to require but little skill or knowledge to carry it out. The invention provides a primary strainer box or tilter composed of a series of strainer drawers
arranged in sets one below the other, the drawers in arranged in sets one below the other, the drawers in
each set being of one mesh, but the several sets bein each set being of one $m e s h$, but the several sets bei
of successively finer mesh in a downward direction. Sprating Device.-Williain J. Ruff, Quincy, Ill. This invention relates to a liquid cooling and ale worts, and adapted to prevent clogring of the device by small particles of hops and other substances liable to pass with the worts to the spraying apparatus. A valve is adapted to pass into the spraying orifice, being held on an adjustable valvestem, while a piston held on the valvestem is adapted to nutomatically actuate clogged.
Measuring and Drawing InstruMeasuring and Drawing Instru-
aent.-Charles W. James, Pailadelphia, Pa. Com-ment.-Charles W. James, Philadelphia, Pa. Com-
bined with a forked arm are two arms of unequal bined with a forked arm are two arms of unequal
length pivoted between the members of the forked arm, the longer arm being of a length equal to that of the
forked arm, while a block is adjustably secured to one of the arms. The instrument is simple and durable in construction, and can be readily manipulated to obtain or measure inside or outside augles and obtang the miters of them, or it may be used for caliper-
ing, or arranged as a depth and end marking gaume

Speaking Tube and Eariphone. Frederick Schluchtner, Brooklyn, N. Y. This Inven-
tion provides a speaking tube having, in addition to tion provides a speaking tube having, in addition to
the usual mouthpiece, a branch tube with an attached earpiece, the branch tube being located between the whistle and the mouthpiece. The whistle has an operating handle exterior to the tube, and is closed by a spring on the handle.
Goods Exhibitor. - Noah E. Otto, Johustown, Pa. A strong, compact frame, easily
taken apart, carries a series of vertical rollers adapted taken apart, carries a serles of vertical rollers adapted
to receive rolls of fabric, there being also combined with the frame a rack adapted to hold jrooms and similar shaped articles. The invention is designed to
provide a neat, compact and efficient receptacle for provide a neat, compact and efficient receptacle for
holding and exhibiting rolls of carpets, oilcloths and other bulky and heavy fabrics, so that they may be well displayed and easily handled.
Savings Receptacle. -- Charles 0. Burns, New York City. This invention relates to boxes used by depostors for collecting their savings
from time to time and afterward deposting them in from time to thme and afterward depositing them in
the bank. It provides a safety receptacle in which the box has a slot for entry of the coin, and an opening and closing lid, combined with a lock controlling the hid, a catch mechanism controlling the lock, and two
keys, one key being stationary for operating the catch keys, one key being ptationary for operating the catch
controlling the lock, and the other a movable key to the lock itself, thereby affording increased security.
Scissors or Shears.-Julius Langenberg, Ohligs, Germany. Combined with the pivoted
blades is a spring-pressed pin protruding through one of the blades so as to impioge upon the other, whereby the two blades are pressed against each other automatically without using any hand pressure during cutting. The construction is also designed to insure the blades cutting the naterial during the whole cut-
ting movement, from the point where the edges meet ting movement, from the point where the edges meet
toward the ends.
Bee Hive Tongs. - Crawford D. Holt, Murray, Ky. This is a novel form of tongs for handling the comb frames of bee hives, the tonys
having jaws adapted to clasp the tops and sides of the having jaws adapted to clasp the tops and sides of the
frames, with means for locking the jaws in position. These tongs atiord ready means of handllng the frumes, avoiding the necessity of putting the hands or fingers in the hives and the atteudant danger of being stung by he bees
Sash Fastener - Charles E. Angell, Salt Lake City, Utab. This is a combined window
sash lock and lift, consisting of a positive iocking bolt adapted to automatically engage with bolt holes in the window frame, an attached key for operating the
bolt, a pivoted thumb piece applied to the outer end of bolt, a pivoted thumb piece applied to the outer end of
the key to operate the key and serve as a lifter, together with an ad justable dog or catch adapted to engage with the key to prevent the latter from turning to act upon the locking bolt.
'Thill Coupling. - Auguetos Beale,

