AN IMPROVED CAR BRAKE.

The illustration represents a brake attachment designed to apply the brakes when the cars of a train are brought tegether and made to engage one with the other, releasing them when the train moves forward

MAROLD'S CAR BRAKE.
or the cars are moved apart. It has been patented by Mr. John Marold, of New Decatur, Ala. At one side of the drawhead, and extending further outward, is a rack bar adapted to slide in the frout sill and on a rear guide beam, the outer end of the bar consisting of a hinged section which way be lifted out of horizontal position when desired. The outer end of the hinged section has a flat head adapted to engage a wear plate of an opposed car, and the bar near its inner end has a series of teeth eugaged by a dog pivoted at one end to one of the beams of the car bed, the dog being also connected with a lever fulcrumed on one of the beams, and connected to a rod which extends through an aperture in the front beam of the car, where it is attached to a length of chain connecting it by a hook with the sill of an opposing car. The rack bar is connected with a lever fulcrumed upon a beam of the truck, the lever being connected with the brake beams, and both the rack bar and the lever have a series of holes through which their connection is effected by a registering bolt, for the purpose of regulating the degree of tension to be exerted upon the brakes through the movement of the rack bar. When it is desired to apply the brakes, the coming together of the ends of the cars, pushing the rack bar inward, causes the lever connected with the latter to put on the brakes, which are held thus applied by the engagement of the dog with the rack bar until the cars are moved apart, when the dog is moved out of engagement by mean of the rod and chain connecting it with the opposing car, and the release of the brakes is thus effected.
When the cars are to be shunted or backed, the hinged outer end of the rack bar is drawn up and held out of horizontal position by means of a short chain. Asa provision against the breakingof the coupling pin bolts are arranged to slide in the sills at each side of the drawhead, and each having a bearing against a spring cushion, the bolts of one car being connected by chains with corresponding bolts on another car. The chains are of sufficient lengt'i to slightly sag when the cars are coupled in the usual way.

A DIFFERENTIAL GEAR FOR BICYCLES.
A construction by means of which a bicycle gear may be quickly changed, so that the vehicle may be driven rapidly where the road is easy, or less speed with more pewer may be had where the road is loose o hilly, is shown in the accompanying illustration, and

forms the subject of a patent issued to Mr. Frank R Bigelow, of Gloucester City, N. J. Fig. 1 shows the de vice in section applied to the treadle shaft of a bicycle, the bearing of the shaft being supported by an arm in the usual manner. Mounted loosely on opposite ends
of the shaft are different-sized sprocket wheels, each having on its inner side a series of sockets adapted to receive the teeth of a sleeve sliding on the shaft, the sleeve being of the length of the hub. Near the center of the sleeve, as shown in dotted lines, is a slot, through which extends a pin secured to the shaft causing the sleeve to turn with the shaft. The sleeve has a series of recesses at each end, forming projecting teeth, as shown in Fig. 2, the teeth being adapted to fit the sockets on the inner side of each sprocket wheel, so that by sliding the sleeve one way or the other, either one of the sprocket wheels may be engaged and driven by the shaft. A hollow thumb-screw is mounted loosely on the shaft and extends through one of the sprocket wheels into the end of the sleeve, which is counterbored to receive it. The inner end of the screw is threaded to engage a threaded portion of the sleeve, and the outer end of the screw has a handle disk, by turning which the sleeve is moved to engage one of the sprocket wheels. In connecting this gear with a bicycle wheel, the latter is provided with two sprocket wheels, one on each side, and preferably of dif ferent sizes, the larger one connecting with the swalle sprocket wheel on the treadle shaft and the smalle one on the main wheel connecting with the larger o the treadle sprockets. By then shifting the sleeve which serves as a clutch, either the larger or smaller of the treadle sprockets is engaged, according as the road is easy or difficult.

A MINIATURE ELECTRIC MOTOR.

An interesting little electric motor is the subject of our cut. It is of multipolar type, and by its construc
 very even speed of rotation and good effici ency. It is a complete min iature of the practical every day motor, and will, with single cell of bichromate bat tery, run a $41 / 2 \mathrm{in}$. fan and do other light work. It is of interest as marking the tendency of electric toy make to carry out the correct principles of electric engineering in their models. Other motors of larger size are made by the manufacturers, Messrs. Goodnow \& Wightman, 63 Sudbury Street, Boston, Mass., one size being pow erful enough to run a sewing wachine

A VISIT TO A FAMILY IN ANNAM

A sojourn of two days gives the passengers on the Natal ample time to visit the city of Saignon. This European city is very attractive on account of the beautifuland well kept trees that border its street ike the lanes in a park, and the pretty little hotels which line its roads. Large and handsome gardens are within easy reach and add to the pleasure of a visit there.
Thanks to the kindness of sowe friends who acted as guides, I was able to visit the most curious section of the district, namely, Cholon, the Chinese section, where over 60,000 Chinese and Annawites reside. They live in little picturesque houses, and adorn theic shops with various exotic plants full of interest to a stranger Guided by my friends, we visited a very rich Annamite fawily, who lived in one of the prettiest streets in Cholon. Unfortunately the father was We were however, most hospitably r ceived by the two eldest daughters. They were attractive-looking women with beau tiful eyes, but their black teeth, which were lacquered, detracted sowewhat from their beauty. They were clothed in long black trousers, and with a tunic of whit Chinese crepe which entirely enveloped their figures. They wore gold collars and diawond bracelets, while their hair was held in position by a golden pin that clasps their locks in a knot. After the formal presentation, we were conducted through the principal apartments of the house. They were very simple in appearance, with bare white walls, but they were filled with beautiful furniture inlaid with wother-of-pearl, and we noticed some exquisite bric-a-brac, such as chiseled silver vases, jade ornaments, arms, and ewbroidered silks, worthy of the finest collections. The garden was charming, and the young ladies showed us with pride some ornamental plants that their father had procured for thew from Canton.
One of these represented a peacock seated on its perch, another a tiger with enameled eyes. Perhape the most curious of all were little dolls representing Chinese ladies and mandarins. The head, the hands, end of its stroke, and previous to the opening of the and the feet were of enameled porcelain, while the regular exhaust, the latter being effected by the ordibody was made of wire and covered with trailing nary slide valve operating over the usual inlet ports ines. The vines are planted in such a way that they and the exhaust port. It is designed that the valve grow through the feet of the image. The vine grows ${ }^{\text {at the cylinder ends shall open in sufficient time to }}$

CHINESE FIGURES FROM ANNAM, FORMED BY TRAILING VINES.
rapidly, and finally conceals the entire figure except the hands, feet, and head. When the figure is entirely clothed with the foliage, the effect is very fine.
In the middle of the garden and surrounded by pools of limpid water is a pagoda of carved wood. The pare ment is laid in precious marble, and its columns are of carved wood, while the roof is richly ornamented At the rear of the pavilion there are three altars, on which are three bronze vases and braziers, in front of arge gilt statues of Buddha. Our hostesses invited us to rest in this pavilion. Their mother had erected it in honor of their father during his visit to the exposition at Paris, as a surprise for him upon his return.
After refreshments were served, at our request their ervants brought their jewelry, and we had a chance to adwire the fine gold work that they showed us, gold bracelets, carved ivory boxes, etc.-By Albert T'issan dier, in La Nature.

AN IMPROVED ENGINE.

The engine shown in the illustration has a valve ar ranged at each end of the cyiinder, opening previous to

CLARK'S ENGINE.
the opening of the ordinary exhaust and connected with a reservoir for the storage of exhaust steam, whereby it is designed to save a large amount of exhaust steam without causing back pressure on the piston in the cylinder. The valves at the ends of the cylinder are adapted to open inwardly, and in the valve bodies are check valves to prevent a return flow of the exhaus steam from the reservoir to the cylinder. The stems of these valves carry springs to hold the valves nor mally to their seats, as shown in Fig. 2, their opening being effected by the stews being alternately pressed on by the ends of a lever fulcrumed to the top plate of the steam chest. A depending arm from this lever, as shown in Fig. 1, is pivotally connected by a link with plate sliding on the frame near the main shaft, the plate having an aperture in which travels a heart shaped cam secured on the shaft, and adapted to strike on lugs secured on the plate and projecting into the opening. By this construction a quick motion is given to the lever which opens alternately the valves at the cylinder ends, at the time the piston is at or near the
permit a large quantity of steam to escape to the storage reservoir, an outlet pipe from the latter carrying off the saved exhaust steam to utilize for other purposes. If desired, also, these valves, instead of opening into the exhaust ports, may be arranged in the heads of the cylinder.

This improvement has been patented by Mr. Andrew J. Clark, of Dayton, Tenn.

THE ASSAYING OF GOLD AND SILVER ORES
The process of assaying silver ores is based upon the following considerations: Any compound of silver exposed to high heat in the presence of metallic lead or of oxide of lead and of a reducing agent gives up its silverin a metallic state, and in practico an alloy of lead and silver containing all the precious metal of the sample of ore used is obtained.
The ore before being assayed is carefully sampled, so as to represent an exact average, as nearly as possible, of the mine, vein, or heap from which it is taken. It
the scorifier melts and the ore floats on top of it, along with the melted borax glass. Gradually the ore disappears, its metallic constituents entering the lead and its earthy constituents forming with the borax glass a fusible slag. As a constant current of air is drawn through the muffle, the lead rapidly oxidizes and its oxide joins the slag, so that after a little while only a small circle of metallic lead appears in the cen ter of the slag. This circle is gradually encroached upon, and eventually the slag covers over the button of metal, which at once sinks to the bottom and the scorifying is ended. After a little more heating the scorifier is withdrawn from the muffle and its melted charge is poured out into a hemispherical depression in an iron pan, in which it rapidly cools. When cold, a few blows of the hammer, the charge resting on an anvil, knocks the slag off. The spheroidal lead but ton is then pounded into a roughly rectangular shape nd is ready for cupellation
The cupels are shallow cups of bone ash, about $11 /$
its weight of pure silver. It is then rolled out into a thin sheet, and is treated with nitric acid. This dis solves the silver and leaves behind the gold and ang platinum or similar metal which the ore may contain. This residue is weighed and is reported as gold.
The weights used, from the gramme upward, are usually made of brass, of the shape shown. From 500 milligrammes down to 10 milligrammes they are often made of platinuin ; the smaller weights are of alumi num, the fractions of a milligramme being made of wire bent so that the number of sides in each bent wires indicates the number of tenths of a milligramme which it represents.
There are, of course, many refinements and modifi cations in the process which it is not necessary to summarize here. The assayer acquires by practice so good a knowledge of ores that he can properly propor tion his charge from the appearance of the ore alone. A large number of assays can be kept going at once, A large number of assays can be kept going at once,

THE ASSAYING OF GOLD AND SILVER ORES
is nest pounded in an iron wortar and the process con-
tinued until it is very finely pulverized. A sample is thus obtained which is given to the assayer.
The first operation is to weigh out the powder. This must be done upon a fairly delicate balance. The quantity used for an assay depends upon the richness of the ore; it is very usual to base the weighing upon what is known as the assay ton, a weight of $29 \cdot 166$ grammes. One milligramme bears the same proportion to the assay ton that one troy ounce does to a ton of 2,000 pounds. In weighing, duplicate portions are weighed out representing from a fraction of one to several assay tons, according to the richness of the ore and the operations are carried on in duplicate throughout. Each sample is wixed with from 8 to 16 parts of very pure, finely granulated lead, called "test lead," and a little borax glass. The fusion is of ten done directly in a scorifier. These are shallow clay cups about 2 inches and $23 / 4$ inches in width. The weighed portion of ore with the borax glass and lead being placed in one of these cups, the whole is introduced into a hot clay retort known as a muffle, which is beated in a muffle furnace. Muffles and furnaces are shown in the cuts in sections and elevations. The
in. in height, $21 / 4 \mathrm{in}$. in width and $3 / 8 \mathrm{inl}$. in depth.
They are made by hammering in a mould, a hammer
and piston being used to drive the material down into the cavity of the would and compact it. The cupel is first heated in a muffle and the rectangular button is placed in it. It at once welts and begins to oxidize As fast as the oxide of lead is formed, it melts and is absorbed by the porous bone ask of the cupel, as water is absorbed by a sponge. This operation goes on until little more than the silver is left. Just at this point, as the last of the oxide of lead disappears, a sudden flash of rainbow colors passes across the sur ace of the button, the "brightening" indicating !the expulsion of the last of the lead. The silver button is now allowed to cool, is removed by a pair of pincer row the cupel, and when cleaned and brushed free of bone ash is weighed on an exceedingly sensitive bal ance. Each milligramme of weight represents an unce or definite portion of an ounce per ton of or f assay tons have been used. The balance used or this weighing is one of the most sensitive made and can indicate the twentieth of a milligramme readily.
Should the ore contain gold, this is determined by "parting." The button is fused with one or two timas
ers designating the sample for assaying which sed.

American Copyright

It is a great mistake to suppose that the copyright difficulty with Anerica has been settled. The new American act comes into operation this day month but we shall then be no better off than we are now Before the British author can enjoy the benefits of the measure, such as they are, we are expected to give reciprocity to the American author, who is to be placed on exactly the same footing, as regards copyright, as the English writer. That would be fair enough were he conditions equal, but Congress has taken care that they shall be very farfrom equal. For an English book to obtain copyright in the United States it is essential that it should be printed there. Yet, in face of this, Mr. R. B. Marston appeals to Parliament to rant reciprocity to America. What Parliamentought to do is not to grant a ridiculously one-sided reciprocity, but to pass a measure of retaliation. Let us give copyright to the American author on precisely the same terms that America offers it to the English man. Nothing can be fairer than that.-St. James's Gazetts.

