
a NEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

CASTING THE HENRY WARD BEECHER STATUE FOR but before the artist is done with his work, the full to its capacity for "drawing" from the mould, the
THE CITY OF BROOKLYN. sized model is produced.
to its capacity for "drawing" from the mould, the
bronze founder has to adapt his work to the most ex-
The Henry-Bonnard Bronze Company, of this city, In the present case the statue was to be about nine acting conditions of undercutting and complicated outhave recently completed the casting of a statue of the feet high. The area of the flask in which the mould lines. The mould is therefore built up in very nulate Henry Ward Beecher, to be erected in front of the was to be made was seven feet four inches wide by merous sections, some of them extremely small. An Brooklyn City Hall. The statue is remarkable as thirteen feet six inches long. The model was estab- exact count was not kept, but in the present statue being cast practically in a single piece, the head being lished upon the lower section of the flask and the work between one thousand and fifteen hundred pieces were of one piece with the body. Originally metallic sta- of building up the mould began. The sand used is used in the mould. In one of the cuts, where the tues were made in small pieces and were united by mined in France. It possesses to a high degree the operation of moulding the head is shown, the idea of rivets or soldering. Some were cast solid. The pres- property of consolidating, yet is very porous. A the subdivision of the mould appears. It will be seen ent practice is to cast then hollow, and as thin as pos- famous bed of the waterial is at Fontenay-aux-Roses, that its sections represent irregularly shaped bricks, sible. This secures rapid hossible. This secures rapid cooling and tends to prevent
any separation of the constituents of the alloy. It also economizes in metal.
The first stepin making a statue is the production of the plaster model. This is supplied by the artist, and it comes from his studio of the exact size required for the final statue. The original studies in the case of colossal statues such as the present may be very small,

MAKING THE MOULD.

taking the mould to pieces.

casting the statue.
of over a thousand sections is carefully taken down and the model is lifted from its resting place upon the lowest flask section. The mould is next rebuilt, the inner surface receiving a coating of foundry facing. and the interior is rammed full of clay to form the core. This core need not be solid. Some spaces may beleft in it for the gases to collect in. Thus the mould is a second time complete and intact, but is filled with a clay figure instead of a plaster one.
The mould is a second time dismantled and the core is taken in hand. From its entire surface a layer of clay is removed, to average, as nearly as possible, one quarter of an inch in depth. This delicate operation provides the space for the metal to occupy in the casting process. This core thus reduced in size is replaced upon the flask and is properly supported. The inould is a second time built up, surrounding in this case the reduced core. A number of channels or gates are worked in the mould to allow the metal to run through to different parts of the figure. These resemble somewhat the trunk and branches of a tree. They start of comparatively large section near the pouring reservoir, and fork and diminish repeatedly, reaching the space between core and mould in many places. When all is perfectly dry, and the flask filled with sand so as to hold all the pieces in place, the operation of casting is proceeded with. In the present case seventeen weeks were required for the moulding.
The process of casting a bronze statue is executed either by surface or bottom casting. In the latter method a reservoir is arranged over the gates, which reservoir is large enough to hold all or a large portion of the metal. It has holes in its bottom corresponding exactly to the gates in the mould. These holes are plugged. The metal is poured into the reservoir, and by withdrawing the plugs the metal runs down into the space in the mould. The Beecher statue was sast by surface pouring. The metal held in crucibles was poured directly into the gates. This enabled a constant watch to be kept upon its fluidity and general nature as far as shown in its fusion. A man, as the metal was poured, kept scraping back all scoria, slag, and oxide from its surface. The adoption of one or the other system of pouring the metal rests, as a mat ter of preference, with the individual founder.
For the Beecher statue 7,400 pounds of metal were melted repeatedly. The fourth fusion was the one used. Eleven winutes were occupied in the casting, and the finished statue weighed 3,600 pounds. The rest of the metal represented the contents of the gates, waste, etc. The alloy was composed of copper 90 parts, tin 10 parts, zinc 3 parts.
The Beecher statue will be unveiled about the time this paper reaches our readers. The artist is J. Q. A. Ward, and the statue will, in the artistic and mechanical sense, be a credit to its eminent artist and to its founders.

Angina Pectoris-Its Nature.

Dr. R. Douglas Powell, in The Practitioner, argues that angina pectoris is a disturbed innervation of the heart or vessels, associated with more or less intense cardiac distress and pain, and a general prostration of the forces, always producing anxiety, and often amounting to a sense of impending death, and concludes that :

1. In its purer forms we observe disturbed innervation of the systemic or pulmonary vessels, causing their spasinodic contraction, and consequently a sudden extra demand upon the propelling power of the heart, violent palpitation or more or less cramp and paralysis ensuing, according to the reserve power andin tegrity of that organ-ungina pectoris vasomotoria. 2. In other cases we have essentially the same me chaniso but with the extra demand made upon a diseased heart-angina pectoris gravior.
2. The trouble may cowmence at the heart through irritation or excitation of the cardiac nerves, or from sudden accession of anæuia of cardiac muscle from coronary disease-primary cardiac angina.
3. In certain conditions of blood or under certain reflex excitations of the inhibitory nerves, al ways, however, with a degenerate feeble heart in the background we may observe intermittence in its action prolonged to syncope-syncopal angina.

Artificial Gold

There are a great many metallic substances known for producing metal closely resembling gold. The Western Jeweller gives the following formula for producing one of the artificial gold substances
Take 100 parts (by weight) of pure copper, 14 parts zinc. or tin, 6 parts magnesia, 56 parts sal ammoniac, 18 parts quicklime, 9 parts cream of tartar. Melt the copper, and add gradually the magnesia, sal ammoniac quicklime and cream of tartar, each by itself, in the form of powder. Stir the whole for half an hour, add the zinc or tin in small pieces, and stir again till the whole is welted. Cover the crucible, and keep the misture in a molten condition for thirty-five minutes. Remove the dross, and pour the metal into moulds. It has a fine grain, is malleable, and does not easily tar nish.

§uiuntific gmmerican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. PUBLISHED WEEKLY AT
 No. 361 BROADWAY, NEW YORK.
 O. D. MUNN.
 A. E. BEACR.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S.. Canada or Mextco.
One copy, six months, for the U.S., Canada or Mexico

Remit by postal or express money order, or by bank draft or check.
MUNN $\&$ CO.. 351 Broadway, corner of
The Scientific American Supplement.

MUNN $\&$ CO., Publisbers,
361 Broadway, New York.
pry The safest way to remit is by postal order, express money order
draft or bank check. Make all remittances payable to order of MUNN co. Readers are specially requested to notify the p
any failure, delay, or irregularity in receipt of papers.
new york, saturday. June $27,1991$.
Contents.

table of contents of
 SCIENTIFIC AMERICAN SUPPLEMENT No. ROB.

For the week Ending Juale 27, 1891. Price 10 centr. For eale by all newodealero

 Bist inorolog - New Refistering Barom eter.- Radier's re

 PHARMACY-An Examination in Pharmacy.-The London ex-
amination ir harmay.
gist

This brilliant star in the constellation of Bootes, now visible nearly overhead in the evening hours, was the subject of a very interesting lecture by Mr. Wm. H. Knight, recently delivered before the Cincinnati Society of Natural History. We give herewith a few extracts from the paper, which will appear in full in our next week's issue of the SUPPLEMENT:
Within the last two or three years a new and sur prising value has been given to the parallax of Arcturus by Dr. Elkin, the astronomer of Yale University. Previous to his work at Yale he had acquired a reputation for painstaking observations and accurate results in the British observatory at the Cape of Good Hope. Equipped with a $7^{\prime \prime}$ heliometer provided with the latest inprovements, he set himself the task of measuring the parallax of several prominent stars. Devoting himself specially to Arcturus, from no less than 89 observations, taken in connection with 10 comparison stars, he deduced the very small parallax of ${ }_{180 \%} \frac{18}{00}$ or about bs of a second of are, which is equivalent to a distance of 181 light years. This minute parallax (which is assumed to be approximately correct by other astronomers), combined with its large proper motion, gives Arcturus the tremendous velocity of 381 miles per second-a distance 40 miles greater than that which separates Cincinnati from St. Louis. Imagine a body moving from this city to the Mississippi River betweet the ticks of a clock
Now, Dr. Elkin admits that there is what is tech nically called a "probable error" in his observations, but that error is + or -, and would be as liable to make the value of the parallax less than the figure named as to inake it more. So that while the velocity of Arcturus may be 50 or even 100 miles less per second than computed, it may possibly be 50 or 100 miles inore. But until we get new data, based on more extended observations, made with better instruments, we may, in company with the leading astronomers of the world, accept Dr. Elkin's startling figures, and consider Arcturus as 181 light years away, and rushing through space with the unparalleled velocity of 381 miles per second, or about 21 times faster than the earth travel in its orbit around the sun.
Is such a velocity impossible? Is it incredible? Is unreasonable?
It has been mathematically demonstrated that the velocity with which matter, drawn from distant space, would fall upon the surface of the sum is no less than 383 miles per second, a velocity, it will be seen, almost identical with that of Arcturus.
Many comets which come from interstellar regions and visit our solar system sweep around the sun at perihelion with velocities even higher than that ascribed to Arcturus, and, moving in parabolic curves, again plunge outward into distant space, and passing
beyond the dominion of our own sun, enter that of beyond the dominion of our own sun, enter that of some other mighty star.
Thus far I have been considering the velocity of Arcturus perpendicular to or across the line of sight. But we have seen in the case of Sirius, that while it is moving with the comparatively low speed of 9 miles across the line of sight, it is receding along the line of sight with the high velocity of 20 miles per second. How is it with Arcturus? Is he approaching or reced ing from us? Mr. Huggins again comes to our aid with his spectroscope, and finds that, while Sirius is moving away from us at the rate of 20 miles per second, Arcturus is rushing down upon us with the far higher velocity of 55 miles per second.
But we need have no fear of a collision. While he will doubtless continue to approach us for tens of thousands of years to come, till he arrives within 140 light years or so, he will then, after a computable period gradually and then rapidly recede from us and frow our part of the sidereal universe, and pursuing an unswerving course, with unabated velocity, he will, in a few million years, pass entirely out of the ken of the most powerful earthly telescope. For, while Arcturus is now approaching us at the rate of 55 miles per second, he is moving ath wart our line of vision 381 miles in the same moment of time.

But part of that apparent motion of approach on the part of Arcturus is caused by the movement of our own sun, which, with its train of attendant worlds, swing-
ing along through space at the estimated rate of 15 ing along through space at the estimated rate of 15
niles per second. Its course is directed toward the constellation Hercules, between Acturus and the Milky Way.
And now, having obtained some idea, however crude, of the great distance and rapid motions of this remarkable star, we are curious to learn somet hing of his mag nitude and physical structure. Ii he had a visible companion circling around him, as is the case with Sirius, Alpha Centauri. and some other stars which exhibit a measurable parallax, we could weigh his mass, or rather the combined mass of the two bodies, and thence infer his probable magnitude. But Arcturus is a solitary star. No telescope has revealed any attendant cumpanion.
Our only resource, then, is to compare his light-giving power with that of other luminous bodies, and accept sueh conclusion as may be fairly drawn.

