šrientific gesmmerican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIPIC AMERICAN. One copy, one year, for the U. S., Canada or Mexico. One copy, six months, for the U. S., Canada or Mexic One copy, six months, for the U. S., Canada or Mexico. 1 One copy, one eara, ta any foreign country belongininto Postal Union. 4 Remit by postal or express money order, or by bank draft or check. The Sctentific American Supplement a year; combined rate for Bulling milition ScIENTIFIC AME
 Spanish Edition of the Scientific American
 MUNN \& CO., Publishers, 361 Broadway, New York praty The safest way to remit is by postal order, express money order check. Mase alt remittances payabie to order of MUNN any failure, delay, or irregularity in receipt of papers.
 NEW YORK, SATORDAY, MAY 9, 1891.

Consente.	
(Illustrated articles are marked with an asterisk.)	
Aluminum at	
年alsamator. electrict.....	Photoelectricity................ ${ }_{289}$
ath litt tor the stck**.......... ${ }_{29}^{297}$	Photo-engravings for newsapers 288
	Phylluxera, mercury cure for....: ${ }^{\text {20 }}$
opper coiorations of vegetables 230	Plaster cast. to clean a
ntures, artificial, retain	
Discuvery wanted, a new.......	delain
mating*...................	
ectic lighting, hydraulic...e.	Railroading, electric ${ }^{\text {Raic }}$ Rain. artificial production of... ${ }^{288}$
ble walls.................... 238	Rainwater cut-orf, Coe's ${ }^{\text {a }}$......... 291
ectricity as applied to rail- 298	Roa
ring machine, practicability	Ruggles. John, foun
s, natural, in	propener, the............. 2_{29}^{29}
entions, a contrast in.	Ship railways of the future..... 2×0
entions recently patented...2 298	Sleep. doing wit
	Springs, spiral.
	Telephoning in rrench.......; ${ }^{291}$
cralis chematical curiosities.......... 282	
Milk cooler, Conder's*.............. 291	Tuberculosis, Liebreich's rem-

TABLE OF CONTENTS OF SCIENTIFIC AMERICAN SUPPLEMENT No. 8O1.

OUR URBAN POPULATION.
Mr. Robert P. Porter, Superintendent of the Census has lately issued a bulletin relating to urban popula tion, prepared under the direction of Mr. William \mathbf{C} Hunt.
In the published records of former censuses, urban population has been defined as that element living in cities, or other closely aggregated bodies of population containing 8,000 inhabitants or more. This definition of the urban element, although a some what arbitrary one, is used in the present discussion of the results of the Eleventh Census in order that they may be com pared directly with those of earlier censuses. The pro portion of urban population has increased gradually during the past century from 3.35 up to $29 \cdot 12$ per cent or from one-thirtieth up to nearly one-third of the total population. The increase has been quite regular from the beginning up to 1880, while from 1880 to 1890 it has made a leap from $22 \cdot 57$ up to $29 \cdot 12$ per cent, thus illustrating in a forcible manner the accelerated tendency of our population toward urban life. The number of cities having a population of more than 8,000 increased from six in 1790 to 286 in 1880 , whence it has leaped to 443 in 1890.
In 1880 there was but one city, New York, which had a population in excess of a million. In 1890 there were three, New York, Chicago, and Philadelphia.
In 1870 there were but fourteen cities each contain ng more than 100,000 inhabitants. In 1880 this num ber had increased to twenty, and in 1890 to twenty eight.
The rate of growth of some of the cities is surprising From the 443 cities having over 8,000 , we select thos hat have increased by more than 75 per cent, and they Falls " takes the cake."

	1890.	1880.	Increase per cent.
Alameda, Cal	11,165	5,708	$95 \cdot 60$
Alpena, Mich.	11,283	6,153	83.37
Amesbury, Mass.	9,798	3,355	199.04
Amsterdam, N. Y	17,336	9,466	83.14
Anderson, Ind.	10,741	4,126	$160 \cdot 32$
Anniston, Ala.	9,876	942	$948 \cdot 41$
Arkansas City, Kans..	8,347	1,012	72480
Asheville, N. C.	10,235	2,616	291-25
Ashland, Wis..	9,956		
Ashtabula, Ohio.	8,338	4,445	87.58
Atlanta, Ga	65,533	37,409	75.18
Atlantic City, N .	13,055	5,477	138:36
Battle Creek, Mich.	13.197	7,063	$86 \cdot 85$
Bayonne, N. J.	19,033	9,372	103.08
Beatrice, Neb.	13,836	2,447	$465 \cdot 43$
Beaver Falls, Pa.	9,735	5,104	90.73
Binghamton, N. Y.	35,005	17,317	102-14
Birmingham, Ala.	26,178	3,086	748.28
Bridgeport, Conn.	48,866	27,643	76.78
Brockton, Mass.	27,294	13,608	$100 \cdot 57$
Brunswick, Ga.	8,459	2,891	192:00
Butler, Pa	8,734	¢,163	176.13
Butte, Mont.	10,723	3,363	$218 \cdot 85$
Canton, Ohio.	26,189	12.258	11365
Cedar Rapids, Iowa	18,420	10,104	$78 \cdot 35$
Chattanooga, Teun	29,100	12,892	12572
Chicago, III.	,099,850	509,185	$118 \cdot 58$
Chippewa Falls, Wis	8,670	3,982	11773
Cheyenne, Wyo.	11,690	3,456	238.25
Colorado Springs, Colo	11,140	4,226	$163 \cdot 61$
Corning, N. Y	8,550	4,802	78.05
Dallas, Tex.	38,067	10,358	26751
Decatur, Ill.	16,841	9,547	$76 \cdot 40$
Denison, Tex.	10,958	3,975	$175 \cdot 67$
Denver, Colo..	106,713	35,629	19951
Des Moines, Iowa	50,093	22.498	123:55
Detroit, Mich.	205,876	116,340	$76 \cdot 96$
Duluth, Minn	33,115	3,483	$850 \cdot 76$
East Liverpool, Ohio	10,956	5,568	96.77
East Portland, Ore.	10,532	2,934	$258 \cdot 96$
Elgin, Ill.	17,823	8,787	10283
El Paso, Tex	10,338	736	1,304 62
Evansville, Ind	50,756	29,280	$73 \cdot 35$
Everett, Mass.	11,068	4,159	166.12
Findlay, Ohio.	18,553	4,633	$300 \cdot 45$
Fitchbarg, Mass.	22.037	12,429	77.30
Fort Scott, Kans.	11,946	5,372	122:38
Fort Smith, Ark.	11,311	3,999	$264 \cdot 99$
Fort Worth, Tex ...	23,076	6,663	246:33
Fresno, Cal.	10,818	1,112	872.84
Gloversville, N. Y.	13,864	7,133	$94 \cdot 36$
Grand Rapids, Mich.	60,278	32,016	88.27
Haetings, Neb....	13,584	2,817	382.22
Hazelton, Pa. .	11,872	6,935	7119
Helena, Mont...	13,834	3,624	28173
Hot Springs, Ark	8,086	3,554	127.52
Huntington, W. Va.	10,108	3,174	$218 \cdot 46$
Hutchinson, Kans...	8,682	1,540	463.77
Iron Mountain, Mich.	8,599		
Ishpeming, Mich.	11.197	6,039	85.41
Jackson, Tenn	10,039	5,377	86.70
Jacksonville, Fla.	17,201	7,650	124:85
Johnstown, Pa.	21,805	8,380	160:20
Joliet, III	23,264	11,657	99.57
Kansas City, Kans	38,316	3,200	1,09738
Kansas City, Mo.	132,716	55,785	$137 \cdot 91$
Kearney, Neb	8,074	1,782	353.09
Key West, Fla....	18,080	9,890	$82: 81$
Knoxville, Tenn.	22,535	9,693	$132 \cdot 49$
Kokomo, Ind	8,261	4,042	104 38
La Crosse, Wis	25,090	14,505	72.97
Laredo, Tex..	11,319	3,521	$221 \cdot 47$
Llma, Ohio....	15,987	7,567	111/27
Lincoln, Neb.	55,154	13,003	324•16
Little Rock, Ark.	25,874	13.138	96.94
Long Island City, N. Y	30,506	17.129	$78 \cdot 10$
Los Angeles, Cal.	50.395	11,183	$350 \cdot 64$
McKeesport, Pa.	20,741	8.212	152.57
Macon, Ga.	22,746	12,749	78.41
Malden, Mass.	23,031	12,017	91×65
Manistee, Mich.	12,812	6,930	$84 \cdot 88$

	1890.	1880.	Increase per cent.
Marinette, Wis.	11,223	2,750	319.02
Marion, Ind.	8,769	3,182	$175 \cdot 58$
Marion, Ohio	8,327	3,899	113:57
Marquette, Mich	9093	4,690	93.88
Melrose, Mass..	8,519	4,560	8682
Memphis, Tenn.	64,495	33,592	$92 \cdot 0$
Menominee, Mich.	10,630	3,288	22333
Meridun, Miss.	10,624	4,008	185%
Milwaukee, Wis.	204,468	115,587	$76 \cdot 90$
Minneapolis, Minn.	164,738	46,887	251;35
Mount Carmel, Pa.	8,251	2,378	247•10
Mount Vernon, N. Y	10,677	4,586	132:82
Muncie, Ind.	11,345	5,219	117:38
Muskegon, Mich.	22,702	11,262	101-58
Nanticoke, Pa	10,044	3,884	158.60
Nashville, Tenn.	76,168	43,350	$75 \% 0$
Nebraska City, Neb	11,494	4,183	17478
Ogden, Utah.	14,889	6,669	145.33
Omaha, Neb.	140,452	30,518	36023
Paris, Texas.	8,254	3,980	10739
Passaic, N. J.	13,028	6,532	9945
Perth Amboy, N. J	9,512	4,808	97.84
Pine Bluff, Ark.	9,952	3,203	$210 \cdot 71$
Plattsmouth, Neb.	8,392	4,175	101.01
Portland, Ore.	46,385	17,577	163.90
Pottstown, Pa.	13,285	5,305	150.42
Pueblo, Colo	24,558	3,217	663.38
Rockford, ill..	23,584	13,129	79:63
St. Paul, Minn.	133,156	41,473	221.07
Salt Lake City, Utab	44,843	20,768	$115 \cdot 92$
San Antonio, Tex	37,673	20,550	83:32
San Diego, Cal.	16,159	2,637	512.78
Seattle, Wash.	42,837	3,533	1,112 48
Shamokin, Pa.	14,403	8,184	7599
Sheboygan, Wis.	16,359	7,314	$123 \cdot 67$
Sioux City, Iowa.	37,806	7,366	$413 \cdot 25$
Sioux Falls, South Dakota	10,177	2,164	3\%0-29
South Bethlehem, Pa.	10,302	4,925	$109 \cdot 18$
Spokane Falls, Wash.	19,922	350	5,592 00
Springfield, Mo...	21,850	6,522	235.02
Steelton, Pa .	9,250	2,447	278.01
Streator, III.	11,414	5,157	121•33
Tacoma, Wash.	36,006	1,098	3,179 23
Topeka, Kans..	31,007	15,452	10067
Trenton, N. J.	57,458	29,910	92.10
Union, N. J...	10,643	5,849	$81 \cdot 96$
Waco, Texas..	14,445	7,295	98.01
Wausau, Wis	9,253	4,277	116:34
West Bay City, Mich	12,981	6,397	$102 \cdot 92$
Wichita, Kans.	23,853	4,911	38571
Winona, Minn.	18,208	10,208	78.37
Winston, N. C.	8,018	2,854	$180 \cdot 94$
Youngstown, Ohio	33,220	15,435	115\%23

EXPERIMENTS FOR THE ARTIFICLAL PRODUCTION OF RAIN
Among the government appropriations is $\$ 9,000$ to be expended in making experiments on the artificia production of rain. We learn that the first experithe direction of Col Dyrenfurth, of Washington
Balloons filled with hydrogen and oxygen gas wil be sent up and exploded by a steel wire attached to the balloons and connected with an electrical appara us on the ground. Senator Farwell favors this idea because the concussion will be greater, and the greater
the concussion, the wore copious will be the fall. The balloons will also be aided in their work by the explo ion of dynamite on the ground.
Drought is the curse of the Western farmer. In the State of Kansas, the western part especially, the east ern part of Colorado, the Southwest Territories, Texas, the two Dakotas, Nebraska, Minnesota, and, indeed in nearly all the country west of the Mississippi Rive the dry seasons are frequent and dangerous to the wel fare of the crops. The removal of this great bugbea of the farmer would be a boon that is beyond expres sion in words.
Those who are interested in the matter will find in the Scientific American of December 20,1890, ac counts of various examples of rain supposed to have been artificially produced.

PHOTO-ENGRAVINGS FOR NEWSPAPERS

At the recent annual meeting of the Caniuera Club, London, Mr. H. Sutton read a paper about a new method of producing photo-blocksfornewspaper work He said the process was the result of the labor of years He had been working at the problem since 1881, and only on the previous Monday had he obtained results sufficiently advanced to be worth bringing before the Camera Club. He had effected the direct conversion of photographs into blocks without intermediate con version into fatty ink or bitumen images, followed by skilled etching to get type-high blocks. A process o this kind ought to give great impetus to the graphic arts. He simply electrotyped a relief image produced in tho gelatine bromide film of an ordinary negative the electrotype is then at once passed on to the printer A gelatine bromide negative is developed with alka line pyrogallol or quinol, then fixed in strong hy posul phite of soda, and washed with care, so that it shal zontally on a metal plate, and gradually heated to 212° Faj. by the flame of a Bunsen's burner, the shadows of the image will be seen to run all over the plate. If however, before development the negative had also been impressed under a crossed-line screen, so that the
line screen and tiae picture would develop together each little dot of the screen image would hold a certain amount of reduced silver, bearing some definite pro
portion to the action of light and development, and be surrounded by a fine line containing no silver where the opacity of the screen had prevented action. The reduced silver produces a certain amount of insolubility of the gelatine with which it is in contact, and the adjacent soluble gelatine, when heated as already described, runs beneath the insoluble gelatine by capillary action, thus producing dots and an image in relief. This capillary action is proportional in some way to the amount of reduced silver, and during the heating the two effects of relief and graduation are pro ing the two effects of relief and graduation are pro-
duced at the same time. The electrotype is taken diduced at the same time. The electro
rect from the glass negative in relief.

A New Departure in Jet Propulision

To the Editor of the Scientific American
I have been an experimenter with water jet propul sion for the past few years, and the conclusion I have ultimately arrived at is that the jet is sure to drive screw and paddle wheel out of the market.
It has been the general opinion that the loss from the jet was caused by friction in the pipes. This may be true to a certain extent with outlets of such smal dimensions as Dr. Walter M. Jackson has adopted, and who, in my opinion, has gone to extremes both as re gards size of jet and velocity of discharge.
I have discovered that the real loss in all jet pro pellers has been that, as the direction of the jet has been always in a straight line in an opposite direction to the vessel's way, the jet cannot find a fulcrum close to the discharge to act against except the peripheral part of said jet. Such a jet, as the vessel is moving onward, will always discharge its water against water having already acquired a great velocity in the same direction, and will meet with very little resistance, and
the greater the velocity of such a jet, the greater will the greater

I have been in Europe for the past four years, and have come in contact with almost all the eminent engineers and naval architects, and have closely followed the trials of the jet lifeboat Duke of Northumber land.

A little over a year ago the idea suddenly occurre to me to use two or more jets, the nozzles pointing in an opposite direction to the vessel's way, and to make such jets revolve around a common axis in circular paths like the tips of a screw propeller. The object was not to allow the jet time to give the velocity to the water acted upon, and so to find a solid fulcrumfor the entire area of the jet close to the discharge.
I gradually perfected my apparatus and made some trials, which not only proved the theory entirely cor rect, but also showed that this mode of propulsion was far wore efficient, more economical, and safer than any other known mode.
I am well aware of the fact that in order to bring it to that state of perfection necessary to give it a commercial value, many a trial will have to be made yet, but I am fully satisfied that the invention will do what I claim for it.
Any existing screw vessel can be altered without any alteration to the hull whatever, no matter whether single or twin screw vessel.
My invention is fully protected ; this, however, is the first communication I have made to a scientific paper Yours, very respectfully,
alexander Vogelsang.
Brooklyn, New York, April 25, 1891.

THE SCREW PROPELLER.

The screw propeller, so called from the configuration of its blade surfaces, does really not exercise the functions of a screw, kut is an immersed waterwineel with angular floats or vanes of varying obliquity.

The slip of the screw propeller should not be calculated from the pitch of its blade angles, but from the mean velocity of rotation. The velocity of rotation is the real velocity imparted to the water in an opposite direction to the vessel's way. A screw, however,
when in rotation and moving onward, constantly acts when in rotation and moving onward, constantly acts
upon new bodies of water, and the suddenness with which the accelerated water comes in contact with undisturbed water will not permit it to maintain the imparted velocity any great distance.
Blades of great width at the periphery will keep up the acceleration of water for a longer period than nar row ones, hence the latter being more efficient. The
pitches of the blades should be such that they can easily follow up the speed imparted by the velocity of rotation; if made too fine, the speed of the vessel will
become greater than the pitch, and what has heretobecome greater than the pitch, and what has heretoThe speed of the vessel will also be materially reduced, as the backs of the blades press against the water toward which they are advancing. The pitch also regulates the quantity of water acted upon, as well as the direction of the water imparted; but it is wrong to say that a coarse pitch accelerates the water more than a fine pitch. Rather the contrary might of ten be the case.
The value of an increasing pitch blade is not to be found in the gradual acceleration of the water, but in the gradualincrease of the volume of water acted upon.

Such parts of the blade surface where the rotary speed is less than the speed of the vessel will have no pro pulsive effect whatever. When a screw is set in rotation with the vessel moored to the wharf or dock, every par ticle of blade surface will come into full action, and the engines will not be able to attain the same number of revolutions as with the vessel in motion. The less the resistance from currents, head winds, and sea a vessel encounters, the smaller the effective propelling blade area becomes, and the less will be the power required for a given number of revolutions.

Alexander Vogelsang.

Natural Gas in Kentucky.

bif. c. hovey.

In Meade County, Kentucky, near the town of Brandenburg, and located about 25 miles southwest of the city of Louisville, is a limited area of subterranean gas, differing remarkably from all other known fields. Extra-limital borings prove the area to be only about seven miles long and five miles wide. Geologically it is unique. While the Ohio and Indiana gas belt is wholly in the Trenton formation, that of Kentucky lies in the black Devonian shales, from which coal oil was dis tilled before the discovery of oil wells. The shales are overlaid by heavy limestones. There are three terraces between the Kentucky hills and the Ohio River. The boniferous limestone, where the depth of gas wells is 400 feet. On the upper terrace they cut through 156 eet of the Saint Louis limestone. The dip is from ortheast to southwest, and about 20 feet to the mile. The depth of the wells varies accordingly. - The shale is peculiarly compact, and almost as solid as cannel coal, being slatelike in appearance. It is highly fossiliferous, being full of the remains of algæ and marine shells, among which were noticed in great abundance the Leptrona sericea and the Discina nitida.
About thirty years ago parties bored here for oil but obtaining merely gas and salt water, they closed the wells. Five years later Mr. Moorman opened one of these wells and operated it for the manufacture of salt; and the flow of both gas and water continues to this day,in undiminished quantity. Other wells in the
region have also been worked successfully for salt-a region have also been worked successfully for salt-a
watter not now treated. The fact is that the entire shale is heavily charged with gas; but the trouble, in many places, is in a poor delivery. The gas seems to be available only where the texture of the shale is more openly stratified at the joints, thus allowing an escape. Although the rock is everywhere highly bituminous, no free oil is found except in very small quantities, barely enough to give the water an oily odor, and occa sionally to tinge its surface with prismatic colors from the thin oily films.
As already remarked, the gas and salt water come out together, and the problem has been to separat them. The method by which this is accomplished is original and well worth describing. A 2 inch tube is run down in a working barrel, joined to a perforated anchor let into a pocket from 60 to 80 feet below the gas vein. This perforated tubing rests on the bottow. The water is pumped up through the central tube by means of suction rods, while the gas is delivered wit unimpaired pressure between the tubing and the casing of the well. Six wells are grouped to an engine, cen trally located as to the set operated, and connected with all of them by jointed surface rods, making a "spider." It takes only 25 pounds of steam pressure to keep the pumps going, unless a well happens to be "drowned," when more pressure must be put on temporarily. The engine in use is only $12 \mathrm{~h} . \mathrm{p}$., with a $15 \mathrm{~h} . \mathrm{p}$. boiler.
Thus far forty wells have been drilled in by different companies. It is found safe to drill wells within 300 feet f each other. The largest well put out in 24 hours , 000,000 feet of gas. Three wells drilled within 600 feet did not interfere in the least with the flow of this first one. The original rock pressure is 94 pounds, and the working pressure about 45 pounds. The gas is brough to Louisville by an 8 inch line of pipes, and, as I was informed by Major Wm. J. Davis (connected with the State survey, and who has kindly verified my statements in this communication), the flow is characterized by extraordinary persistency; in this respect resem ling the gas of Fredonia, N. Y. The company, a Major Davis tells me, are now supplying 700 customers in private residences, and are actually selling a million and a half cubic feet daily ; being the product of eight wells averaging daily at the wells about 350,000 cubic feet, and piped 35 miles. Every well is said to be equally productive. By using air compressors the sup ply delivered in Louisville is increased about 50 per cent; and when the number of 8 inch mains is increased to four, as is contemplated, the sales will daily reach bout $12,000,000$ cubic feet.
The Kentucky Rock Gas Company now controls thi gas territory, and has the exclusive rights for supply ing Louisville, where it sells the gas delivered at 2 cents per thousand, both for fuel and illumination.

THE cost of a high-class eight-wheel passenger loco notive is about $\$ 8,500$.

Practicability of the Flying Machine

The annual meeting of the National Academy of Sciences began at Washington on the 21st of April in the National Museum. A number of interesting scien tific papers were read. That of Professor S. P. Langley, of the Smithsonian Institution, on " Flying Machises, attracted the greatestattetion. Professor Langley gave the results of a series of experiments he began about ive years ago to ascertain the possibilities of aerial avigation. He said that he set up on the grounds of the Allegheny Observatory a whirling machine with a diameter of sixty feet, and driven by a steam engine of ten or twelve horse power. He first sought to ascer tain whether or not it required more power to move laterally than to stand still in the air. For this pur pose he had suspended a flat brass plate from the arm of the whirling machine by a spring. When the machine was put in motion and the plate encountered an artificial wind going forty miles an hour, the spring instead of elongating actually shortened, showing that the weight or power required to suspend the plate was less when in motion than when it was standing still His next series of experiments, Professor Langley said, demonstrated that it took a second or two more for brass plane to fall four feet while in motion than when it was dropped from the hand without motion, the plane when in motion laterally sinking slowly as if the air had become dense like cream. From his experi ments he reached the conclusion that the amount of power required for artificial flight was perfectly attain able by steam engines we now possess. To him the mazing thing demonstrated by the experiments was hat the faster you go the less it costs in power, and hat a one-horse power will transmit a much heavie weight at a rapid speed than at a slow one
In summing up Professor Langley said that he did not say that man could traverse the air, but under cer tain conditions and with our existing means, so far a the power is concerned, the thing was possible. The difficulties would be in getting started, in coming down o the ground again, and in gaiding one's self through the air. Nature had supplied an instructive intelli gence in a bird to balance and guideitself. He did no question that man would ultimately acquire it. He thought all aerial navigation would pass out of the phere of charlatanism and into the hands of engineer in a short time, possibly months instead of years. He believed we would see something notable come from it Other papers.were read by A. S. Packard on "Further Scudies on the Brain of Limulus Polyphe mus;" by F. H. Bigelow on "The Solar Corona;" by Dr. Washington Matthews on "A Report on the Human Bones of the Hemingway Collection in the United States Army Medical Museum ;" by A. A Michelson on "Application of Interference Methods to spectroscopic Measurements;" and by H. S. Pritchet on "The Corona from Photographs of the Eclipse of January 1, 1889."
The Watson gold medal, awarded for astronomica Oberlin.

Making and Tempering Spiral Springs.
When the steel spiral spring of an instrument gets broken, it is much more satisfactory to make one than to send the instrument off, and be without it for a week or more
To make them use the best spring steel wire; select smooth iron rod the size of the spring to be made carefully draw the temper from the wire; fasten the rod and one end of the wire in a bench vise. Now wind the wire evenly and closely around the rod, until you get the length of the wire required for the spring. Take the rod out of the vise; fasten one end of the pring to the rod; taking hold of the other end, draw it along the rod until the spirals are the correct dis tance apart. To give the amount of spring wanted fasten it firmly to the rod, then make the spring and rod red hot, and quickly plunge them into cold water After drying, rub them all over carefully with oil, and move them about in the flame of a lamp until the oil takes fire, which will give the spring the proper temper. I know there are some who make springs direct from tempered wire; but they are much more durable if shaped and then tempered.-Dr.Wm. H. Steele, in Items of Interest.

Photoelectricity

Prof. G. M. Minchin, at a meeting of the Physica Society, January 16, read a paper on the electromotive force developed by light falling on sensitive plate which were immersed in suitable liquids. The blue end of the spectrum was found to be the most effective Currents have a photographic effect on the plates, and this action is strictly confined to the parts through which the current has passed. Comparatively strong urrents were obtained from plates coated with eosin and gelatine. A Hertz oscillator restored the sensitive tate in a cell placed at a distance of 81 feet. An ar rangement of 50 cells in series with an electrometer wa exhibited, by means of which light falling on the cells could generate sufficient e. m. f. to ring a bell or light an electric lamp.-Nature.

A Contrast in Inventions
That we are the most incentive people in the world, says the New York Tribune, is a well known fact. Indeed, the idea has peen put forward (in this country) that we are the most remarkable people on the face of the earth in all respects, and this is probably so, the very fact that other nations do not always recognize it being of itself sufficient to show their great inferiority. But it is not to the purpose to enlarge on this in the present instance, our aim being simply to describe a certain small but wonderful invention just reported from the State of Minnesota. It is interesting to note in passing the marked difference in the character of the inventions in Iowa and Minnesota. Lying close together as the two States do, we would expect, the writer adds, to find their inventive talent running in generally parallel lines, but such is not the case. The inventive genius of Iowa seems to be turned almost wholly to apparatus to circumvent the liquor prohibition law. Thus we have the Dissolving Liquor Store and the Flying Dutchman Saloon, already mentioned in the Tribune's columns, the walking stick which holds a pint, the pocket bible which holds a quart, the amateur camera which holds a quart and a half, the opera glass which holds two drinks, and the raised and glorified silk hat which holds two quarts, a pair of glasses, a silver spoon, a lemon, a quarter of a pound of sugar, and a dozen cloves. In Minnesota, where no prohibito ry law exists, we find invention turned to the arts of peace, and scarcely a day passes that the household, the office, or the fac tory is not enriched by a new idea of some bright Minnesota man. We gather the particular of the latest invention in that quarter from the columns of the Republican, an enterprising weekly published at Lake City.
The new article in question is the Ne Plus Ultra Rocking Chair, the invention of Mr. A. R Watson, and is now on exhibi tion at Crane Brothers' mam moth jewelry store. Mr. Wat son's idea is that the rocking chair should stand for comfort but the ordinary rocking chair though surpassing every othe invention of man for its cow fortable features, does not em body everything in that line It has been Mr. Watson's pleas ant privilege to supply some of these missing adjuncts. Chief of these is the temperature regu lator. Underneath the chair is a sinall bellows. This is ope rated by the rocking of the chair, and is connected with brass tube which extends up the back of the chair and slightly above it, where it curves down and ends directly over the occu pant's head. When sitting in this chair and rocking, a gentle but invigorating breeze is diffused over the entire person from the tube. It is especially agree able to bald-headed men, and an air shower bath of this nature must be very pleasan for any one on a warm day. But the ingenious Mr Watson is determined that his chair shall have all seasons for its own, and next fall he will add an attach ment under the bellows consisting of a kerosene or gas heater, which will so warm the current of air that the fortunate owner of one of these chairs will find it as useful in winter as in summer. A little scent bag con cealed in the bellows perfumes the air delightfully, whether it is hot or cold. The air current in the summer will be found excellent for discouraging the atten tions of flies and mosquitoes, and that the bald-headed man may take his afternoon nap in it undisturbed, Mr . Watson has concealed a spring and the necessary mechanism under the bellows, so that it may be wound up like a clock and run two hours, rocking the chair, and, of course, working the bellows. A music box in the back, which plays the national airs, completes the improvements to date, though so long as Mr. Watson is spared his mental faculties, no man can tell when others may follow
As we said, the contrast between the inventions o the two neighboring States of Iowa and Minnesota is truly striking. But how much wore will those o Minnesota do for the cause of civilization? For in stance, how much greater will be the influence for good of the Watson hot and cold air rocking chair than wil be that of a hymn book which holds a quart-or even two quarts!

portrait of columbus by sebastian del piombo recently discovered at сомо.
though that seems almost asserted in the stress that is laid on the popular statement that water is its natural element, and usage makes it difficult to think of a ship apart from water. It is lost sight of that a ship is a land-built structure of the strongest and stiffest design, fitted to withstand the tossing and buffeting of th highest seas and the wildest storms. Now pounded and overswept by a colliding wave, and the next moment bare of water almost to the keel, while all the time, perhaps, the rocking and plunging and the mighty wind is tearing the rigging and snapping the spars. Nevertheiess, vessels that have lived through fifty yoars of such life are not uncommon

Lighthouses and breakwaters tell enough of the fury of the sea to ridicule any pretense of hydrostatic pressures around ships exccpting in still water, or that naval constructors build ships dependent on the wate pressure to keep the cargo from bursting out the sides, or that water is the natural element of ships in the caressing sense used by the good people who object to ship rail ways as snares of destruction.
"It therefore follows that a ship resting on blocks a short intervals, along the keel and bilges, is ade quately supported, and that if borne on a suitable car riage over a smooth and rigid roadway, it will mak the journey with as wuch eas as under the most favorable con ditions afloat, or, generally speaking, that a ship is as wel adapted to traveling by rail as by water.
'The Chignecto ship railway will soon be an accomplished fact. Others will quickly fol low, and it takes no gift of prophecy to foresee the time when every isthmus will pass ships dry shod, if need be, and when inland cities will be open to navigation with rails, and the freight car and the ship wil occupy adjoining sidings at the warehouse and factory. It is not beyond belief that a twentieth century siege may be conducted by war vessels on temporary roads, opposed by traveling fort resses on strategic railways that defend every approach.'

Hydraulic Electric Lighting.

The Hartford, Conn., Electri Light Company has nearly com pleted a notable undertaking fo utilizing the fine water power o the Farmington River, where with to operate their central sta tion, from which is distributed current for both light and powe throughout the city of Hartford

Under contract with the Farm ington River Power Company which owns the dam, about 300 feet long, across the Farmingto River, nearly ten miles from the city, the Electric Light Compa ny has erected a station with full equipment of dynamos, etc. and will hereafter furnish the current for all the city stree lights and for power purpose from that station.

Six dynamos are now in opera tion, supplying 250 street lights.
but from its art history, as it was painted by Sebastian del Piombo.* It was formerly regarded as an heir loom in the family, now extinct, of the Giovios, and was in the possession of the writer Paul Giovio, who refers to it in his works, and had it engraved. On the failure of the male branch of the Giovio family, the portrait passed, two generations ago, to the De Orch amily, and is now in the possession of Dr. De Orch of Como.-Illustrated London News.

The Ship Railways of the Future.

In a paper lately read by John F. O'Rourke on the Chignecto ship railway, before the American Societ of Civil Engineers, the author said :
"This will be the first application of rails to naviga tion, and Canada has secured the honor by guaran teeing for twenty years an annual sum equal to one two-thousandth the yearly receipts of the New York Custom House. As when built it will, most likely, be self-supporting, Canada may be said to have purchased the honor with a little accommodation.
"If ship railways will do all that is claimed for them, and it is morally certain that they will, a new era is about to open in transportation. A ship is not a fish,

[^0] Colonnar and of Popes Adrian V.. Clement VII.. and Paul IIL

Four more are to be added, which will then generat Four more are to be added, which will then generate
enough electricity to supply the rest of the street lights, two hundred of which are yet supplied from dynamo operated by steam in the station on State Street. It is intended to add a large generator of 300 horse power or supplying electricity for power purposes.
The fall over the dam is $191 / 2$ feet, and the volume of water about two feet deep. The force is estimated to be equal to $1,000 \mathrm{~h}$. p. The supply of wate is considered to be unfailing, and far in excess of any possible future requirements of the lighting company To convert this great power from the river, six Rodney Hunt horizontal water wheels are used, with a capa city of 800 h . p., and the power is conveyed to the dynanos by shafting and belts.
To convey the electric current to the city, 500 poles, varying from 40 to 70 feet high, have been erected, car rying eleven wires. The water power at the dam is very steady, and improvement in the city lights sup plied from this source is already perceptible.

Parasitical Plants.

The author proves that a parasite growing on plants of the Strychnos genus contains neither strychnine nor brucine. The mistletoe growing upon the oak does not contain the blue tannin of the latter, but exclia sively a green tannin. In like wanner other parasite are shown not toabsorb the peculiar principles of their hosts.-A. Chatin.

[^0]: in 1547. He was especially celebrated as a portrait painter ha of Andrew Doria, in the Doria Prated as a portrait painter, his likeness kown worke He also acquired fame as a painter of the portraits of the

