

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, MARCH 28, 1E91.	

THE BOYNTON UNICYCLE RAILROAD.

During several weeks last summer there were in regular and continuous operation, in railway passenger service, the locomotive and cars shown in the lower view herewith presented, the service being between Gravesend and Coney Island, on an abandoned section of an old standard gauge track of the Sea Beach and Brighton Railroad. The locomotive weighs nine tons, and has two 10 by 12 inch cylinders, the piston rods of both being connected with cranks on each side the single six-foot driving wheel, and the front of the locomotive being also supported by two 38 -inch pony wheels, one behind the other. These wheels have double flanges, to contact with either side of the track rail, as also have similarly arranged pairs of 38 -inch wheels arranged under and housed in the floors near each end of the cars.
In the upper view is shown an improved locomotive especially designed for this method of traction, and built for use on a street railway of a Western city. It weighs sixteen tons and has a pair of five-foot drivers. The crank is only seven inches in length, and the engine is designed to readily wake 600 revolutions a minute, and maintain a speed of 100 wiles an hour with a full train of passenger cars. The first Boynton locomotive, described in the Scientific American in September, 1889, had an eight-foot driving wheel and weighed 23 tons. It proved too heavy for use on the

old Coney Island road, although it was undoubtedly capable of making very high speed and easily drawing a heavy train of single-wheel cars on a properly arranged track.

In a true line with, and fifteen feet directly above, the face of the track rail is the lower face of a guide rail, supported from posts arranged along the side of the track, and on the sides of this guide rail run pairs of rubber-faced trolley wheels attached to the top of the locomotive and the cars. The guide rail is a simple stringer of yellow pine, $41 / 4$ by 8 inches in section, and the standards on which the trolley wheels are journaled are placed far enough apart to allow a space of six inches bet ween the contiguous faces of each pair
of wheels, thus affording $13 / 4$ inches for lateral play, of wheels, thus affording $13 / 4$ inches for lateral play,
or sidewise movement toward or from the guard rail, it being designed that the guide rail shall be arranged in the exact line of the true center of gravity of the cars and locomotive. The standards are bolted to six-inch wide strap iron attached to and extending across the top of the car.
The switching arrangement is remarkably simple. In addition to an ordinary track switch, in which, however, the switch bar is made to throw only one rail, a connection is made by means of a vertical rod and upper switch bar with a shifting section of the
guide rail, whereby, on the moving of the track rail and the setting of the signal, the guide rail will be
simultaneously moved, the adjustment being effected and both being locked in position according to the methods usual in ordinary railway practice.
The cars, as will be seen, are each two stories in height, each story being divided lengthwise into nine separate compartments, each of which will comfortably seat four passengers, thus providing seats for seventy-two passengers in each car. Each compartment has its cown sliding door, and all the doors on the same floor of the car are connected by rods at the top and bottom with a lever in convenient reach of the brakeman, by whom the doors are all opened and closed simultaneously. The compartments are each four feet wide and five feet long, the seats facing each other. Only one rail of the old single track was used, as only one guide rail had been erected, except at the ends of the route, for switching purposes, but the width of the cars and motor was such that it only required the erection of another guide rail, for the utilizing of the other track rail, to form a regular double-track road of the Boynton pattern.
The section of road on which this system has been operated is only $13 / 4$ miles long, in which distance the curves are considerable, but, although they are mostly in one direction, the indications of wear upon the traction wheels, and upon the guide rail and trolley wheels, were hardly perceptible. During a portion of the season, when the summer travel to Coney Island

was at its height, trains were run on regular schedule time, fifty three-car trains daily each way, carrying from one to three hundred passengers per trip. The regular time taken for the run was three winutes, but pecial trips were made in two and three-quarter minutes each, including starting and stopping. The daily consumption of coal in performing this service was but half a ton. The great economy of this method of traction is also evidenced by the swoothness with which the cars run, and the entire absence of side motion and vibration, there being no striking and grinding of the wheel flanges upon the rails, as is common on double-track roads. From a seat in the top part of the tender, where one could observe how the trolley wheels followed the guide rail, it was noticed that frequently, for considerable distances, these wheels did not touch the guide rail at all on either side, and when they did approach and bear upon the guide rail it was with a gently swaying movement, indicating no expenditure of power at this point, and apparently having no effect upon the motion of the car. This was, of course, to be expected, in this system of locomotion, when a high speed is attained, and it is upon this point that the claim is made by the advocates of such systems, that in this way only is it possible to obtain greatly increased speeds on railways with the present styles of motors.

Hydrogen and oxygen Produced by Electricity

In a paper recently read before the Société Frangaise de Physique Commander Renard described his investi gations on the electrolysis of water on a commercial scale, which he commenced as far back as December, 1887. Taking the counter E.M.F. at one and five-tenths volt, and the total plant efficiency at only 50 per cent, thirty-five and three-tenths cubic feet (one cubic meter) of hydrogen can be produced for every ten horse-power hours; and taking the coal consumption at two and two-tenths pounds (one kilogramme) per horse-power hour, the cost of fuel for every thousand cubic feet at atmospheric pressure of the wixed gases comes out in France at between 32 cents and $\$ 1.20$, according to the price of coal. To make the electrolytic production of these gases a commercial possibility it is necessary to avoid the use of costly platinum electrodes and of airtight partitions for collecting the gases. Commander Renard employs an alkaline electrolyte (caustic soda thirteen per cent solution) and is therefore able to sub stitute cheap cast iron electrodes for platinum. As to the vessels for the collection of the gases, he finds that so long as they have a capillary reaction Δ equal to a few
centimeters of water, the hydrogen and oxygen do not mix. Commander Renard employs porous pots of as bestos fiber, which are able to withstand a pressure of from thirty to fifty cms. of water without permit ting the passage of the gases. The actual commer cial apparatus used at the Chalais works is as fol lows: A large cylinder of common sheet iron serves at the same time as the containing vessel for the electrolyte and as the negative electrode. The positive electrode is a perforated iron tube, fixed on to an insu lated lid, which fits hermetically on to the top of the con taining vessel. This electrode is surrounded by a large asbestos bag. Two voltmeters of this kind have been in continuous work at Chalais for some six months, and at the end of this period both the electrodes and the asbestos bag were in perfect condition. The gases given off are pure, and there is no ozone. According to Comwander Renard, a battery of thirty-six large voltweters could generate about 200 cubic feet of hydrogen and 100 cubic feet of oxygen per hour, which could be compressed to a pressure of from 120 to 200 atiwospheres in steel tubes, and utilized for therapeutic, laboratory, metallurgical, and other purposes. The total cost of these gases, ready for use in steel bottles at a pressure of 120 atmospheres, when produced on a sufficiently large scale, is estimated at from $\$ 2.92$ to $\$ 3.54$ per thousand cubic feet.

Electrical welding of Wheels and Ralls.

An invention is now undergoing investigation which promises the improvement of railway traffic. The in vention consists of a small dynamo and an auxiliary engine placed upon the locomotive in such a way as to be easily operated, furnishing a current of swall force but large quantity, which is made to pass frow one pole of the dynamo to one pair of driving wheels, thence along the rail to the other pair of driving wheels, thence to the other pole of the dynawo, thus forming a traveling circuit, moving at all times with the loco motive. By means of this current an incipient weld is caused between the wheels and rails at the point of contact, preventing the slipping of wheels. The work ing model of the device shows an increase of 400 pe cent in the hauling power of the locomotive. The model without the application of the current would not mount a grade of fifteen per cent, but when the current was applied, it mounted a grade of thirty-five per cent. A. locomotive is now being equipped with Railway.

Frientifir shmericam.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.

 published weekly atNo. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMEIRICAN

 Une copy, one year, for the U. S., Canada or Mexico.................... 8One cop, six munths, for the U. S., Canada or Mexico.
One copy, one gear, to any foreikn country belonging to Postal Union, Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., 361 Broadway, corner of r ranklin Street, New York. The Scientitic american Supplemens

The Architects and buididers Edition of The Scirntific Amek-

Spanioh Edition of the Scientific American.

 MUNN \& CO., Publishers,
 Co Readers are

NEW YORK, SA'TORDAY, MARCH 28, 1991.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

No. 795.

For the Week Ending March 28, 1891.

 Iv

 With no statutory right to the fruits of their intel lectual toil they would never have appeared on the scene as the moving force in so many parts of the commercial, agricultural, and mechanical world. The gathering at Washington of the leading scientific and mechanical workers of the age and race, the oral ex position of the law and statistics of invention, of the science and practice of invention and of its specific applications, the interesting collections in science and art, and the historical models of inventions which will be produced, all co-operate to give the occasion an im portance not exceeded in the case of any convention ever held in Washington
Our views on the maintenance of the rights of the inventor and on the preservation of the force of the Patent Statutes are known, and have often been recorded. In this convention, to include the best minds of the day among its active participators, we recognize a tribute to the inventor and an auxiliary in the defense of his rights. The voices and opinions of the old-time federal judges, upholding the dignity of the invento and his vital importance to America, will be re-echoed in no uncertain tones during the three days of commeworation. A chance will be afforded our legislator to hear the just views of the nation's thinkers upon the patent system. A barrier will be opposed to future attacks upon it, and the moral force of the convention will be great and lasting.
The first public meeting, on the afternoon of April 8, is to be presided over by the President of the United States, and on the evening of the same day the second public meeting is to be held under the chairmanship of Hon. John W. Noble, Secretary of the Interior. Two public meetings are called for the afternoon and evening of April 9, presided over respectively by Hon. Frederick Fraley, LL.D., president of the Nationa Board of Trade, and Prof. S. P. Langley, LL.D. Secretary of the Smithsonian Institution. The final public meeting is to be held on the evening of April 10 to be presided over by Prof. Alexander Graham Bell.
The list of speakers and the subjects of their orations indicate the work of these public meetings, and give its character. Dr. John S. Billings, a scientist of inter national reputation, is to treat of "Invention and Dis covery in the Field of Medicine, Surgery, and Sanita tion.". Judge Samuel Blatchford, of the United State Supreme Court, perhaps the leading judicial exponent of patent law, is to speak on the subject of "A Century of Patent Law." 'The Hon. Benjamin Butterworth formerly Commissioner of Patents, now of the United States House of Representatives, is to treat the ma terial development of the country as affected by in vention. The "New South," as an outgrowth of inven tion and of the American patent law, is to be the subject of an address by Senator John W. Daniel, of Virginia. The Comwissioner of Patents, Hon. Charles Eliot Mitchell, is tos speak on the "Birth and Growth of the American Patent System," and the copyright system in similar aspects is to be treated by Hon A. R. Spofford, Librarian United States Congress Among the other distinguished speakers may be men tioned Professor Robert H. Thurston, Director of the Sibley College of Cornell University. He has chosen for subject "The Inventors of the Steam Engine." Much of his own work has been devoted to the theory of the heat engine in all its forms, and his theme seems peculiarly suited to his record.
The above is a very incomplete outline of the work before the convention, for besides the five public meet ings and the numerous addresses, of which but a smal part have been alluded to, there will be many othe attractions. A special reception to inventors and manufacturers, and to ladies who accompany them, is to be held at the Patent Office on April 8, from 9 to 11:30 P. M. The guests are to be received by Secretar Noble and Comwissioner Mitchell. Anniversary Day is the name given to April 10. On this date, over a century ago, General Washington, as President o the United States, signed the first American Patent Law, entitled "An Act to Promote the Progress of the Law, entitled "An Act to Promote the Progress of the
Useful Arts." In commemoration of this act, at 10 Useful Arts." In commemoration of this act, it 10
A. M., on April 10, an excursion to Washington's old home and burial place, Mount Vernon, will take place Here J. M. Toner, M.D. will deliver an address on the first president as an inventor and promoter of improve ments.
In connection with the celebration, the director of the National Museum has consented to furmsh space
patents. J. Elfreth Watkins as secretary of the executive committee has issued a request for the contribution of such articles from the citizens at large. Any one possessing such objects of interest should at once communicate with the secretary with a view to their exhibition.
The most permanent and lasting action has yet to be spoken of. It is proposed to hold meetings on the afternoon of April 7 and on the mornings of the succeeding days to organize the National Association of Inventors and Manufacturers. At these meetings addresses from representatives of the above branches of work are expected. This organization, if successful, may have far-reaching results, and in any case will serve to perpetuate the memory of what will, we believe, obtain recognition as one of the most important and significant conventions ever held in the national capital.

POSITION OF THE PLANETS IN APRIL.

URANUS
is morning star until the 19th, when he becomes evening star. He holds the place of honor on the April record, for his opposition to the sun takes place on the 19th, at $1 \mathrm{~h} . \mathrm{P} . \mathrm{M}$. He is then on the meridian at midnight, at his nearest point to the earth, and in the best position for observation. He will be found about 8 east of Spica, retrograding or moving westward. He is visible to the naked eye as a faint star of the sixth wagnitude. In the telescope he appears as a small disk, of a delicate sea-green color.
The moon is in conjunction with Uranus on the 23 d at $1 \mathrm{~h} .26 \mathrm{~m} . \mathrm{P}$. M., being $2^{\circ} 46^{\prime}$ north
The right ascension of Uranus on the 1st is 13 h .53 m ., his declination is $10^{\circ} 59^{\prime}$ south, his diameter is $3^{\prime \prime} .8$, and he is in the constellation Virgo.
Uranus rises on the 1 st at $7 \mathrm{~h} .47 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 30 th he sets at 4 h .30 m. A. M.

JUPITER

is morning star, and is joint actor with Venus in the most interesting event of the month. The regal planets are in conjunction on the 7 th , at $4 \mathrm{~h} .25 \mathrm{~m} . \mathrm{P}$. M. Jupiter is then only 13^{\prime} north of Venus, the space intervening between them being a little more than onethird of the diameter of the moon. Both planets are invisible at the time of conjunction, but will not be far apart on the morning of the 8 th, rising about 40 'clock, nearly an hour and a half before the sun. Jupiter is west of Venus, is receding from the sun, and approaching the earth, and when themonth closes will rise more than two hours before the sun. Early risers who command a view of the southeast horizon will behold a charming celestial picture.
The moon is in conjunction with Jupiter on the 5th, at 5 h .39 m. P. M., being $4^{\circ} 34^{\prime}$ south.
The right ascension of Jupiter on the 1st is 22 h .31 m ., his declination is $10^{\circ} 17^{\prime}$ south, his diameter is $32^{\prime \prime} .6$, and he is in the constellation Aquarius
Jupiter rises on the 1st at $4 \mathrm{~h} .22 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 30 th he rises at 2 h .42 m . A. M.

venus

is morning star. After her conjunction with Jupiter on the 7th there is nothing to vary the even tenor of her course as she draws nearer to the sun, rising later, lessening in size, and diminishing in luster. She is not half as brilliant as she was in January, her light number decreasing frow 218 in January to 91 on the 1st. The illuminated portion of her disk increases during the month from $0 \cdot 698$ to $0 \cdot 791$.
The waning moon is in conjunction with Venus on the 5 th, at 2 h .32 m. P. M., being $4^{\circ} 51^{\prime}$ south.
The right ascension of Venus on the 1 st is 22 h .12 m . her declination is $11^{\circ} 31^{\prime}$ south, her diameter is $16^{\prime \prime} .4$, and she is in the constellation Aquarius.
Venus rises on the 1 st at $4 \mathrm{~h} .7 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 30 th she rises at 3 h .38 m. A. M.

MERCURY
is evening star. He reaches his greatest eastern elonga tion on the 19 th , at 3 h . A.M., and is $20^{\circ} 1^{\prime}$ east of the sun. The conditions at that time are most favorable for ob servation with the naked eye, and careful observers will be sure to find him, for he is in high northern declination, and sets about an hour and three-quarters after the sun. He must be looked for in the north west, about three-quarters of an hour after sunset, a few de grees southwest of the Pleiades. If the sky be cloudless and the atmosphere pure, he will surely be found shining with fitful brilliancy on the twilight sky
The slender crescent moon, when one day old, is in conjunction with Mercury on the 9 th, at $6 \mathrm{~h} .14 \mathrm{~m} . \mathrm{P}$ M., being $4^{\circ} 37^{\prime}$ south

The right ascension of Mercury on the 1 st is 1 h .1 m., his declination is $8^{\circ} 16^{\prime}$ north, his diameter is $5^{\prime \prime} .4$, and he is in the constellation Pisces.

Mercury sets on the 1 st at $7 \mathrm{~h} .3 \mathrm{~m} . \mathrm{P}$. M. On the 30 th he sets at $7 \mathrm{~h} .59 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

SATURN

is evening star. He reaches the meridian on the 1 st at $10 \mathrm{~h} .15 \mathrm{~m} . \mathrm{P}$. M., and still continues in most favorable conditions for telescopic observation. He is moving longer look like rings, but resemble lines of light pass-
ing through the center of the planet, and extending rom each side.
The moon is in conjunction with Saturn on the 19th, t $0 \mathrm{~h} .33 \mathrm{~m} . \mathrm{P}$. M., being $3^{\circ} 16^{\prime}$ north.
The right ascension of Saturn on the 1 st is 10 h .56 m., his declination is $9^{\circ} 11^{\prime}$ north, his diameter is $18 .{ }^{\prime \prime} 4$ and he is in the constellation Leo.
Saturn sets on the 1 st at $4 \mathrm{~h} .45 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 30 th he sets at 2 h .46 m . A. M

MARS

is evening star. He is in conjunction with Neptune on the 28 th at 11 h .26 m. A. M., Mars being $2^{\circ} 17^{\prime}$ north. The right ascension of Mars on the 1 st is 2 h .58 m ., his declination is $17^{\circ} 22^{\prime}$ north, his diameter is $4^{\prime \prime} .6$, and he is in the constellation Aries
Mars sets on the 1 st at $9 \mathrm{~h} .18 \mathrm{~m} . \mathrm{P} . \mathrm{M} . \quad$ On the 30 th he sets at $9 \mathrm{~h} .7 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

NEPTUNE

is evening star. His right ascension is 4 h .12 m ., his declination is $19^{\circ} 31^{\prime}$ north, his diameter is $2^{\prime \prime} .5$, and he in the constellation Taurus.
Neptune sets on the 1st at 10 h .44 m. P. M. On the解h he sets at $8 \mathrm{~h} .51 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.
Mercury, Neptune, Mars, Saturn, and Uranus are evening stars at the close of the month. Jupiter and Venus are morning stars.

How to Mount Maps and Drawings.
A short time since, in the "Query" column of your paper, I noticed an inquiry in regard to the best me thod of mounting drawings, etc., on cloth. The answer you gave, while correct, so far as it goes, is apt to mislead a novice, and will not give the most satisfactory results.
To begin with, a paste of good quality is required. When paste is made at home, trouble often arises from scorching, or from the addition of too much water. Thoroughly made paste, when spread on paper, will not strike through, but will remain on the surface, like butter on a piece of bread. To enable the paste to keep for several months in a cool place, add dissolved alum as a preservative, in the proportion of a tablespoonful of pulverized alum in two quarts of warm or hot water.
Put the water in a tin pail that will hold six or eight quarts, as the flour, of which the paste is made, ex pands greatly while it is boiling. As soon as the water has cooled, stir in good rye or wheat flour until the liquid has the consistency of creaw. Beat thoroughly with a paddle-shaped stick, and see that every lump is crushed before placing the vessel over the fire. Care should be exercised to have the water cool before adding the flour, otherwise the paste will be lumpy.
To prevent scorching the paste, place on the fire a pot or kettle partly filled with water, and set the pail containing the paste materials in the water, permitting the bottom to rest on a few large pebbles to prevent
excessive heat. Of course, a "farina kettle," or "double boiler," is better, and will be less troublesome to handle, but the "ruling element" of the kitchen will not always permit its use. Add a teaspoon ful of powdered resin, a few cloves tied in a cloth, so that they will flavor and not discolor the paste, let it cook until it assumes the consistency of " mush," then, if any lumps appear, strain through a sieve. Keep in a tight jar, and if it becomes too thick after standing, put the quantity required in a suitable dish, and thin by adding cold water and stirring thoroughly.
So much for the paste. Now let us proceed to the mounting. Cut the cloth from one to two inches large all around than the drawing or paper to be mounted. Lay it on a drawing board or table, dampen well with a sponge, stretch lightly, and tack down; use small
tacks, and place them four or five inches apart, or tacks, and place them four or five inches apart, or closer, if necessary.
Leave it for a moment, and while its surface is eva porating and absorbing the surplus dampness, lay the drawing, map, or paper to be mounted face downward on another table, and dampen the back with a wet sponge. Returning to the cloth, with a brush (a large, ound fine-haired paint brush is best) lay the paste on evenly and smoothly, and then, after the surface is well covered, take the brush and BEAT the paste thoroughly into the pores of the cloth. "After this is done smooth the surface nicely.
Take up the paper by the corners, and, if the thick ness of the paper seems to require it, apply the sponge again. The paper should be limp, but not wet. If it is not well prepared, my experience has been that the surface will "blister," particularly on large drawings, for the paste adheres: much better to a damp surface than to a dry one.
At this stage it is best to obtain some assistance. Have your assistant grasp two of the corners of the drawing or paper while you manage the others, holding the paper suspended horizontally a few inches above the cloth. When it is in the right position place your end on the paste-covered cloth, while your assist nt still holds his end up. Place a piece of clean paper hands brush quickly frearing the sheet, and with the
both sides, working constantly toward your assistant as he slowly lowers the paper to the cloth. Rapid manipulation is necessary to insure perfect contact and a smooth surface.
Should any "blisters" develop, rub them briskly with the bone handle of an eraser or any similar substance. Simall undulations will disappear when the cloth dries. Stand the board aside with the cloth tacked to it, and allow to dry thoroughly, then cut off as required.
Ordinary bleached cotton cloth or sheeting makes a good backing for small sheets, while large ones are best mounted on a heavy grade of unbleached mate rial. These directions are general, and have been found to work well in practice. Individual experience can alone, however, determine many of the details.
Other paste than that described may be used if de sired, though it is doubted whether a better can be obtained. Should any of your readers know of a better method, many, including the undersigned, would doubtless be glad to hear of it. Chas. L. Bailey. Washington, March 9, 1891.

The Water Beetle

Lately I kept for a few days for inspection that very beautiful insect the water beetle. The specimen wa large and splendidly colored, gold banded, and displaying brilliant iris hues on its legs. I placed it in a glas jar of water. On the surface of the water some leaves were laid. On one side of the jar, at the bottom, was pasted a square of paper, and to the shelter of this the beetle often retired. It seemed to take the reatest delight in darting, swimming, and diving, rising from the bottom of the jar to the top of the water by long, vigorous strokes of its hind legs. Then joining its second pair of legs before it, like a slvim mer's hands, and stretching the hind pair out nearly ogether, it would dive to the bottom. It slept hang ing head downward under the leaves, with the tip of he body above the water to secure air.
It showed the pleasure of a child in "blowing bub bles." Rising to the surface, it would put the tip of its body above the water, part the elytra, and take in ir ; then, closing its case, it would dive to the bottom, stand on its head, emit the air bubble by bubble unti it was exhausted, and come up for a new supply. It eemed to need the daily renewal of the water in the ar. When it was hungry, or the water was not fresh enough, it becaus dull and sulky, and hid behind the paper. After the beetle had fasted twenty-four hours, I laid on the top of the water a wasp, a mosquito, a blue bottle fly, and a common fly, all dead. The beetle, being at the bottom of the jar, did not seem to see or simell these insects. Rising presently, he came up against the mosquito, seized the body in his jaws, and sucked it dry with one pull. He then found the blue bottle, carried it down to the shelter of the paper russed it neatly, cutting off the wings, legs, and head and letting them float to the surface. He then held the body in his hands, or short front feet, pressed to his jaws, and sucked it dry. After this he rose to the surface, found the other fly, and served it in the same fashion. Next he found the wasp, a large one. Carry ing this below, as he had the flies, he clipped off the wings and legs, but took the precaution to suck the head and thorax before turning thew adrift. He also grasped the body in his hands, pressed the part that grasped the body in his hands, pressed the part that
had been cut from the thorax to his mouth, and holdhad been cut from the thorax to his mouth, and hold-
ing it exactly as if drinking out of a bottle, he drained ing it e
it dry.
I found that he could eat all the time, except when he was asleep or playing, and his activity was in pro portion to the quantity of his food. Cooked meat he would none of. Raw beef he did not greatly like, but raw veal he prized even above wasps and blue bottles. I cut an ounce of raw veal into dice, and dropped it in the bottom of the jar in a heap. He did not seem to see or smell it, but after a while happened to dive into t. He appeared to be full of joy at the discovery One fragwent after another he took in his hands, held it closely to his jaws, and sucked it dry by strong pulls. At each pull I could mark the receding red uice of the meat. When the veal was reduced to a pale fiber, he let it go and took a fresh bit. He always retired to the shelter of the paper to eat, with the sole exception of the mouthful he made of the mosquito. Like the King of Dahomey, he would not eat in public -Julia McNair Wright, in Science.

Engineers Must study.

A few years ago, says the Stationary Engineer, no one dreamed that in so short a time the electric light would become a regular part of the equipment of mills and factories. It was only when the dynamo found its place in the engine room and the incandescent light sarkled in the shops and workrooms that the engineer found anything of special interest to him in the study of electricity. Now he must study it whether he will or no, and though the knowledge he most requires must be of a practical nature, he must have a goodly amount of theoretical or "book" information in order to understand what he is doing.

What a Horse would say if He could speak.
Don't hitch me to an iron post or railing when the mercury is below freezing. I need the skin on wy tongue.
Don't leave me hitched in my stall at night with a big cob right where I must lie down. I am tied and can't select a smooth place.
Don't compel me to eat more salt than I want by mixing it with my oats. I know better than any other animal how much I need.
Don't think because I go free under the whip I don't get tired. You would move up if under the whip.
Don't think because I am a horse that iron weeds and briars won't hurt my hay.
Don't whip me when I get frightened along the road, or I will expect it next time and way be make trouble. Don't trot me up hill, for I have to carry you and the buggy and myself too. Try it yourself some time. Run up hill with a big load.
Don't keep my stable very dark, for when I go out into the light my eyes are injured, especially if snow be on the ground.
Don't say whoa unless you mean it. Teach me to stop at the word. It may check me if the lines break, and save a runaway and smash up.
Don't make me drink ice cold water, nor put a frosty bit in my mouth. Warm the bit by holding it a half minute against my body.
Don't forget to file my teeth when they get jagged and I cannot chew my food. When I get lean, it is a and I cannot chew my food
sign my teeth want filing.
sign my teeth want filing.
Don't ask me to "back" with blinds on. I am afraid to.
Don't run me down a steep hill, for if anything should give way, I wight break your neck.
Don't put on my blind bridle so that it irritates my eye, or so leave my forelock that it will be in my eyes. Don't be so careless of my harness as to find a great sore on me before you attend to it.
Don't lend me to some blockhead that has less sense than I have.
Don't forget the old book that is a friend of all the oppressed, that says: "A merciful man is merciful to his beast."-Farm Journal.

The Source and Force of Electricity.

"All the energy in the world," said Dr. C. F. Chandler, in a recent lecture before the Columbia School of Mines, "comes from sunshine. Even the energy in the electric battery that rings the door bells of our homes has its origin in the light of the great solar system. The force in the copper wire that sets the bell to ringing comes from the zinc plate in the battery jar. The energy in the zinc plate comes from the anthracite coal with which it was burned when taken from the mines, and, finally, the energy in the anthracite coal was put there by the sunlight that fed and nourished it when it existed, ages ago, as trees and plants.
"An interesting misapprehension that exists in the minds of a good many persons is concerning the vital dangers that lurk in the pressure of say a thousand volts.
The newspapers often tell us that a man has been killed by such a pressure, whereas, in fact, such a pressure humming bird. I hav frequently caught in my hand sparks pos sessing an electro-mo tive force of 100,000 volts without feeling anything wore than a very slight burn.
"The danger arises only when the volts are re-enforced by a good many amperes or currents, as when one takes hold of a charged wire. Then one feels a shock that is unmistakable, because the force of a great many currents in the wire suddenly decomposes all the fluids in his body. The salt in the blood at once turns to chlorine gas, and the man whose veins are charged with this deadly poison cannot in reason be expected to live long."

IT is computed, in recently made statistics, that the glass bottle production of the world amounts to a daily output of a little over eleven million bottles. Of these, Germany, Belgium, and Austria-Hungary make more than three-fourths, England and Sweden coming next, while the production of France and the United States combined is said to be quite inconsiderable in comparison.

DRAIN AT KHORSABAD-POINTED ARCH.

In the manufacture of incandescent lamps, success may be said to depend on several swall points. The exhaustion, we know, iuust be as complete as possible to insure long life anù reasonable efficiency. During the exhausting process it is the usual practice to heat the carbon filament to incandescence, in order that all air contained in the substance may be expelled. It has been found that if the filament is heated at too early a point during the exhausting process, it produces a more or less porous condition of the carbon and that a lamp made in this manner has neither a very long life nor a high degree of efficiency after having been in use for a short time. As an improvement on this, the globes are exhausted to as great a degree as may be and in as short a time as possible; then the current is passed through the carbon, and it is brought to incandescence for a few moments while the vacuum pump is still working. The vacuum pump used in this pro cess is wholly mechanical and very quick acting and is reported to be much quicker in its action than the mercury pumps commonly in use for this purpose From two sets of lamps made from similar filaments, a writer in the Stationary Engineer has discovered tha one set exhausted in the usual way by mercury pumps, while the filaments were heated by the current, the other set treated with the mechanical pump and the current sent through the filament just previous to sealing the lamps, showed in the latter case the highest efficiency and longest life. The reasons for this may be inferred to have been that in the former case the filaments were partially disintegrated in the rarefied atwosphere.

The Chinese Can sing.

An impressive scene recently was presented at the Congregational church in Stockton, California. The occasion was the celebration of the anniversary of the Chinese Mission in that city. A part of the exercises consisted of singing in chorus and solos and addresses by the Chinese. The singing, especially of solos and hymns, was a surprise, as it was generally supposed that the Chinese were destitute of capacity in that direction and incapable of appreciating harmony, judging by what travelers in China tell us and of the bar barous exhibitions given in this country by untaught immigrants. One soloist particularly carried the audience by storm and elicited applause that was with difficulty checked.

Filing Commutators.

Whenever it becomes necessary to file the commutator of a dynamo or motor, the persistency with which the copper will stick in the creases of the file causes considerable annoyance, and not only this, but the particles will scratch the copper segments. Filing a commutator is not the best way of dressing one up, but it is infinitely superior to allowing it to run while in a rough condition.

If the filing is done steadily while the machise is running at a fair speed only, no difficulty need result from such practice. The greatest trouble will be found in the particles of copper sticking in the grooves of the file. This can be practically avoided, says the Stationary Engineer, by first wetting the file in a bucket of water, which will prevent the copper particles from sticking, although it allows them to accumulate, but that is no detriment, as they can be easily washed out simply by the application of water while rubbing with the fingers. To keep the file wet, a bucket of water should be kept close at hand, into which the file is to be dipped before comcity. This experiment clearly proves that a vault can mescing work and as often afterward as occasion may readily be built according to this system without timber centers.
In view of the simplicity and practicability of this method, it would seem to be worthy of the attention of modern mechanics, as long stretches of vault suitable for many uses can be quickly made in this manner, and the time and material required for the erection of timber work can be wholly saved.
It will be seen that only enough inclination is required in the successive courses to canse the bricks to retain their position by their own friction until the course is complete.
require. The small amount of moisture that will adhere tn the file will not in any way injure the commutator or its insulation. The greatest difficulty to be met with will be in keeping the commutator round. If filed out of round to such an extent as to cause any trouble, the commutator should then be chalked and the high places flled down, which will bring it sufficiently true to work without trouble of any kind. From a number of experiments in drilling and filing copper we have found, says the writer, that the use of water assists materially in the work when the tools are kept wet with it.

AN IMPROVED CABLE RAILWAY CROSSING

The illustration shows plan and sectional views of a cable railway crossing so arranged as to bring the crossing cables near each other, while preventing the cables from coming in contact. The main track, A, is crossed at right angles by the track, B, C being the main cable and D the crossing cable. Two pulleys, E E^{\prime}, are arranged in line at right angles with pulleys, $\mathrm{F}^{\prime} \mathrm{F}^{\prime}$, to turn in the frame, G, which is held in position by a lever, H, extending in the direction of cable, D. The pulleys, F F', are supported by cable, D, and a counterpoised lever, not shown, but similar to lever, P. Cable, C, passes over the pulleys, $\mathrm{E} \mathrm{E}^{\prime}$, which are so arranged with pulleys, FF^{\prime}, to frame, G, that the cables are prevented from coming in contact with each other. When the crossing cabl is elevated by a grip car approashing in the direction of arrow, a^{\prime}, the grip carries the cable to the height shown by the dotted lines in Fig. 2. A pulley attached to the grip, but not shown, then engages the under surface of lever, O, which is raised to a hori zontal position, its pulley, O^{2}, supporting the cable until the grip is swung to the left by a curve in the slot, when the mechanism swings down to allow the grip to pass over cable, C. In the path of the grip over cable, C, is a counterpoised broad lever, P, having mounted on its free end a pulley, P^{\prime}, to engage cable, C, and prevent it from swing ing upward as the crossing cable grip is passing over it. The grip next engages lever, Q, in the same manner as lever, O, the mechanism permitting the necessary up ward motion of the cables as a car approaches the crossing, and, without bending either cable over the pulleys, Ipreventing them from coming in contact with each other.

Further information relative to this in vention may be obtained of the patentee,
Dr. James P. Orr, No. 638 Fifth A Dr. James P. Orr, No. 638 Fifth Avenue, Pittsburg, Pa.

A SPRING DEVICE FOR SINGLETREES.

The device shown in the illustration, which has been patented by Mr. Benjamin B. Allen, is designed to lessen the racking of carriage tops from the sudden jerking of the vehicle, and prevent shock to the horse's shoulders in pulling carriages supplied with the attachment over rough or uneven roads. The attachment consists of a double or bifurcated coil spring, the coils being arranged parallel with each other, and having upwardly extending arms firmly riveted to the cross bar connecting the shafts. Bent rearwardly and upwardly curved arms of the spring meet in a common center portion where the bifurcated section terminates, and this free end is centrally pivoted to the singletree which is free to swivel or vibrate as affected by op posite side pulls. To prevent too much movement of the singletree, and limit the pull on the spring attach-

ALLEN'S SPRING-ATTACHED WHIFFLETREE

ment, the ends of the singletree are loosely held by flexible loops or straps fastened to the cross bar.
Further information relative to this invention may be obtained of Messrs. Weisbaum \& Wilson, P. O box No. 186, Hanford, Cal.

IT is said the largest mass of granite ever quarried was taken out by the Bod well Granite Compañy, in Vinalhaven, Me. It exceeds in length any of the Egyptian obelisks, the tallest of which was brought from Heliopolis and subsequently taken to Rome, where it now stands. This monument is 105 feet high. The Vinalhaven shaft will be 115 feet high, 10 feet square at the base and weighs 850 tons. This would, perhaps, form a good monument to the memory of General Sherman.

by professor douglas
If the house of Mr. Augustus Franks or of any other well known collector of Oriental porcelain were overwhelmed and destroyed by a sudden catastrophewhich Heaven forbid !-and if, after two or three cen don News.
guides us to a date about 4500 B. C., and we may there fore congratulate the British Museum on having ac quired, by a happy chance, one of the oldest Chaldean monuments ever brought to Europe.-Illustrated Lon

Copper Sulphate

An establishment for the manufacture of copper sul h- phate was set up by M. Defrance (Societe des mines ning of the year 1890, to meet the wants o the vine growers, who use a large amount of this product to prevent mildew. In this works the sulphate is prepared from metallic copper, which is heated to redness with sul phur in a series of reverberatory furnaces, the subsulphide thus obtained being then roast ed in order to form a basic sulphate. Thi sulphate is next brought into large vats, in which it is dissolved in dilute sulphuric acid, Pthe liquid being maintained at the proper temperature.
The solution obtained is run into four series of twenty large leaden vessels, wher the sulphate crystallizes out as the solution cools, the crystals being deposited on sheets of lead which dip into the liquid, and are supported by cross pieces of wood. When the crystallization is complete, the liquor are run off, and the crystals removed from the walls and the leaden sheets.
After removal from the crystallizing vat the crystals are placed on an inclined table and sorted according to size and color by workinen. They afterward are passed down to the lower story to the driers.
These consist of large inclined tables which allow the water to drain away. The crys tals are spread on these in thin layers, and moved about from time to time. The tem peraturelof the room is kept sufficiently high to dry them. After drying, the sulphate is

ORR'S CABLE RAILWAY CROSSING IMPROVEMENT.

celain as would rejoice the hearts of the frequenters of the Christie \& Manson's sale room of the day. An analogous case to this has lately occurred in Knight rider Street, in the neighborhood of St. Paul's Church yard.
In the reign of the Merry Monarch this quarter of the town was the favorite business haunt of Dutch merchants. During the fire of London the then existing tenements were gutted and overthrown, and, though houses have since risen on the site, many of the old foundations have never been stirred to their depths. A few weeks ago, however, the workmen em ployed in laying the foundations of a new house dis covered in the rubbish which they were compelled to remove some old Dutch tiles and three black diorite stones bearing figures and characters which suggested to them that they were of more than ordinary interest.
This surmise was, on investigation, fully borne out, and on the stones being removed to the British Museum it was discovered that two of them bore inscriptions in the Accadian language, the pre-Semitic language of Chaldea, and that on the third were traced the usual grotesque animals and astrological signs commonly found on Chaldean boundary stones of the twelfth or thirteenth century B. C.
That these stones should have been found in the foundations of a Dutch merchant's house is to be ac counted for by the facts that in the seventeenth century, and, indeed, before that period, the Dutch flag was well known in the Persian Gulf, and that Dutch merchants had extensive mercantile relations with the traders of Bussorah. What more natural, therefore than that these stones should have been shipped on board the ship of some Dutch captain and brought to the house of the consignee in London?
Unfortunately the inscriptions are, as is so often the case, purely religious, and do not add materially to our knowledge of the history of the country In both cases they are dedicatory and contain the dedication of the objects-a door socket and a fragment of a basin for holy water "to the god Nina, the supreme Lord, the Lord of the written tablet." The only point of historical interest in the inscription on the basin is the mention of E-anna-du, who, according to a tablet in the Berlin Museum, was a son of A-kur-gal, who is mentioned on the well known Vulture stela at the Louvre, and who is recognized as the son of Ur Nina.
The real importance of the inscriptions, however consists in the forms of the characters employed. The cript on the door socket is in the cuneiform characte of the period of Gudea; and the mention of that king's ame in connection with the dedications has enabled Mr. Evetts, of the British Museum, to fix the date ap proximately at 4000 B . C. But, far-reaching as this date is, the inscription on the basin is.still older. Before the adoption of clay as a writing material, and before, therefore, the introduction of the cuneiform character, the writing of the country was linear, and it if chis

packed and sent off.

An Interesting Literary Relic.

Mr. G. W. Davenport, the vice-president of the Thomson-Houston International Co., secured recently while in Europe a most interesting relic of which he is very justly proud. It is none other than Michael Faraday's own copy of Franklin's well known and rare collection of letters and papers on philosophical subjects. It has his book plate on the inside of the front cover, and bears signs of use.
As touching on a late memorable controversy, Mr Davenport points out that on page 325 Franklin re marks that "death by electricity would be the easiest of all deaths."

A CLASP FOR CONNECTING TIMBERS.

The device shown in the illustration, although es pecially adapted for use in connection with wagon

SALISBURY'S CLASP FOR WAGON RACKS, ETC.
racks, is also applicable where two or more timber running at an angle to other timbers and parallel with each other are to be spliced or connected. It has been patented by Mr. Harold A. Salisbury, of Vinson Oregon. Fig. 3 shows the device in perspective and Fig. 2 represents a form of clasp to be employed for securing a ladder or side extension to a wagon rack the application of both forms of the improvement being shown in Fig. 1. By this means the timbers may be quickly and conveniently joined without mortising or otherwise disturbing the wood in a manner to weaken it.

THE national museum of Brazil has come into pos ession of an enormous aerolite. It weighs 11,800 pounds.

Belgian Food Adulteration Law.

On the 15th of January regulations fixed by the Belgian Legislature, having for their object the prevention of the adulteration of food products, were to come into force in Belgium.
The first relates to the sale of artificial butters, otherwise called margarine, and stipulates that warehouses, shops, depots, as well as market stalls where margarine is exposed for sale, must present to the public view, in distinct and indelible characters, the inscription, Sale of margarine.
Casks, covers, and receptacles in which margarine is placed for sale by a shop keeper, or which are employed by the makers, wholesale dealers, im porters, exporters, consignors and consigneas of this product, wust also bear, in distinct and indelible characters, the word Margarine. Further, if the margarine intended for sale is contained in cases, casks, or receptacles not opened, the inscription will mention the name or description of the maker
Articles and wrappers in which margarine is delivered to the purchaser by a retail dealer must bear, in distinct and indelible characters, the word Margarine, and the statement of the name or description of the seller must in the inscription immediately precede or follow the word Margarine.
As regards consignments, the makers, merchants, consignors or consignees of the margarine must state on the invoices and way-bills or bills of lading for each individual consignment that the merchandise dispatched is sold as margarine.
If the margarine is sold or exposed for sale in the form of cakes or loaves, these must take the form of a cube. They must be marked, moreover, with an imprint bearing the word Margarine, as well as the name or description of the maker, unless the receptacles themselves bear these indications.
The second of these regulations relates to the sale of food products containing saccharin. It provides as foollows :

1. Under the name of products in which saccharin enters (produits saccharines) is understood any commodity sweetened by the aid of matters of which the chemical composition and physiological properties differ entirely from those of common sugar or sugars derived from amylaceous substances (maltose, glucose).
2. Proprietors of breweries, glucose factories, confectionery establishments, factories of liquors, chocolates, and other food products, who use saccharin in their manufacture, are obliged to have the following words painted in large characters : Saccharin products (pro(duits saccharine) on the outside of the principal entrance to their works and warehouses.
Warehouses, shops, depots, as well as stalls and all places of sale where saccharin products are exposed for sale, must exhibit in a conspicuous place, in distinct and indelible characters, the words Saccharin products.
3. Casks, covers, or any receptacles in which saccharin products are placed for sale by a dealer, or which are used by the makers, wholesale merchants, importers, exporters, consignors and consignees of these products, must also bear, in distinct and indelible characters, the word saccharin.
Further, if the product containing saccharin intend ed for sale is contained in cases, casks, or receptacles not opened, the inscription will mention the name or social position of maker.
4. Receptacles in which the product containing saccharin is delivered to the purchaser by a retail trader must bear, in distinct'and indelible characters, the word saccharinated (saccharine), as well as the name or social position of the trader or retailer.
5. As regards consignments, the makers, merchants exporters, or consignees of the products containing saccharin must indicate on the invoices and way-bills or bills of lading, for each individual consignment, that the merchandise exported is sold as a product containing saccharin.
Two other sets of regulations, which come into force on the 1st October, 1891, deal with the artificial coloring of food products and with the utensils, etc., used in the industry and trade in food products.
The first stipulates as follows
It is forbidden to use for the coloring of food products, such as bonbons, pastilles, sweetmeats, pastries, food pastes, confections, marmalades, sirups, liqueurs, wines, fruits, vegetables, etc., intended for sale, any poisonous coloring matter.
A list of harmless coloring matters, and a list of colors considered as injurious, will be published by the ministry of agriculture, industry, and public works.
It is forbidden to sell, to expose for sale, to detain o to transport for sale any food product manufactured or prepared contrary to the above regulations.
The receptacles or wrappers in which colored or arti ficially colored food products are contained for sale either wholesale or retail, wust bear, in plain characters, the name and description as well as the address of the seller.

The second set of regulations prohibits the use, for the preparation, preservation, or packing of food pro ducts, intended for the sale of these commodities, of
any utensils, receptacles, or different objects containing any properties which by contact with the substance they contain become poisonous or injurious to health.
Lead and zinc, as well as alloys, platings, solderings, and enamels containing these metals, arsenic, antimony, or their compounds, must especially be considered as poisonous or injurious to health in the sense of the present regulations.
The above regulations are not applicable to preserve boxes of iron plated with pure tin, of which the solderings are external and are made of an alloy of tin and lead in the proportion of a maximum of 10 per cent of the latter.
It is forbidden to sell, to expose for sale, to detain, or transport for saie prepared food substances, preserved or packed in any way contrary to the disposition of the sent regulations.
It is forbidden to sell, to expose for sale, to detain, or transport for sale apparatus, utensils, or articles intended for the preparation, preservation, packing, sale, or manipulation of food products, of which the use is orbidden by the preceding articles.
Any apparatus, utensil, receptacle, or article, of which the parts placed or likely to be placed in contact with food products in a factory, warehouse, or store of the commodities contain tin, metallic alloys, enamels, or coloring materials, must bear, in legible characters, the name or position as well as the address of the maker.
Contraventions of the law will be punishable with fines prescribed by the law of the 4 th of August, without prejudice to the application of the penalties prescribed by the penal code.

Tale or Soapstone.
The following was originally addressed to the Atlanta Talc, Mining, and Manufacturing Company, whose sample was analyzed and reported on by Prof. John M. McCandless :

As the general impression is that talc is used mainly for purposes of adulteration, I will give in detail some of the uses to which it may be applied. Talc possesses properties which adapt it to a great variety of economic uses. It is a highly infusible substance, resist ing perfectly the greatest extremes of temperature reached in industrial processes. Slabs of it are, therefore, used as fire stones in hearths, stoves, and for regis-
ter borders and pipe holes, also in tips for gas jets. A very extensive application of the material is opened up in the manufacture of linings for stoves and ranges; in short, wherever an excellent non-conducting and heatresisting material is needed, there tale would be applicable. The fine varieties are also used in the manufacture of porcelain.
Talc is readily cut with a knife, and is reduced to the condition of a white powder with the greatest ease. This powder has a greasy, soapy feel, hence the name soapstone has been applied to the mineral. These qualities, it is evident, render it suitable for diminishing friction, and when ground it is largely used as a lubricant on the bearings of heavy wheels where the friction is great, lubricating and at the same time, by excellent non-conducting, preventing overheating.
The various other uses to which it may be put, both small and great, are almost numberless. It may be used as a filler in the manufacture of paper, especially in the manufacture of wall paper and shades of the best qualities, where a handsome surface is desired. It is very largely consumed in England, especially as a ported to China and other foreign countries. It is also very largely consumed in the manufacture of soaps, not only as filler, but also as having no mean cleansing properties of it own. It is also the base of nearly all the face powders and tooth powders, costing scarcely anything, and sold at high prices. Talc is also made into dustless crayons, being far superior to ordinary chalk where a fine line is needed. Tailors use it under the names of "French chalk," "Briancon chalk," and "Venice talc," in marking cloth before cutting. It ing glass before cutting with the diamond. It readily absorbs oil and grease, and is used in powder for extracting such spots from silk and woolen goods. It is also used in dressing skins and leather in boots and
shoes, and forms a large percentage of the composition shoes, and forms a large percentage of the composition of various patent greases, as axle greases. It is also
used in imitating engraved stones, being easilycutand afterward hardened by heat, when it may be changed to any desired color by the use of metallic solutions This is also the same stone known as the " figure stone" of the Chinese, from which exquisite flyures and orna ments may be carved. This mineral is also very largely used in adulterations, though this use of it is to be de precated. Still it is better that an inert, harmless ma terial, such as this, should be used than many substances which are poisonous. As a proof of its harm less nature, it is a species of earth eaten by many savage tribes. It is consumed in the manufacture of powder and is adaed to flour, pulverized sugar, bang no other harm to the purchaser than the harm it does to his pocketbook.

I have examined the sample of talc or steatite re ceived from you. . . .
ing chemical composition :

Silica	63.60 per cent.	
Magnesia.	33.75	
Protoxide of iron.	146	"
Alumina.	$0 \cdot 42$	"
Moisture	0.48	"
Loss.	0.29	${ }^{\prime}$
Total.	100.00	cent.

The analyses of the best Italian tales only vary slightly from these figures
being silica and magnesia

Horse Breeding in New South Wales.

Mr. Coghlan, New South Wales Government Statis tician, in his report on the wealth and progress of that colony, cays that New South Wales is eminently fitted for the breeding of most descriptions of horses, and attention has long been directed to this industry. At an early period of its history the colony was enriched by the importation of some excellent thoroughbred Arabians from India; and the high name which wa acquired by the horses of Australia was largely due to this cause. The abundance of good pasture every where obtainable also contributed to this result. The native kangaroo grass, especially when in seed, is full of saccharine matter, and young stock thrive exceedingly upon it. This abundance of natural provender allowed a large increase in the stock of the settlers, which would have been a great advantage, had it not been that the general cheapness of horses led to a neglect of the rules of breeding. In consequence of the discovery of gold, horses became very high priced. Under ordinary conditions this circumstance would have been unfavorable to the breed of horses, and such was the case in Victoria; in New South Wales it was far otherwise. The best of the stock of that colony, including a large proportion of the most valuable breeding mares, was taken by Victoria, with the result that, for twenty years after the gold rush, the horse of the colony greatly deteriorated. One class of stock only escaped. The thoroughbred racer was probably improved both by the importation of fresh stock from England and by the judicious selection of mares. The period of deterioration ended about the year 1870, since which year there has been a perceptible improvement in all classes of horses. As regards the actual number of horses in the colony, this shows but little increase for the last sixteen years, the figures for 1874 being 346,$691 ; 1880,395,984 ; 1885,344,697$; and in 1889 there were 430,777 . The annual increase in the number of horses has not been more than $1 \cdot 45$ per cent during the whole period covered by these sixteen years, while the increase of population has been at the rate of 4.56 pe cent. For purposes of classification, the horses of the colony have been divided into draught, light harness and saddle horses, the number of each particular kind being as follows : Draught horses, 139.378; light har ness horses, 109,659 ; and saddle horses, 181,740.

New South Wales is, says the government statisti cian, specially adapted for the breeding of saddle and light harness horses, and it is doubtful whether these particular breeds of Australian horses are anywher surpassed. The bush horse is hardy and swift, and capable of making very long and rapid journeys, when fed only on the ordinary herbage of the country; and in times of drought, whe the grass and water have become scanty, these animals often perform astonish ing feats of endurance. Generally speaking, the breed of horses is improving, owing to the introduction of superior stud horses and the breeding from good mares. When there has been a deterioration in the stock. this has been due, it is stated, to breeding from weedy mares for racing purposes, and from the effect of the drought. The principal foreign markets for horses are the Indian and Chinese. The total number of horse leaving the colony for markets outside Australia dur ing 1889 was only 663 . Although the demand for horses in India is considerable, and Australia is a natura market from which supplies may be derived, there is no one, according to Mr. Coghlan, employed by the Indian government to make himself acquainted with the resources of the various colonies, or to furnish information to intending shippers. The speculation of sending horses to India is one open to many risks, as apart from the dangers of the voyage, there is alway an uncertainty as to the stock being accepted. It is stated that the number of horses in the Australian colonies in the year 1889 was as follows: New South Wales, 430,777; Victoria, 329,335; Queensland, 352,364 South Australia, 170,515; Western Australia, 42,816 Tasmania, 29,778; and New Zealand, 187,382; making a total for Australia of $1,542,957$.

Important seams of sinokeless coal exist in the hill ringing the Gulf of Tonquin. According to Mr. Wil hiam Warren, an engineer, one of the seams is 152 fee thick. The coal is an anthracite smokeless, and con taining 87 per cent of carbon. The steamer Fatshan making 14 knots, has been successfully tried with it, and the gulf will be of great service to the French as a coaling station in the far East.

Another Underground Electric Railway for

 LondonIn the Scientific American of November 29, 1890 and in our Supplement, No. 771, we gave descriptions and illustrations of the underground electric railway which was lately opened for traffic in London. This road, known as the City and South London Railway, is $3 \frac{1}{4}$ miles in length and consists of two tunnels, each $11 \frac{1}{2}$ ft . exterior diameter, made of iron plates, extending from near the Monument in King William Street, thence under the Thames River to Binfield Road, Clapham. The operations of the road so far have been highly satisfactory ; so much so that the parties interested have applied to Parliament for the privilege of building another line of railways, on the same general plan. These tunnels were built very economically and expeditiously by the use of an American invention known as the Beach hydraulic shield for tunneling. The new tunnels are to extend from Shepherd's Bush to Cornhill, and pass through or rather under some of the most important sections of the great city, namely, Cheapside, Newgate Street, Holborn, Oxford Street, Bayswater, and Notting Hill, with stations about half a mile apart at Lansdowne Road, Notting Hill Gate, Queen's Road, Wesbourne Road, Marble Arch, Davies Street, Oxford Circus, Tottenham Court Road, Bloomsbury, Chancery Lane, Newgate Street, and finally Cornhill. Total length six miles, and on an average about 50 ft . below the surface of the ground, rising to a nearer point in some places, but in other places being from 70 ft . to 80 ft . below the surface in the London clay. The proposed capital of the company is $\$ 15,000,000$.
It was represented to the Parliamentary committee that this railway would do precisely what the existing underground lines did, viz., tap great business thoroughfares; but there would be no such nuisance as that which rose from smoke and steam on the present underground systems; and at the same time the proposed level would avoid any disfigurement of the streets. The sites for the thirteen stations would be excavated first ; then the borings would begin, and the excavated material would be carried to the surface and carted away. There would be neither noise nor vibration nor blow holes. The two tunnels, one up and one down, would be perfectly distinct, and consequently each train as it passed through would make its own ventilation. Each tunnel would be 11 ft .6 in . in internal diameter. The stations being about 50 ft . beneath the surface, special approaches were required. There would, therefore, be at the stations hydraulic lifts, and also stairs for those who preferred them, though it was believed that the majority of passengers would use the lifts, which would be at once easy, speedy, and comfortable.
With respect to speed, Mr. Pember stated that the company would get a maximum of 25 miles an hour, but, including stoppages, the rate would be about 15 miles an hour, and they expect to do the whole journey in 25 minutes, which was 25 per cent better than on the Inner Circle Railway.
Mr. J. H. Greathead, C.E., was the first witness callMr. J. H. Greathead, C.E., was the first witness call-
ed, and explained that he was jointly, with Sir John ed, and explained that he was jointly, with Sir John
Fowler and Sir Benjamin Baker, engineer to this scheme, the object of which was to increase the traveling facilities between the western portion of London and the City.
The main line was nearly straight from end to end, the worst curve being at the jurction of Cheapside and Newgate Street, and that was not more than half as bad as the worst curve on the City and South London Railway. The worst gradient would be 1 in 100 . He stated that the surface would not be disturbed at all except at the stations.
The whole railway was to be made by boring, and the tunnels would be constructed of iron, as was the City and South London Railway. They would be made of cast iron, and composed in segments bolted together, forming rings of cast iron. In that way a continuous tube of iron would be formed.
In the construction of the tunnels the Beach hydraulic dshields are to be used, similar in general make to that employed under Broadway, New York, in 186970. The method was described by Mr. Greathead as follows
A " shield," composed of steel plates, smooth inside and out, fitting over the mouth of the tunnel, and having in front an opening and a cutting edge, and inside a number of hydraulic presses was fixed; this pressed against the end of the tunnel, and as the hy draulic pressure was increased, the shield was forced forward and drew out the clay to the outside diameter of the shield. The material brought out was thrown back to the opening of the tunnel in the front of the shield, and then taken up the shaft. When the tunnel had been advanced to the length of one ring, the segments were brought down and placed inside the shield and bolted together until the last ring was completed. When that was done the machine was ready to go forward again, but there was one other important feature. The space which was left by the advance of the shield-which was equal to the thick-
filled up. That was done by "grouting," which forced some fluid cement through holes left for the purpose in such a way as to fill up the space left by the ad-
vance of the shield, and thus all chance of a sediment vance of the sh
was prevented.
Mr. Greathead stated that on the City and South London line, after a little practice, they were able, by neans of a shield of this kind, to tunnel 16 feet a day at one facing, and for several weeks together the rate was 15 feet 6 inches per day; while at one time they did over 100 feet of tunneling a day. The progress in six months was equal to $21 / 4$ miles of completed tunnel, and the tunnels, when once completed in that way, were perfectly stable and safe.
To prevent corrosion in the iron in the proposed work, the iron would be dipped into a composition of tar while hot, and that, partly entering into the iron, formed a skin on the surface. The grouting was thus protected, and there was no chance of corrosion. The iron would be about an inch thick, and the flanges about four inches deep, the space being filled up with cement. This was the system adopted on the South London Railway, except at the stations, where, after the iron tunnels had been driven forward, larger tunnels of brickwork were constructed for the platform. That method enabled them to see how the grout had acted, and in all cases they found the space entirely filled up. In constructing the line, besides working in clay, they had in some places to go through waterbearing strata. He did not think in the new work it would be necessary to use compressed air (Haskins American system), but they would have the machinery ready if it should be required. At Stockwell, where they had to pass through gravel, there were overhead sewers, large water mains, tramways, and houses on even where they had to go through gravel. At Swan Lane, within 50 feet of the Thames, they passed from clay to gravel and the water entered, but they stopped it by bulkheads and then applied compressed air. The line passed close to and under warehouses, but he was not a ware of any vibration being felt in those build-
ings, and no complaints had been made. Neither had there been any noise during or since construction. The stations had been constructed of brickwork, and some little damage had been done near the stations.
With respect to having two separate tunnels, Mr Greathead explained that there was a great advantage in that arrangement, as a matter of ventilation, for by the mere movement of the trains perfect ventilation was secured. As the train entered a station it forced the air out, and as it left the station it drew air after it. The tunnel and train really formed a sort of tightfitting cylinder, and in this case there would be no smoke or steam to vitiate the atmosphere. There
would also be no soil vibration. The South London tunnels were perfectly free from moisture. The car riages would be entered at the ends, one reason for this being that it would be impossible to have side doors, because the Board of Trade required that there should be a sufficient space to allow of the doors being open and in this case that would involve a tunnel 15 ft . or 16 ft . in diameter.
It was also found on the elevated railways in America that end entrances were most convenient and the carriages on this new line would be very simi lar to those on the railways in New York. Each train would carry 336 passengers, and it was intended to have two classes. The motive power was to be electricity gen erated at Shepherd's Bush for the whole line, carried by a main conductor throughout the whole leggth of theitwo tunnels. The depot or generating station would be above ground. In addition to the main conductor
there would be a working conductor, which was a naked conductor from which the locomotive drew the current as it proceeded. That might be laid between
the rails or above. The direct current system would be adopted with a comparatively low tension, such as the Board of Trade had approved of on the South London line. He had no doubt whatever that electricity would prove as efficient in this case as it had on the South London line. It was not intended to erect any temporary shafts, but to make them so that they could afterward be used for hydraulic lifts giving access to
the trains. The hydraulic power for working the lifts would be provided at Shepherd's Bush and conveyed through pipes to the various stations. After the water again.

At a recent meeting of the Cambridge Philosophical Society, a paper was read by Professor J. J. Thomson on the electric discharge through rarefied gases with-
out electrodes. A vacuum tube was exhibited, in which an electric discharge was induced by passing the discharge of Leyden jars through a thread of mercury contained in a glass tube coiled four times along it. The induced discharge was found to be confined the part of the vacunm tube which was close to the primary discharge, and it did not show striæ. It was is strikingly impeded by the presence of a strong field is strikingly impeded by the presence of a strong field
of magnetic force.

Overrated Aluminum.
If any one ought to know what aluminum is, and what it is good for, it should be one of the leading manufacturers of this metal; and if such leading manufacturer deliberately and publicly says that aluminum is not the extraordinarily good metal that it is popularly believed to be, then we have good reason to suspect that he is right and that popular belief in the matter is wrong. These remarks are suggested by a lecture delivered by Alfred E. Hunt, president of the Pittsburg Reduction Company, before the Boston Society of Arts, on February 12, on "The Properties, Uses, and Processes of Production of Aluminum." He states that the two chief difficulties which his company has met with in selling aluminum and introducing it into the arts and manufactures of the country during the past two years have been, first, the extravagant erroneous and, in many cases, mischievously misleading claims which have been made concerning the properties of the metal; and second, the equally wide spread, extravagant, and misleading claims by in ventors of processes for the manufacture of aluminum at remarkably low prices.
We have been so surfeited lately with statements to the effect that aluminum is going to revolutionize the world that it is interesting to learn from such a source that it has some bad qualities. Among them are the following

For many purposes the pure metal cannot be so advantageously used as that containing three or four per cent of impurity. The pure metal is very soft, and not so strong as the impure. The thin coat of oxide which it gains on exposure gives it a pewtery appearance which makes it undesirable for table ware. It becomes pasty at a temperature as low as 1,000 degrees F., melt at 1,300 degrees F., and loses its tensile strength and much of its rigidity as low as 400 or 500 degrees. It is inferior to copper as a conductor of heat and electricity in fact, being only half as good. Its lack of rigidity and hardness is an obstacle to its use for many purposes such as castings. In rolling it, not nearly as much draught can be given to the rolls as in the case of steel In cold rolling it requires to be annealed of tener than steel. Alloys of the metal increase in brittleness more than they do in hardness. Its tensile strength per square inch is not greater than that of common cas iron, and only about one-third that of structural steel, while its compressive strength is less than one-sixth that of cast iron. Under transverse test, a 1 inch square bar of cast iron, 4 feet 6 inches between supports, will sustain a load of 500 pounds with a deflection of 2 inches, while a similar bar of a!uminum would de lect over 2 inches with a load of 250 pounds. The modulus of elasticity of cast aluminum is about $11,000,000$, being only about one-half that of cast iron and one-third that of steel. It combines with iron in all proportions, but none of its alloys with that metal are of value, except those with very small percentage of aluminum. Other elements than aluminum can be better employed to harden iron, and its presence in iron is to be regarded as deleterious, and to be avoided if possible. The addition of aluminum does not lower the melting point of steel, as has been claimed, nor does it increase its fluidity.
One of the most important statements made by Mr. Hunt concerning aluminum is that of its cost. It is not a cheap metal, as now manufactured in the works of the Pittsburg Reduction Company at the rate of 375 pounds per day and selling at about $\$ 2$ per pound, but he gives what may be called a theoretical estimate of its probable cost when made in great quantities in the future as follows: Two pounds alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ contains 52.94 per cent Al), 6 cents; one pound of car bon electrode, 2 cents; chemicals, carbon dust, and pots, 1 cent ; 22 electrical horse power exerted an hour water power being used, 5 cents; labor and superin tendence, 3 cents; general expense, interest, and re pairs, 2 cents ; cost of a pound of aluminum, 20 cents The above statements are made simply as an antidote to the extraordinary claims which have been made re garding the value of aluminum as a metal of construc ion, and are by no means intended to disparage the value of the metal for the uses to which it is wel adapted. These uses are very numerous, and are con stantly increasing, and there are great possibilities ye remaining for the metal, especially in the shape of it alloys with other metals, the properties of which alloys are now being made a subject of research. Mr. Hunt's paper treats largely of the uses of aluminum and of its good qualities which recommend it for these uses. He also tells us that the difficulty which has hitherto been found in soldering aluminum has at last been over come, and that it can now be soldered by the use of the blowpipe with ordinary hard or soft solder, or with pure zine, or with an alloy of zine and aluminum asth soldering metal. The novelty, which has just been covered by letters patent, is in the soldering salt which allows the solder to flow freely on the surface to be united. The difficulty of the softness of aluminum is also now overcome by the method of alloying pure aluminum with a few per cent of hardening metal, and by cold rolling, hammering, or drop forging.-Engi neering and Mining Journal.

A NEW PARK FOR NEW YORK.
Great interest is shown by the public in the bill that is now pending in the legislature of the State of New York for the conversion of the reservoir on Fifth avenue between 40 th and 42 d streets into a hanging garden. The bill for covering over the water receptacles has already passed the House and is awaiting the approval of the Senate, but it seems doubtful whether the bill will ever pass, owing to the determined opposition that has been offered by many prominent citizens, and by property owners in the neighborhood. It is claimed by those who oppose
the plan that in case
the reservoir were covered over, the water would become polluted and stagnant, and the general health of the city
would be seriously would be seriously affected. This argument is met by the claim that on the contrary the covering would protect the water from the dust, dirt, soot, and the impurities in the air of a great city.
The method to be emp.loyed in constructing the superstructure is shown in one of the views, and in the others are shown how the garden could be

TERRACES AND INCLINED PATHWAY TO RESERVOIR GARDEN.
in appearance the beer drinker may be the picture of health, but in reality he is almost incapable of resist ing disease. A slight injury, severe cold, or shock to the body or mind will commonly provoke acute disease ending fatally. Compared with inebriates who use different forms of alcohol, he is more incurable, and different forms of alcohol, he is more incurable, and
more generally diseased. The constant use of beer more generally diseased. The constant use of beer but steadily lowers the vital forces. It is our observa $\left\{\begin{array}{l}\text { tion that beer drinking in this country produces the } \\ \text { very lowest forms of inebriety, closely allied to crimi }\end{array}\right.$ nal insanity. The most dangerous clas of tramps and ruf fians in our large cities are beer drink ers. It is asserted by competent authority that the evils of he redity are more posi tive in this class that from alcoholics. If these facts are well founded, the recours to beer as a substitute foralcohol mere ly increases the dan ger and fatality.

In bitters we hav a drink which can never become gene ral ; but its chie danger will be in strengthening $t h e$ disordered cravings which later will de velop a positive dis made to appear attractive without an enormous ex-|bitters may have some medicinal qualities, which will |ease. Public sentiment and legislation should com pense to the city. The present reservoir covers nearly neutralize the alcohol it conceals, etc. These theories prehend that all forms of alcohol are more or less dan four acres, and as it is located in the very heart of the are without confirmation in the observations of physi- gerous when used steadily, and all persons who us city, such an addition would add materially to the attractiveness of Bryant Park that adjoins it, and would length of time. The constant use of beer is found to prove a great benefit to the public. In the proposed produce a species of degeneration of all the organism, plan the erection of anything in the nature of a concert profound and deceptive. Fatty deposits, diminishing hall, restaurant, or infact a building of any description circulation, conditions of congestion, and perversion has been carefully avoided, as it is believed that any- of functional activities, local inflammations of both the thing of this nature would be a great injury to the neighborhood and to the park itself. What the public want is fresh air, more parks, and plenty of breathing spaces. and this is not to be attained if the few vacant spaces that remain are permitted to be filled with unsightly pavilions or lofty buildings. In case the authorities, after a careful examination into the sanitary and hygienic conditions that affect the case, should conclude that the plan is feasible.

METHOD OF BUILDING SUPERSTRUCTURE.
hem in this way should come under sanitary and legislative control.-Quarterly Journal of Inebriety.

Cheaper Electric Meters Wanted.

While it cannot be very long before electric meters will be considered a necessity in every central station rom which incandescent rom which incandescen ights are supplied, Modern Light and Heat does not be meters are made in a less complicated and expensive man ner. We cannot, adds the edi tor, understand why so much time, energy, and money should be spent on meters which, when ready for the mar ket, are too complicated fo the every-day treatment to which meters are liable to subjected, and too expensiv subjected, and too expensive
for either customer or central

PLAN FOR CONVERSION OF FIFTH AVENUE RESERVOIR INTO A PUBLIC GARDEN

it is to be hoped that this will be borne in mind, and that the area will be devoted exclusively to the uses of a park, which from the beanty of its situation and from the novelty of its plan would prove a boon to the public an attraction to visitors, and a pride to the city.
iver and kidneys, are constantly present. Intellectually, a stupor amounting to almost paralysis arrests the reason, precipitating all the higher faculties into a mere animalism-sensual, selfish, sluggish, varied only mere animalism-sensual, selfish, sluggish, varied only
with paroxysms of anger that are senseless ond brutal ;
station to buy. The meter which is to come into most general use is the one combining accuracy and simpli city, for no manager will buy them unless they possess the former feature, and the greater the simplicity the less cost to user, and consequent greater adoption.

A FISH habitation
 \section*{by wa. p. seai}

The common toad fish, Batrachus tan, owing to its extreme hardiness, wide distribution, and the ease with which it is kept in salt water aquaria, is perhaps the best known of our more curious marine fishes.
They are generally considered to be ugly and repulsive in appearance. Studied as examples of harmony in design and color, they might be called beautiful. As a compromise of the two ideas, they might appropriately be called beautifully ugly.
They are not generally much valued as food, although in some parts of Chesapeake Bay the fishermen esteem them very highly, the meat being firm, white, and delicate. They may, therefore, some day occupy a high place in the esteem of the epicure.
They usually deposit their eggs (in a single layer) on the under side of stones or in crevices of the rocks, the under side of stones or in crevices of the rocks,
the male guarding the eggs, and also the young, which the male guarding the eggs, and also the young, which remain attached where depo
period after they are hatched.
The accompanying illustration represents a habitation selected by a toad fish. It is one of two (the other a jug with neck broken off) which were taken frow Great Harbor, at Wood's Holl, Mass., and sent to the aquaria of the United States Fish Commission at Washington, D. C., where they are now exhibited.
When found each of the vessels had the eggs of a toad fish adhering to the upper inside surface and was occupied by the male fish, which guards the eggs and young until they are ready to take up the thread of life on their own account. The toad fish is often found ensconced in pieces of drain tile and even old shoes and boots or other hollow receptacles affording it the necessary protection. The writer found a writer one in Chesapeake Bay enjoying possession of a beer bottle having the bottom knocked out. T,h'e outside of the bottle was beautifully ornamented with a luxuriant set of oyster spat.
oyster spat.
In the aquarium at Washington there are frequent battles for possession of the pitcher and jug. but the ones having occupancy at the time are always able to hold ways able to hold them against ag-
gressors, demongressors, demonstrating that possession is a great advantage outside the jurisdiction of courts.
habitations by some species and the actual building of quite elabo rate ones by others seems to indicate an æsthetic sense as well as a comprehension of the problems of life, not so much different, perhaps, from those of prehisto ric man or of the lowest existing races. Much obser vation of what are called the lower forms of life is apt to impress one with the idea that their perceptive faculties are more acute than our own concerning the actual necessities of existence, that the emotions or feelings which actuate them are not dissimilar from those we experience, and that their judgment is possibly quite as nearly infallible as our own.

Oxalic Acid from Waste Sulphite Liquor.

Waste liquors produced in manufacturing wood fiber by the sulphite process are filtered either through felt bags or through filter boxes filled with sawdust, and are thus freed from mechanical impurities. It is found that 100 parts of waste liquor give an average of 12 parts of dry residue on evaporation, which contain 9.5 parts of organic and 2.5 parts of mineral matter.

This filtrate, which contains chiefly lime salts, be sides the organic matters, is mixed with more than sufficient sulphuric acid to combine with the lime unde constant stirring in wooden tubs or vats provided with steam pipes, so that the gypsum can separate out. The warming and stirring are continued until all free and combined sulphurous acid is expelled, which may be condensed and utilized if desired. The completion of this part of the process can be easily found by the well-known iodate of starch reaction, and at the same time all lime contained in the liquor sinks to the bottom as sulphate. If any excess of sulphuric acid has
been added, it is removed by carefully neutralizing with either quicklime or else chalk.
The clear liquor above the sediment is removed either by being carefully drawn off as it clears quickly or by the use of filter presses. If no attention is to be paid to the recovery of the sulphurous acid, and the only question is to quickly purify the waste liquor, then a suitable quantity of lime is added to the filtered liquid, so that the lime added to that contained in the waste liquor is deposited as insoluble monosulphite of calcium. Warming is an advantage for quick separation.
The purified liquors are concentrated to about $40^{\circ} \mathrm{B}$. in special evaporators constructed for the purpose, and the evaporation is sometimes even carried to dryness. While still warm the mass is mixed with double it weight of a mixture of 2 parts of caustic or quick lime and 1 part of caustic soda, or, if required, with an equivalent quantity of alkalies.
The next process is the heating of the mixture, with constant stirring, and avoiding any carbonization, in iron vessels, to a temperature of above $180^{\circ} \mathrm{C}$. The product so obtained is treated in the usual way for the preparation of pure oxalic acid or of compounds of the same acid.
Another method consists in concentrating the puri fied liquors to about 30° B., and mixing this sirup to a thick and uniform consistency with sawdust, ground shavings or bark or other organic matter. After this is mixed with a due proportion of caustic alkali, it is treated in the manner described above.

The inventor of these processes is Dr. A. S. Nettle of Prague, Bohemia, who claims that in many cases a
have yet been effected, but, as already said, Professor B. Fraenkel and Dr. Heymann have been struck with the remarkable amelioration of cases so treated, and with the absence of any untoward symptoms. The drug probably only affects the diseased tissues, and it may be applicable to other affections than tubercle The address was followed by great applause.-Lancet.

Cholera and Snake Bite

It is a somewhat remarkable circumstance that while the advanced physicians of Europe are seeking remedies or certain of the most dire diseases, in the attenuated virus of such diseases, or in the blood of animals in mune to them, the same principle is advocated in India or the cure of snake bite and cholera. We have received, says the Chemist and Druggist, from Mr. Dinshah Ardeshir, wunicipal commissioner to the Maharajah of Baroda, a copy of "A Note on the Probable Discovery of Snake Bite and Cholera Cure." Mr. Ardeshir informs us that a certain tribe of serpents vield in their skull a semi-transparent, yellowish subtance, which is called the serpent's mohara, and the application of which to a snake bite prevents any evil consequences. But it is not this which Mr. Ardeshir would investigate, nor the roots and other antidotes which have been brought under his notice. The remarkable fact that the common weasel attacks serpents, whose bites have no fatal effect upon it, has led him to the "belief that the blood of the weasel must in itself be an antidote for snake poison." Ac cordingly, he proposes to inoculate various animals, which have been bitten by a venomous serpent, with the blood serum of a weasel. This proposal conforms

ield is obtained by these methods far superior to that

A FISH HABITATION-BATRACHUS TAN. produced by hitherto known processes.-Paper Trade Journal.

Professor Liebreich's Remedy for Tuberculosis,
We have received by telegram from our Berlin correspondent an account of the remedy which Professor Liebreich has introduced as a means of combating ubercular disease, and the good effects of which were vouched for by Professor B. Fraenkel in his speech at he Berlin Medical Society on February 18. It was at the meeting of this society on the 25th that Professor Liebreich gave an account of his remedy, which con sists of cantharidate of potash, a combination of 0.2 grm. pure cantharidin and 0.4 grm . of potassic hydrate n 20 cubic centimeters of water. In his opening remarks Professor Liebreich regretted that the older methods of treating disease had been so much lost sight of, and he said that he had been led to think of cantharidin in the present connection by the good effects observed from the prescription of cantharides n skin diseases. The specific property of cantharidin is to excite serous exudation from capillary vessels, and he argued that this effect would more readily occur if those vessels werealready irritated. In applying the drug to cases of tuberculosis he proceeded very cau tiously, commencing with injections of $1-50$ of a deci milligramme of the solution of the cantharidate of potash, and gradually increasing the dose. It was found that the expectoration was thereby increased, and that the ordinary dose required to produce substantial effect was one to two decimilligrammes. It is likely that six decimilligrammes would be the maximum amount that could be safely used. No cures
exactly with th line of the diph theria research which has recent ly been complet ed. As"an alter native process" Mr. Ardeshir also proposes to "at tenuate" the serpent virus, if w may use the ex pression in this case, by inoculat ing the blood of animals with ser pent virus, "and then constituting an extract for in oculation into the blood of a human being bit by a ser pent," provided the method is first shown to be successful on the lower animals. This looks like This looks like cording to Koch cording to Koch and his disciples. Koch's failure
with cholera does not intimidate Mr. Ardeshir, whose opinion is that the reason why we have not "an infallible cure for cholera is our failure in getting at the root of this fell disease."

The Milk of the Eoyptian Buffalo

According to the researches of Messrs. Rappel and Richmond, of the Khedival Laboratory, Cairo, the milk of the Egyptian buffalo, or gamoose (Bos bubalus), presents several characteristics distinguishing it from that of the cow, which may well be remembered by medical men who have to treat patients, especially infants, in Egypt or in other countries where this animal is common. The amount of fat, as we learn from the Lancet of August 23, 1890, was found to be a good deal larger than in cow's milk, the percentage in the specimens examined varying from $5 \cdot 15$ to $7 \% 35$. The sugar, which appeared to be a hitherto undescribed variety, differing from milk sugar, was also found to be of larger amount than that in cow's milk, the average percentage being $5 \cdot 41$. It is suggested that this sugar should be called tewfikose. The fat, too, was found to differ from that of cow's milk, containing minute quantities of sulphur and phosphorus, and yielding four times as much caproic acid as butyric acid, whereas in cow's milk the quantity of caproic acid is only double that of butyric acid. The milk also contained citric acid.

The reduction in the price of commercially pure aluminum from $\$ 2$ per pound to $\$ 1$ has been announced by the Pittsburg Reduction Company. The price of the metal below 97 per cent and above 90 per cent pure, containing neither sulphur nor phosphorus, which is suitable for alloying with iron and steel, has been further reduced to 90 cents per pound.

Early History of Steam Navigation.

At a recent meeting of the American Society of Mechanical Engineers a chronological statement was read by William Kent of the several experiments in propulsion by steam which were made before Fulton time, with lantern views illustrating many of them.
The following is an abstract of Mr. Kent's chrono logical lecture on steamboat experiments down to the time of Fulton. In it he gives due credit to all claimants of the honor of being the first inventor of the steamboat, arranging them in order of their dates.
1543.-Spanish writers tell a somewhat apocryphal story of a boat of 200 tons moved by paddle wheels, built by Blasco de Garay. Part of the machinery was said to be a vessel of boiling water. Objection was made to this part of it on account of the danger of explosion. No credence can be given to this story, as far as it has any reference to steam power.
1621.-Witsen's treatise on shipbuilding, published at Amsterdam in 1621, has an engraving of what is called a Liburnian or Leghorn vessel propelled by paddle wheels turned by oxen. A reproduction of this en graving is given in vol. xix. of the Mechanic's Maga zine
1651.-An English pamphlet, supposed to be by the Marquis of Worcester, contains an indefinite reference to what may have been a steam engine, and it was said to be capable of propelling boats.
1690.-Denys Papin, proposed to use his piston engine to drive paddle wheels to propel vessels.
1:07.-Papin applied his pumping engine to raise water to turn a water wheel, which in turn drove the paddle wheels of a boat. He drove a model boat in this way on the Fulda at Cassel. This was probably the first actual experiment in driving a boat by steam power.
1736.-Jonathan Hulls took out an English patent for the use of a steam engine for propelling ships. There is no record of it having been carried into effect.
1752.-Bernouilli obtained a prize from the French Academy of Science for the best essay on the manner of propelling vessels without wind. He proposed a set of vanes like those of a windmill (a screw propeller in fact) driven by either animal or steam power. He also proposed jet propulsion, or the driving of a vessel by the reaction of a jet forced out of her stern. About the same time Gautier proposed to use the Newcomen engine to drive paddle wheels.
1760.-Genevois, a S wiss, proposed to compress springs by steam or other power, and apply their efforts to propel vessels
1763.--William Henry, of Lancaster, Pa., went to England in 1760, and there became acquainted with Watt's engine, which was then new. He returned to America, and in 1763 built an engine and put it in a boat fitted with paddle wheels on the Conestoga River. The boat sank on her trial. He built another, but nothing seems to have come of it. In 1783 he said to a German traveler: "I am doubtful whether such a machine will find favor with the public, as every one considers it impracticable against wind and tide." In 1777 Robert Fulton, then twelve years old, visited Henry to study the paintings of Benjamin West, who had long been a friend and protege of Henry, and there he probably got his first ideas of steam navigation.
1770.-D'Auxiron, in France, prepared plans for adapting Watt's engine to propulsion, and in 1772 was granted the monopoly of the use of steam in river navigation in France for fifteen
ould prove his plans practicable.
1774.-D'Auxiron and his friends, Mounin and Joufroy, built a boat which, when near completion, sank at its wharf. D'Auxiron died before the boat was re-
covered and completed. After his death his monopoly was turned over to Jouffroy, who consulted Perier, a distinguished mechanic. The latter built the boat on new plans, and it was tried in the Seine, but failed to develop speed, and Perier abandoned it.
1776.-Jouffroy built a boat 14 feet long, 6 feet wide, with a Watt engine and a chain carrying duck-foot paddles. The 'paddles proved unsatisfactory and he adopted a paddle wheel, driven by a ratchet wheel motion by the piston rod of the engine
1783.-This boat of Jouffroy's was tried in public at Lyons, July 15, 1783, and is said to have been successful, but the French government declined to confirm to Jouffroy the monopoly on the ground that the experiment was not made at Paris. Jouffroy became discouraged and abandoned further attempts.
1774.-James Rumsey, of Virginia, began experiments in steam navigation.
1786.-Rumsey succeeded in driving a boat four miles an hour in the Potomac, Shepherdstown, W. Va., in presence of General Washington. He used the system of jet propulsion which had been proposed about thirty years before by Bernouilli.
1787.-Rumsey obtained a patent for the State of Virginia. He wrote a treatise on the application of steam, and organized a Rumsey Society at Philadelphia for the encouragement of steam navigation. He
a London society. A boat of his was tried in the Thames in 1793 and made four miles an hour.
1785.-John Fitch, who was born at Windsor, Conn., n 1743, and died at Bardstown, Ky., in 1798, in April, 1785, conceived the idea of applying steam to locomotion on land, and a few days afterward was led to consider plans for applying steam to propulsion of vessels. In August he showed a model of his boat to Dr. Ewing, of the University of Pennsylvania, and in September presented a model to the American Philosophical Society at Philadelphia.
1786.-Fitch made experiments on a skiff, with a three-inch engine, driving paddles; he besieged Congress and the Legislature of Pennsylvania for funds, but was unsuccessful. In the same year he was granted a patent for fourteen years by the State of New Jersey. 1787.-Fitch raised $\$ 800$, and in February began a boat of 60 tons, 45 feet long by 12 feet beam, with six oars or paddles on each side. The engine had a 12 inch cylinder. In May, 1787, a trial trip revealed some defects, which were corrected, and on August 27 of the same year a successful trial trip was made at Philadelphia. Patents were obta:ned in Pennsylvania, New York, and Maryland. About the same time Fitch had a controversy with Rumsey concerning priority of the invention.
1788-1790.-Fitch built larger boats, which ran regu larly in 1790 between Philadelphia and Burlington, making as high as seven miles an hour
1791.-Fitch received a United States patent August 26.
1793.-Fitch went to France. The "Cyclopedia of Biography" says that he deposited his plans with the American consul at L'Orient, while he went to London. The consul showed his plans to Fulton, who was then in France, in whose hands they remained several months. Failing to get the privilege of building his boats in France, he returned to America in 1794.
1796.-Fitch experimented on a ship's yawl, fitted with a screw, in the Collect Pond, N. Y.
1798.-FFitch made a three-foot model boat at Bardstown, Ky. He committed suicide the same year.
1787.-Patrick Miller, of Dalswinton, Scotland, ex perimented with paddle wheels.
1787.-James Taylor suggested the employment of steam instead of manual labor. This is denied, however, by the son-in-law of Symington in a letter to Mechanic's Magazine, vol. xxviii., 1838, claiming the invention for Symington.
1787-1788.-William Symington was employed by Miller to construct an engine for a new boat with two cylinders four inches in diameter. It was tried October 14, 1788, and made five miles an hour.
1789.-Symington built another boat for Miller De cember, 1789 ; it made seven miles an hour. Miller then dropped the matter. He condemned Symington's engine as being " the most improper of all steam engines for giving motion to a vessel.
1801.-Symington's third boat, the Charlotte Dun das, built under patronage of Lord Dundas, was tried in 1802. Mr. Symington's son-in-law says (Mechanic's Magazine, vol. xix.) that in July, 1801 or 1802, Fulton visited Symington and made a trip on his vessel on the Forth and Clyde Canal, and obtained his designs and deas. This statement is shown to be untrue by letters of Fulton now in existence, which prove that Fulton never was out of France during either of these years.
1802.-Symington's Charlotte Dundas, in March, 1802, owed t wo 70 ton vessels in the Forth and Clyde Canal, but the proprietors of the canal disapproved of them, fearing injury to the banks. The Duke of Bridgewater gave Symington orders for eight boats for his canal but died shortly afterward, and the completion of the contract was thus prevented. Symington became dis couraged and gave up in despair.
1811.--Henry Bell, of Glasgow, who had seen the Charlotte Dundas, built the first passenger vessel in Europe. He was a loser by his venture, but the boat was a success. In 1815 he built several other boats, and his success was then complete. Symington beginning his experiments in the winter of 1787-1788, and trying his first boat October 14th, 1788, is clearly anticipated by John Fitch in America, who made his first experi ment with a paddle-wheel boat driven by a steam engine in 1786, and his first public trial on August 22, 1787. The Mechanic's Magazine. vol. xxviii., 1838, p. 25 credits Fitch with being an independent but second
inventor, claiming Symington as the first; but it erroneously states that Fitch did not begin his operations until 1788. Between the time of Symington's second boat. 1789, and his third, 1801, much was done in America.
1792.-Elijah Ormsby built a small steamer at Nar ragansett Bay, using an atmospheric engine and duck foot paddles. It made three or four miles an hour.
1798.-Nicholas Roosevelt is said to have built the Polacca, a vessel 60 feet long, with a 20 -inch engine having a 2 -foot stroke, which drove it eight miles an hour. Livingston and Stevens had induced Roosevelt to try their plans still earlier, they paying the expense of the experiments. Livingston used jet propulsion, and Stevens a screw.
1798.-The State of New York gave Livingston the
right to steam waters in the State for 20 years, if he should succeed, within 12 months, in producing a boat that should go four miles an hour.
1803.-Livingston procured the re-enactment of the law in favor of himself and Robert Fulton, who was then experimenting in France.
1791-John Stevens experimented on steamboats. In 1789 he had petitioned the New York Legislature for a grant similar to that made to Livingston, and he stat ed that his plans were then completed and on paper
1804.-While Fulton was in Europe, Stevens com pleted a steamboat 68 feet long and 14 feet beain This was a twin-screw boat. Its machinery is preserv ed in the Stevens Institute of Technology, Hoboken, N. J. In May, John Stevens and R. L. Stevens crossed the Hudson River in this boat.
1807.-John Stevens and his sons built a paddle wheel boat, the Phomix, which made its trial just too late to anticipate Fulton's successful trial with the Clermont.
1808.-The Phœnix went to Philadelphia by sea, be ing the first steamboat to make a sea voyage.
1804.-Oliver Evans built a combined wagon and steamboat called the "Oruktor Amphibolis." It was flat scow with a five horse power engine. He propelled it up Market Street, Philadelphia, launched it in the Schuylkill, and sailed down to the Delaware. This was the first application of steam to carriage on land in America. Evans was the inventor of the high pres sure engine, copied later by Vivian, Trevethick and others. He died, "poor, neglected, and broken hearted.'
1789. - Nathan Reid built a paddle wheel boat turned by a hand crank. He designed a steam boiler, the first vertical tubular boiler, in 1788, intending it to be used in steamboats. He does not appear to have made any successful experiments in steam navigation.
1790.-Samuel Morey, Oxford, N. H., built a paddle wheel steamboat and tried it successfully on the Con necticut River.
1791.-Rumsey, Fitch, Stevens, and Morey all ob tained patents in 1791 for various methods of propel ling vessels by steam power.
1793.-Morey made a trip from New York to Hart ford. He built a larger boat at Bordentown, N. J., in 1797 and made a trip to Philadelphia. His funds gave out and he gave up his project. Fulton, Livingston and Stevens met Morey in New York, but nothing de finite is known of the dimensions of his boats or machinery.
1793.-Robert Fulton (born at Little Britain, Lancaster County, Pa., 1765, died at New York, 1815) proposed plans for steam vessels, both to the United States and the British governments. In 1779, when only 14 year of age, he experimented with paddle wheels turned by hand on the Conestoga River. In 1802, while in France, he made drawings and a model of a side-wheel steam boat. In 1803 he had a boat built by MM. Molar, Bor del, and Montgolfier, on the Seine, and it made $41 / 2$ miles an hour on its trial, August 9. The water tube boiler of this boat, known as Barlow's boiler, is still preserved in the Conservatoire des Arts et Metiers, in Paris. In 1804 Fulton ordered from Boulton \& Watt an engine from his own plans, 2 feet in diameter and 4 foot stroke. This engine was completed in 1806, and shipped to the United States, Fulton having preceded it. He immediately contracted for a hull in which to set it up.
1807.-In 1807 the engine was fitted to the Clermont, the hull of which was 133 feet long, 18 feet wide, and 9 feet deep, a far larger steam vessel than any hitherto constructed. In August, 1807, it made a successful trip to Albany, 150 miles, in 32 hours, returning in 30 hours Its success was such that it soon afterward ran as a regular passenger vessel between New York and Albany, and the era of steam navigation was at las begun. In 1808 two new steam vessels, the Car of Nep tune and the Paragon, each of which was nearly dou ble the size of the Clermont, were built by Fulton.
The Spanish story of 1543 has been settled by Mr. Botsford, who has shown that it had been investigated in Madrid in 1858, and that it was then proved that Blasco de Garay's boat had been moved by men se creted in the hull. He has also disposed of Symington's claim by'showing that if an unsuccessful experimenter who abandoned his work in despair, is entitled to be ranked with Fulton, then Symington must give place to John Fitch, who both antedated him and more nearly reached success. But the higher honors must be givet to Fulton, as the inventor, the engineer, and the suc cessful business man by whose labors steam navigation became an accomplished fact.

In connection with the equipment, for fire protec tion, of woodworking establishments, Fire and Water recommends placing a gallon pail filled with fine sand within convenient reach of each workman employed where oiling and finishing. This practice might wel be followed wherever there is a possibility of fire start ing in oil or oil-soaked materials. There is nothing which will squelch an oil-fed fire in its incipiency more quickly and effectually than sand ; and there are no afterclaps in the way of water damage, either.

Type-Setting Machines-Important Patent Decision.
In the United States Circuit Court, New York, on In the United States Circuit Court, New York, on
March 11, Judge E. Henry Lacombe granted a pre liminary injunction against the New York Typograph Company and others, representing the Rogers pat ented type-setting machines, and in favor of the Na tional Typographic Company and others, representing the Mergenthaler system. Strictly speaking, neither of the machines sets type, but type matrices are ar ranged, by the fingering of a keyboard in proper order and position for the casting of a line of type, and the latter operation is automatically performed, so that bars or slugs, representing a line of type each, are the product of the machine. It can be readily run by an expert operator at a speed of four to five thousand ems per hour, equal to more than a column of the Scientific American. The Mergenthaler machine was fully described and illustrated in the Scientific American of March 9, 1889, and August 9, 1890. Almost the entire work of the New York Tribune has been done on this machine for more than six years past, and other daily papers in different cities are using it, to the exclusion of type-setting in the ordinary way.

In the Rogers machine the solid printing bar is cast, but the mechanism by which it is accomplished differs in many respects from Mergenthaler's. Judge Lacombe in his decision holds
That the machines manufactured and sold by the defendants may be lighter, smaller, cheaper, more easily operated, and more efficient; that they may be a de cided improvement on the Mergenthaler machine, and may as such commend themselves more readily to the public; that they are themselves patented, and that, if put in open competition with the earlier machines, they would prove more attractive to purchasers and users-each of which points is pressed with great force by thel defendants-is wholly immaterial if the complainants' main contention is a sound one, viz., that the Mergenthaler "linotype" is covered by a foundation patent ; that it embodies a combination wholly new in the printing art, which marks the first grea step in ad vance taken for over 400 years, and which, though susceptible, as all new foundation patents are of subsequent improvement, has yet demonstrated its ability, practically and efficiently, to perform the work which it was designed to do. If, upon the case now presented, it appears that Mergenthaler is a pionee inventor, he is to be secured the fruits of what he in vented and covered by his patent, even as against a subsequent inventor, who, though he may have greatly improved it, still uses the original invention which lies at the foundation of the art. (See cases cited in notes to Section 894, Robinson on Patents.)
The product of the combination of machinery de scribed in the patent and thus claimed is a line of type, cast in a solid bar, presenting on its printing edge any combination of letters and printer's marks which the operator may desire-produced automatically. By its use a great change is introduced in the printer's art whereby the type-setting of single types is dispensed with, and the matter is set up from "slugs," or "bars," each containing, not a single letter, nor a single word but any conceivable combination of words and figures. That such a change in the art is almost revolutionary seems to be practically conceded, the defendants in sisting, however, that the merit of the invention which effected it must be shared so largely with others, earlier in the field, that Mergenthaler can at most claim but an extremely small part of it for himself. Upon the papers, however, it appears that Mergenthaler was the first man who united in a single machine the instru mentalities which, by means of the operation of finger keys, assembled, from magazines or holders, indepen dent disconnected matrices, each bearing a single character, carried each individual character indepen dently one by one to a common composing point, wher they were placed in line, and were thereupon brought in contact with and closed the face of a mould, of the exact length of a predetermined line, into which mould, by the subsequent operation of the same machine, molten metal was injected and a cast taken which cast consists of a line bar of type metal, having on its printing edge any desired combination of charac ters, and which is ready as it leaves the machine for imposition on the form. Some such combination was required to solve a problem with which inventors in
the field of the printer's art had struggled for years, and there is not found in any of the earlier patents and methods which have been put in evidence by the defendants anything which fairly anticipates it.
The patent which covers it may, therefore, be fairly considered a foundation patent, and its claim should be broadly construed. When thus construed, infringement seems plain. Though there are differences in the form and structure of the intermediate mechanism tending to simplicity and perhaps improvement, and in the form of the casting mechanism, still each of these mechanisms as it is embodied in the defendants' machine performs the same function as the correspond ing mechanism in the Mergenthaler machine, in sub stantially the same way, and they are combined to produce the same result. The combination which is covered by the claim is the same in both. There is
sufficient here to fortify the presumption of the patent, especially as there seems so little real question about above quoted by defendants' machine.

EXPERIMENT IN SPECIFIC GRAVITY OF FLUIDS.

T, o'conor sloane, ph.d.

The illustration shows a very interesting experi ment on the law of the specific gravity of liquids which, simple as it is, presents a rery good exposition of the phenomena brought out by the operation of this law. A strong solution of potassium bichromate in hot water is made in a test tube. By boiling the water and adding the salt as long as it dissolves, an exceedingly strong solution can be produced. It is then cooled. This cooling is best effected by placing the test tube in a beaker of cold water with its mouth upward in the regular position. As it cools, the bichromate of potash rapidly crystallizes from the supersaturated solution, and the building up of these crystals is in itself an exceedingly interesting proces to watch. When it has cooled, the experiment prope can be carried out.
A beaker is filled with cold water. The test tube is next filled to the brim. It is closed with the thumb, and the mouth of the test tube is immersed in the water of the beaker and then released. The object is to prevent the admission of any air whatever. As soon as this is done, the bichromate of potash in what is now the upper end of the test tube begins to dis solve. As it dissolves, it forms a solution heavier than
the water, and pours in a stream down the lower side of the test tube, through the water, to the bottom of the beaker. It inevitably mixes more or less with the water surrounding the streams, but at the same time

beaker against the light. At the same time a stream of clear water can be observed, rising along the upper
walls of the test tube to supply the place of the heavy walls of the test tube to supply the place of the heavy fluid escaping therefrom. It is easy to see that carried out with the proper tank and a sirable illustration fo projection by the magic lantern.
The same experiment has its useful application The principle is used in the laboratory for dissolving the melted mass from sodium carbonate fusions, as in he analysis of iron ores, etc. For cleaning out bat tery jars, in which very hard crystals of chrome alum often form, or for dissolving the same crystals in bot-
tles in which battery solutions which are partially extles in which battery solutions which are partially ex
hausted have been kept, the same method is applicable By a little manipulation the battery jar or bottle can be inverted in a bucket of water, itself being full. It is well to support it on a couple of bricks, or by other means, as far above the bottom of the bucket as possible, in order to admit of the free escape of the trong solution thus formed. An inclined position, as favoring the regular ascent and descent of the two columns of liquid, is also to be recommended where the process is practically applied. Crystals quite irremov able by ordinary means can thus be dissolved, and the
bottle or jar saved. Sometimes several hours are rebottle or jar saved. Sometimes several hours are re
quired, and it is also well to renew the water in the bucket or other receptacle. Care must be taken to admit no air.

Canal Enterprises

Up to December last over $\$ 45,000,000$ had been ex pended on the Manchester ship canal, to provide an adequate waterway to the ocean from this great manu acturing center of the north of England. It is now found that about $\$ 20,000,000$ more will be required to complete the work, which is a good deal larger sum than the canal eompany can command, and the city of Man chester has been asked to extend its credit to the en prise to the amount of $\$ 15,000,000$, the outside pub ic having failed to subscribe for debentures to form a frst charge on the propeitiy. The work has been somewhat interfered with during the winter, but is
now being energetically pushed forward at many points. A committee of the Manchester corporation has advised the giving of the required assistance to the enterprise.

The constructors of the ship canal across the Isthmus of Corinth appear to have met with unexpected difficulties. This company was reorganized in 1889, and great preparations were then made for pushing the work, workshops being erected along the line and an adequate plant provided. It is now stated, however, that sufficient slope was not given to the argilla ceous banks, and that it has been necessary to protect large sections with solid masonry. The section to be cut being frequently as much as 250 feet vertically, it is now apparent that the amount of earth to be reinoved will be enormously in excess of what had been con templated, or the canal will have to be protected throughout its whole length with solid masonry-in either case greatly increasing the cost.

Although it would seem that the Panama Canal is now quite dead, there yet appear to be people in France who entertain hope of a revival of the pro ject in some form. One scheme to this end is that of M. Amedee Lebillot, who proposes to connect the two unfinished portions of the canal by means of a ship ailway, the work to be completed in three years at a ost of $\$ 50,000,000$. The locomotive it is proposed to use on this railway is in the form of a ship's cradle having propelling mechanism in the interior, the cradle to be sunk under the vessel, draw it out of water make the journey overland in two hours, and as promptly float the ship in the other section of the canal.

In spite of the disaster that has overtaken the work at Panama, there is every reason to feel encouraged by the progress that has been made at Nicaragua The latter route was equally open to the French engineers, and it is safe to say that, with half of the money which has been irretrievably sunk at Panama, they might by this time have had in successful operation a practical ship canal for the larges vessels through Lake Nicaragua to the Pacific Ocean Ex.Senator Warner Miller, President of the Nicaragua Canal Construction Co., with several engineers and other assistants, sailed from New York for Nicaragua on March 14. Only about four million dollars have now been expended upon the work, but very substantial re sults are apparent in the opening of a safe harbor at Greytown, the clearing away of the route and the con struction of a railway on the line to the principa "divide," with the erection of workshops and the pro viding of all necessary facilities for an energetic attack upon the main difficulties of the undertaking.
The engineers estimate the cost of the whole work a $\$ 65,000,000$, but Mr. Miller places it at about $\$ 100,000$, 000 , with interest accruing during construction. The projectors hope, as do the Foreign Affairs Committee of the United States Senate, that the government will become interested to the extent of guaranteeing the bonds of the company at a low rate of interest, thus keeping the control of the canal in American hands but they have no distrust of their own ability to pro vide all the funds necessary, and are not delaying the construction to wait for government assistance. Mr Miller has a high reputation as a capable and success ful business man, and he has entered upon this enter prise as a practical project, to be worked out by do lars and cents, in the full confidence that the invest ment will be a good paying one to all who put money in it, as well as of high importance in the development of American commerce.

Among other important canal projects, one which of late attracted considerable local attention is the plan or a water connection of Pittsburg with Lake Erie The route has been several times surveyed, but the ex act course which would be most practical has not yet been fully determined. The matter was recently reported upon by a Pennsylvania State commission, and the cost of such a canal was put at $\$ 27,000,000$. Pittsburg is now using such large quantities of Lake Supeior ores that the railroad freights have become a large item in her iron and steel manufactures, and the competition of Southern iron producers has become so sharp that every possible economy must be studied or Pittsburg will be in danger of losing her established prestige in this branch of industry. It is figured that the construction of this canal would reduce the cost of transporting ore to Pittsburg from Lake Superior by about two dollars a ton.

High Places.-The highest place in the world re gularly inhabited is stated to be the Buddhist monastery Halne, in Thibet, which is about 16,000 feet above sea level. The next highest is Galera, a railway station in Peru, which is located at a height of 15,635 feet. Near it, at the same level, a railway tunnel 3,847 feet in length is being driven through the mountains. The elevation of the city of Potosi, in Bolivia, is 13,330 feet ; Cuzco, Peru, 11,380 feet; La Paz, Bolivia, 10,883 feet; and Leadville, Colo., 10,200 feet.

RECENTLY PATENTED INVENTIONS. Engineering.
Rotary Engine.-Willis and Lyma Ror, Spokane Falls, Washington. In this engise main shaft has central bores extending from each en to an opening in a central crank portion of the shaft,
upon which a compound cylinder is mounted, in conupon which a compound cylinder is mounted, in con-
nection with various novel features, whereby it is esigned the engine may be run at high speed, will evenly balanced, and very durable,
power with a small amount of steam.

Railway Appliances.

Car Axle Box. - William Cross, Winnipeg, Canada. By this invention the bearing block has a pendent tapered front end forming side bottom outlet in front of the block and directly over the cross bar, being an improvement in that class o boxes in which the journals rotate in contact
liquid lubricant held in the bottom of the boxes.
Train Order Annunciator. Leonard T. Crabtree, Oconto, Wis. This inveniio provides a device designed to prevent the operator from in order signaling device for display on the evice while the operator has an order for ing train, the registration being such that each train if one or more orders are awaiting his arrival.

Mechanical

Cutting Tool-Richard Gabel, Dresden, Germany. This tool has an internally threaded entrally apertured cutting and centering plates held spaced apart at its front, and is adapted for use as a mandrel or spindle head upon turning lathes, drill making machines, etc., or as a hand implement fo Cop
Cop Spindle for Reels. - Isaa Walker, Philadelphia, Pa. This is an improvement pindles used in a reel to hold the cop while the yarn rawn off to form a skein, and providesmeans whereby spindle until all the yarn has been reeled off, thus preventing waste.
Can Capping Machine. - Mathias Jensen, Astoria, Oregon. A conveyer is mounted to wing vertically and longitudinally to carry the can ing mould actuated from the arm is adapted to the can body on the stationary bed mould while the caps are forced on to it sends, thus automatically apply ing the caps on a certain class of can bodies.

Electrical.

Electric Door Opener. - Louis Bates, Jersey City, N. J. This invention is designed ployed, which is held in closed position by a pawl that is pressed forward by a spring and adapted to be forced
out of engagement with the pivoted latch by an arma-ure-controlled electro-magnet.
Cornstalk Harvester. - Peter S. Lundgren, Marysville, Kansas. This is a machine to be operated by two men and a horse drawing the machine between the rows, the stalks being cut from two rows at the same time, the machine being simple in
Draught Equalizfr. - Thomas Thompson, Townsend, Montana. This is a device especially adapted for use in connection with mowins;
machines, and is designed to lighten the work for the machines, and is designed to lighten the work for the forward the draught bar will exert sufficient forward pressure on the rear edge of the finger bar to overcom 0 any tendency toward a side movement, thereby holding
the finger bar always at a right angle to the tongue and the tongue etraight with the team.

Miscellaneous.

Thermometer for Sad Irons. August Nicolaus, New York City. A thermostat bar, equally, is attached to the sad iron, and one section is connected to a movable pointer, which is operated by the flexing of the bar to indicate by means of a dual
whether the iron is sufficiently heated, or cold, or too whether the iron is su
hot to do proper work.
Hydrant. - William R. Thropp, Trenton, N. J. This is an improvement for a hydrant such as ordinarily used by the fire department of towns and cities, the vertically movable valve stem having a collar loosely mounted on its lower end, and a socket
aligning with the valve stem to hold the collar from aligning with the valve stem to hold the collar from
turning, the valve being easily controlled and there being no danger of the hydrarit being frozen up and be coming inoperative.

Dental Service Stand.-Walter E. Waruer, Brooklyn, N. Y. This is an improvement in hold a drinking glass and spittoon in convenient position for use, the invention covering various novel

Sash Holder. - Albert Ayers Rahway, N.J. Combined with a spring-pressed plug is a rod having at its outer end a rack received by a
slotted plate, there being pivoted in the plate a handle having teeth to fit the rod rack, with other nove features, the device being easily applied to a window,
Garbage Furdace. - Alexander Brownlee, Dallas, Texas. This furnace has a chamber in different planes, a sand box between the fire hoses,
and a grate to receive the garbage, the grate being
about as high as the grate barg about as high as the grate bars of oue fire box and ex-
tending partly over the grate bars of the other fire box. the furnace effectively burning wet or dry garbage.
Globe Holder. - Howard R. Burk, New York City. A series of springs is secured on a
frame and adapted to press on the globe, arms extend ing from the springs to form convenient handles, the device being readily applicable to a gas or other fixture to permit of conveniently attaching or detaching the globe and securely holding it in place.
Starch Table.-John A. Ostenberg, Des Moines, Iowa. This is a continuous automatic device for use in the manufacture of starch to recover the starch from the water or alkaline solutions, a tube
supplying the starch liquid to an annular table with supplying the starch liquid to an annular table with
raised edges, a scoop lifting the starch from the table, raised edges, a scoop lifting the starch from the table, avoiding the difficulties of the old system.
Educational Appliance. - Adolph F. C. Garben, Hoboken, N. J. This is a readily maniarithmetic may be performed with precision and ease, the board having vertical channels whose lower ends are connected by a transverse channel, an outer storage channel, and numeral buttons sliding in the chanuels. Treating Sewage. - Charles W. Chancellor, Baltimore, Md. This invention covers an improvement on a formerly patented process and ap-
paratus of the same inventor for discharging solid and paratus of the same inventor for discharging solid and
liquid matters from the soil pipe under a column or bed of water, separating continuously the solid matters in a putrefactive fermentation of the solids being prevented by exclusion of air, and the formation of deleterious

Typewriting Machine.-Audley E. Harnsberger, Staunton, Va. This machine has two shifter, whereby three kinds of letters or characters may be operated by one set of key levers, with other novel features, the machine being compact in form and designed to be easily manipulated, while it is less ex-
pensive than the machines most commonly used, and presents a key board that is simple in arrangement and easily comprehended.
Draughting Instrument. - Robert L. Barnhart, Pittsburg, Pa. This is an instrument deetc., for drawing machines and elevations and plotting contours of ground, the instrument having differen variety of work.
Cardboard Machine. - John McCoy, York, Pa. As cards are ordinarily made by past ing two or more layers of paper together, ing such work comprising paper supports, presure rolls, teneion devices, and driers, the machine being designed to unite linen, cotton, or other cloth with the paper when so desired.
Horseshoeing Rack. - Samuel M. Martin, Sidney, Ohio. This is an adjustable device adapted to fit all sized animals, to hold any part of the animal in any desired position, as may be most conve-
nient for the operator, while relieving the animal of nient for the operator, while relieving the animal of
all strain, a supporting rack being suspended from a all strain, a supporting rack being suspended from a
scaffold, in connection with a transverse shifting bar caffold, in connection with a
and rope and pulley attachments
Cuspidor. - Charles L. Beers, Scranon, Pa. This invention provides a reversible bow of water supply being arranged to wash against the bowl when iuverted, in connection with devices for reersing the bowl and turning on the water supply
Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of invention, and date send name of
of this paper.

NEW BOOKS AND PUBLICATIONS

Wedding's Basic Bessemer Process. Translated from the German by William B. Phillips and Ernst Prochaska $\underset{\text { Company. 1891. Pp. v, }}{\text { New }}$ 224. Price $\$ 3.50$.

This excellent work goes into the details of the Bes semer steel process from a largely Continental stand
point. Its numerous plates and illuatrations elucidate the text, and it contains large numbers of analyse and physical tests, and various formulas and tables of dimensions. Thoroughness is everywhere conspicuous. The utilization of the slag is treated of in a short chapter, and among, the resuls of the process dephos phorization in the open hearth process, the natural
sequence of the Bessemer process, is spoken of. Maximum Stresses under Concentrated Loads, Treated Graphi-
cally. By Henry T. Eddy. Illustrated by twenty-one figures in text and one folding plate. Reprinted
from the Transactions of the A can Society of Civil Engineers. May, 1890. New York: D. Van No
Company. 1890.

This useful work introduces a new graphical method for determining what position loads upon bridges must
have in order to produce the greatest stress. A class of have in order to produce the greatest stress. A class of
polygons or curves, which the author has named

The Metallurgy of Silver, Gold,
and Mercury in The United States. By Thomas Egleston. In
two volumes. Vol. II. Gold and Mercury. John Wiley \& Sons, New don. 1890. Pp. xv, 920. Price $\$ 7.50$
This is the second volume of Prof. Egleston's great
work, and is devoted to gold and mercury, thereby
concluding the series. It is beautifully printed and ery fully illustrated. Prof. Egleston's standing in
Columbia College and his many years' familiarity with the work done in different parts of America give his work a peculiar value. Of course, it is impossible to review so extensive a work in the space allotted it in
this column. So we can do no more than to recommend this column. So we can do no mor

Spinning Tops. With numerous illus trations. By Professor John Perry. Christian Knowledge. New York:
J. B. Young \& Co. 1890. Pp. 136. J. B. Y

A very pleasing addition to the well known "Romance of Science Series" is presented in this book. The classes of observers, the boy and the advanced scien tist. Prof. Perry treats his subject in a very popular way and shows its applicability to explaining some of the most recondite laws of nature, notably those of polarized light.
Soap Bubbles and the Forces which rated. (Publishers as above.) 1890. trated. 178. Price $\$ 1$.
Mr. Boys has won a world-wide reputation by his ex quisite skill in handling and operating with the minute forces of nature. His lectures on soap bubbles too soon to have them presented in book form. The numerous illustrations and the elaborate explanation of manipulations give the work interest for young and
old. We feel that it deservesspecial recomendation to our readers.
Dynamos and Electric Motors, and All ABOUT THEM. By Edward Publishing Co., Lynn, Mass. Pp. 96. Price 50 cents.
The subject of dynamo and motor construction for amateurs is treated of in this little work. The descriptions are entirely practical, little or nothing in the way
of calculations being given. One of the cleverest things in the book is the motor with field magnets made out of gas pipe.
Any of the above books may be purchased through
his office. Send for new book catalogue just pub lished.

SCIENTIFIC AMERICAN
buildina edition
MARCH NUMBER.-(No. 65.)

TABLE OF CONTENTS

1. Plate in colors showing the residence of P. H. Hodges, at Stratford, Conn. Perspe
Hloor plans, etc. Cost complete $\$ 8,000$.
Handsome colored plate of an elegant residence in Riverside Park, New York City. Floor plans, per spective elevation, etc. Cost $\$ 30,000$.
2. Residence at Bridgeport, Conn. Per
floor plans, etc. Cost about $\$ 7,000$.

Handsome residence of Mr. F. Chambe lain, at Hart ford, Conn. Francia H. Kimball, of New York tion, etc. Cost $\$ 60,000$ complete.
Illustrations of two attractive semi-detached houses erected for Mr. A. L. Pennock, at Philadelphia Pa. Floor plans and perspective. Approximate
cost $\$ 15,000$ each. F. U. Beal, New York, architect.
6. Floor plans and photographic view of a residence a Edgecombe Court, Chicago, Ill. Estimated cost $\$ 5,400$.
A pillar cottage erected for Mr. G. W. Childs, a
Wayne, Pa. Cost $\$ 6,000$ complete. Perspectiv Wayne. Pa. C
and floor plans.
Handsome residence at Hartford, Conn., W. B Tubbey, architect, New York. Cost $\$ 19,000$ com plete. Floor plans and perspective.
tive reed ence at Austin, Chicago, IIl an attrac cost \$7,000.
A very convenient and attractive suburban cottage
of modern design, erected for Mr. E. W. Given, at Mont Rose, Orange, N. J. Cost $\$ 5,500$ com plete. Messrs. Rossiter \& Wright, architects New York. Floor plans and perspective.
Residence at Alexander Avenue, Buena Parh, and photographic view.
12. Photographic perspective view of the residence of
Mr. Frank Crowell, Minneapolis, Minn. F. E Joralemon, architect.
Miscellaneous contents : Preserving emoke pipe from rust.-Door hanging, illustrated with 6 ed with 5 figures.-Improved blind slat planing machine, illustrated. - Seamless copper house boiler, illustrated. -Best quality of roofing tin plate--Blower engines of the Galena.-An efficient sandpapering machine, illustrated. - The joist hanger.
The Scientific American Architects and Builder Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practically, a large and splendid MAGAZINE of Architec TURE, richly adorned with elegant plates in colors and with fine engravinge, illustrating the most interestin examples of Modern Architectural Construction and allied subjects.
The Fullness, Richnese, Cheapness, and Convenience of his work have won for it the Laregest Circulatio of any Architectural publication in the world. Sold by
all newsdealers.

MUNN \& CO. PUBLIBERRs,

\mathfrak{P} usiness and $\mathfrak{P e r s o n a l .}$

he charge for Insertion under thes head is one Dollar linejor each insertion: about eight words to a line. Auverlisments mid be recived at publicaion office

For Sale-N hinery. Prompt delivery. W. P. Davis, Rochester, N.Y Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J, Barrel, Keg, and Hogshead Machinery. See adv.p.189. For best hoisting engine. J. S. Mundy, Newark, N.J. Best Ice and Refrigerating Machines made by David The Improved Hydralic Jacke Punch Tub The Improved Hydraulic Jacks, Punches, and Tube Screw machines, milling machines, and drill presses. ch. Co., Laight and Canal Sts., Drop Forgings. Bronze Forgings. Upward of 3,000 "How to Keep Boilers Clean." Send your address Split Pu apearance as Whole Pulleys. Yocom \& Son's Shafting orks, Drinker St., Philadelphia, Pa.
Guild \& Garrison, Brooklyn, N. Y., manufacture team pumps, vacuum pumps, vacuum apparatus, atr For low prices on Iron Pipe, Valves, Gates, Fittings, on and Brass Castings, and Plumbers' Supplies, writer
I W. S. Carr Co... 138 and 140 Centre St.. New York. The best book for electricians and beginners in elec tricity is " Experimental Science," by Geo. M. Hopkins. By mail, $\$ 4$; Munn \& Co., publishers, 361 Broadway, N. Y.
The Dwight Slate Machine Co., of Hartford, Conn. The Dwight Slate Machine Co., of Hartford, Conn., make the most extensive line of hand, foot, and auto-
matic feed drills for light work, $1 / / \mathrm{in}$. holes and less. 1891 matic feed drills
catalogue free.
A widely known house of unquestioned responsibility and exceptional facilities for introducing new articles
in all parts of the United States, would accept agency for Address, with full particulars, P. o. Box to popular use 3286, New York. Send for new and complete catalogue of Scientific New York. Free on application

(2903) H. K. G. asks: 1. What is the

cated caoutchouc.	10 parts.	
Chloroform............		"
b. Masticated caoutchouc.		"
Resin.	4	"
Venice turpentine	2	"
Oil of turpentine.	40	"

Melt the cut-up caoutchouc and resin together before so lution b, add the Venice turpentine and then dissolve tion and apply to surface, previously brushed over with cement. 2. Please give also a receipt for a leather ce ment. A. Bisulphide of carbou solution of gutta percha ndia Rubber," $\$ 1$ by mail.
(2904) H. C. O. sends photos. of a fine Experimental Science," suggestions obtained from "Experimental Science," also a successful home-made nds a photo constructed at a small expense. He also olcanic eruption in full blast. The apparatus consist of a glass tank with a crater projecting down into it. In nilineter are inserted two drop tubes, one containin e jets of red and be (2905) R. S. F. and A. E. S.-The fol wing is an excellent hair tonic:
Quinine..
Cantharides.
Apply morning and evening. Also see Supplemen o. 388 for an excellent paper on hair hygiene, 10 cent mail
(2906) W. L. S. asks how a circular open ing three inches in diameter may be made in the center of a plate of glass ten by tev. A. With a good diamond
make a circular cut in the glass of the diameter of the make a circular cut in the glass of the diameter of the
hole, then within it make a number of circular cuts By dexterously hammering the glass at the center of the circle, the break may be started. After this the removal of the remainder is comparatively easy.
(2907) C. P. R. asks : A leather bellows closed and placed 10 feet under surface of water; bel when opened 8 inches wide; a $1 / 2$ inch tube runs from surface into bellows. What force will be required to open bellows, it taking air through the $1 / 1 /$ inch tube ? A. The area of the bellows will be ${ }^{1728}=216$ square inches. The pressure due to a column of water
ten feet high is about $4: 35$ pounds. $4 \cdot 35 \times 216=939 \cdot 6$
pounds. As it opens the pressure will diminish about pounds. As it opens the pressure will diminish abou
7.83 pounds per inch of opening
(2908) W. P. N. asks : Would you please oblige me by publishing a recipe for the cure o
catarrh? A. Take equal parts of salt, soda bicarb. and borax. Mix them thoroughly. Use saltspoonful of mixture to cup of warm water. Always have the water warm. Gargle and snuff up the nose three or fou times daily. Better consult a good specialist.
(2909) R. A. M. asks : A solid floats at a certain depth in a liquid when the vessel which contains it is in air: if the vessel be placed in a vacuum,
will the solid sink, rise or remain stationary ? A. The weight of the water would remain unchanged in vacuum, consequently the floating body would behav
(2910) H. L. B. asks : Is there anything that will eradicate smallpox pits without injury to the
skin? If so, what is it ? A. No. There is nothing; the (2911) J. L. S. asks: What will kill the odor of camphor dissolved in alcohol? A. Any essen-
tial oil will tend to destroy the odor-bergamot, laven tial oil will
der, etc.
(2912) Old Subscriber asks : I have some old engravings that are stained and spotted by age and dampness. How can these stains be removed withou injuring the pictures? A. Immerse them in javelle
water of solution of chloride of lime. Wash off in clear water and immerse in a solution of hyposulphite of soda. Use first solution as weak as possible consisten with efficacy.
(2913) W. F. writes : I am very badly in want of a recipe for making in quantity a very quickdrying solutlon of either gum arabic or dextrine, to be
quite free from unpleasant taste or smell when either wet or dry. A. Water 5 parts, alcohol 1 part, acetic acid 1 part, dextrine 2 parts.
(2914) H. L. N. asks (1) how to make a marking ink, either blue or black, without the use of oils, to be used principally for marking sacks. A. An ex cellent medium is solution of 20 parts shellac in strong borax water (borax 30 parts, water 300 parts). Use any
desired pigment. Dissolve borax and shellac by heat. desired pigment. Dissolve boras and sheliac by heat benzine, and one-tenth part lampblack is also used. How can I make a cheap paste that will make label stick to smooth tin cans? A. Fresh solution of gum tragacanth is g
vol. $63, \mathrm{No} .15$.
(2915) P. C. Manufacturing Co. asks Can you give us a receipt for preventing paste made up by machinery? A. It is almost impossible to ad vise an
good.
(2916) J. B. W. asks for a liquid tha will have no injurious effect on phosphorus and wil cium chloride or sulphate of soda.
(2917) W. H. L. writes for a receipt for making muciiage such as put up for sale in bottles. A in water just perfumed with oil of cloves is an excellent mixture
(2918) G. M. P. asks for receipts (1) for cleaning and polishing marble such as marble top stan apply following: 14 pound whiting, $1 / 4$ pound soft soap 1 ounce washing soda,a piece of blue vitriol the size of walnut. Rub over the marble and let it stand 24 hours then wash off and polish with a piece of flannel. To remove stains use a mixture of 1 ounce ox gall, 1 gill of ye, $1 \frac{1}{2}$ tablespoonfuls of turpentine, made into a paste
with pipe clay. Apply as above. For oil stains use perfectly dry clay saturated with benzine, and applied cleaning and polishing furniture. A. Dissolve 4 ounce best shellac in 2 pints 95 per cent alcohol, add 2 pints linseed oil, 1 pint turpentine, mix and add 4 ounces ether and 4 ounces ammonia, mix, shake before applying Use a sponge. 3. For cleaning and polishing ivory, such as piano' keys, etc. A. For piano keys use the finest crocus or whiting. You cannot whiten them ex-
cept by special treatment, such as exposure under turpentine to the sun's rays. 4. For taking all kinds of stains, etc., out of fine clothing. A. Use benzine. Apply in a circle aro
ter and sponge off.
(2919) J. B. V. asks (1) how to make lue print paper. What are the formulæ used? A. See our Supplement, Nos. 585, 741, 514, 584, and 714. Can dexirine be made from starch with the use
water alone? If so, how, or how can it be made with out diastase? 2. No. Starch is boiled with a weak acid.
3. How may a bottle be cut off near the bottom without 3. How may a bottle be cut off near the bottom withou
injuring the rest of the bottle ? A. File a notch, start crack with a red hot poker, and lead it around. 4. What is the formula for the liquid used in mixing gold pain bronze, gilding, etc. ? A. Use copal varnish or linseed oil_and liquid drier. 5. Can you give me a formula fo a mucilage that I can stick paper to tin with? A. Use
gum tragacanth. Also see ScIentific American, No. gum tragac
15 , vol. 63 .
(2920) F. G. asks : Kindly give the re cipe for putting gold leaf letters on leather. A. Th over is first washed with clear gum water. The parts to egilded are then coated twice with white of egg beate little ammonia may be added. To gild, spread a leaf of old on the gilding cushion with a knife, and blow it flat en cut it into strips about one-fifth inch wide. Heat he tool until it is just hot enough to fizz under the wet her; touch its edge with a rag slightly moistened with weet oil, and with the same rag rub over the part of the ook to be gilt. Roll the tool softly on the strips of p, roll it with a heavier pressure along the places to be gilt, and the gold will be transferred to the leather the excess being wiped away with a soft rag.
(2921) W. McP. F. writes: I have in my

Society of the,CIncinnati" to my paternal grandfather
t was signed, I imagine when issued (in the eighth year of the independence of the United States), by the President and Secretary. Both names are becoming ob quite indistinct now. Is there any means by whic partial restoration may be effected, or is there any way arresting the entire disappearance of the signatures . We can only atise carefur painting over a solution of tannic acid in water hould try on a very small portion of the signature first, pplying it with a small sable or camel's hair pencil.
(2922) P. J. L. asks (1) how to take the mell out of kerosene, eay a gallon at a time. A. Agi potash in oil of vitriol; after standing decant, wash with weak soda solution, then with water and decant. How to make vaseline? A. It is obtained by distilling If the lighter portions of petroleum and purif ying th emi-solid residue. It is described in the U.S. Dispen quantities. A. Dissolve 2 ounces camphor by heal ne pint of olive oil, 4. Have you any book or printed escriptions giving full details? A. We know of no book treating of above subjects.
(2923) I. J. A. asks : Please inform me hat pasteI can use to stick photographe on concave lass for the purpose of painting them, after making it, but now I fail to make them stick, as they seem to hrink and pull off before putting oil on. A. Try fresh hick solution of gum tragacanth or the "paste that will stick anything," des
(2924) A. H. G. asks : 1. Please stat ow a guitar or violin is taken apart (top or bottom off) If steamed, what would be the proper way to proceed
Please state also how the tail piece or piece that the trings are fastened in on the guitar may be removed . Never apply steam, as you may ruin it. Use a rather the knife in between side and belly at one of the inner outs, then do same for upper and lower bouts, and nally go all around it. At the neck two short cuts a ight angles have to be made. It can then be pulled offi may pry off the string piece but it 18 risky All this work should be done by an expert, as there is ever hance of spoiling the instrument. 2. Please name few oils other than lard oll and cod liver oll, that are
cheap and of a white or creamy color. It matters not whether thick or thin, as long as it is of a very ligh lor or pure white. A. You apparently confuse oil or creamy. 3. What will entirely dissolve gum tragacanth ? A. For ordinary purposes water comes the earest.
(2925) C. S. M. asks : Can you tell me hether there is any metallic solution that could b mould, which would insure the deposition of copper hereon as thoroughly as the plumbago now used for hat purpose? A. Nitrate of silver, to be reduced by exposure to phosphorous or other vapor, can be used hus the articles may be dipped in a solation of nitrate The objects are then exposed under a glass shade or bell jar to the vapor emitted from a solution of phos phorus in bisulphide of carbon. The trouble with the hosphorus process is that it is apt to render copper brittle, if the latter is deposited on a phosphorized sur
(2926) H. W. asks for some formula for detecting arsenic in paper hangings, draperies, etc. A
If a sample of the paper or drapery is burned, it will, hile burning emit an odor of garlic, if it contains a enic in quantity. Other tests should be executed by chemist.

TO INVENTORS.

An experience of forty years, and the preparation o
aore than one hundred thousand applications for ents at home and abroad, enable us to understand the aws and practice on both continents, and to possess un equaled facilities for procuring patents everywhere.
ynopsis of the patent laws of the United States and foreign countries may be had on application, and persons contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices, tensive facilities for conducting the business. Addres
MUNN \& CO.. office ScIENTIFIC AMEHICAN, 361 Broad

INDEX OF INVENTIONS
 United States were Granted

March 17, 1891
and EACH BEARING THAT DATE
[See note at end of list about copies of these patents.]

sut

co
这

so

\section*{| Cod |
| :---: |
| Cod |
| Co |}

d
b

$\underset{\substack{\text { Hen } \\ \text { Fen } \\ \text { fen }}}{ }$

ADE

[^0]

INVENTORS! We are prepared to buy outright
 Having Large Facilities.

 STILSON HUTCHINS,

GATES ROCK \& ORE BREAKER

LIST OF BOOKS

ELECTRICAL!

THIN PANEL STOCK In Whitewood, Walnut, etc. sound cut benard. HENT. BARTLETT,
CABINET WOODS

Stored Energery

Publishers of the "Scientific Am

Publishers of the "Scientific Ame
361 Broadway, New York

Illoys, Solders, etc.
recently published.

The Metallic Aloors

 +2. 2 . "Fwaty 4.2.we=

 All type cleaned in in Runinngenand Most Silent.
Eand without soiling The Smith Premie; Typewriter Co., Syracuse, N. Y., U. S.

 Send stamp for catalague. HOW TO MAKE DYNA MO. ELECGRRIC

 arc light. Can be arrianged as a series, shunt, or com
ound wound miachine. can be run tor a short time by
oo or four men. Requires one horse power for cor
 Contained in SUPPIEMENT 60i, Price 10 cents.
MUNN \& CO.. PUBIISHERS. $36 i 1$ Broadway, New York.

Send stamp
PALME
Mianus, GYMNASTICS FOR GIRLS.-AN IN-

PATENTS!

 MESSRS. MUNN \& CO., in connection with the publi-cation of the SCIENTIFI A MIERICAN... continue to ex-
amine improvements, and to act as Solicitors of Pateut

 DEAF NESS \& HEAD NOISES CURED

JAMES LEFFEL WATER WHEELS

THE EACLE the EASIEST RUNNING BICYCL
IN THE WORLD. Speed, Comfort and

Large Illustrated Catalogue sent Free to any Address.
THE EAGLE BICYCLE MFG. CO.,
EXCELI

 SHEETS Joints erfect, your boints are are
are Fire. Wind, and
Water Proof. SendforCatalogue B.

DIAMOND DRILL \& MFG. CO. hedsiboro, pa... Builders of Hikh clas

EVERT User of machirery
How to Use Loose Pulleys.

ICE-HOUSE AND REFRIGERATOR

tigino or寝 Address: The Amerloan Writing,
Machine Co., Hatford, Conn;
New York Office, 237 Broadway

HARRISON CONVEYOR! Fanoing Grain, Coal, Sand, Clay, Tar Bark, Cinders, Ores, Seeds, \&C.

ICE and REFRIGERATING MACHINES
The Pictet Artificial Ice Company (Limited), Room 6, Coal \& Iron Exchange, New York.

volney w. mason dco., Priction Pollers clotches and dievators ON THE ELECTRO - DEPOSITTION OF

BIICYCLES

ON EASY
AYMENTS

A LIBRARY for $\$ 1.00$

 chart is S1.50. AGENTS WANTED. Write for
terms.
bash Avenue, Chicago, P111.

FIRE FELT.

CHUCK AND MICROMETER STOP for Amateurs- - By C. D. Parkhurst. Description of a viding machine. and the micrometer stop that is used to rezulate the depth of the cut in the graduation or be had at this office and from all newsdealers.

STEEL TYPE FOR TYPEWRITERS
 BLUE PRINT Paper, sinperior Panilit:

IDEAL MUSICAL BOX
 JACOT \& SON, TYPEWRITERS.

 $\$ 10.00$ to $\$ 50.000$
 AGENTS mate in per ent. pranto my ionseis
 THE NEW NON-CONDUCTING MATERIAL

to be superior to totar

PROPOSALS.

PROPOSALS FOR IMPROVEMENTS IN
MAIL-BAGS MALL-CATCHERS AND MAIL-BAGS MALLCATCHERS

Experimental Science

UCTION NOTICE

FAMIY ICE MACHINE Leo ate in in tew THECOPYINGPAD-HOWTOMAKE
 Contained in SCIENTIFII AMERICAN SOPPLEMENT. NO
433. Price 10 cent. For are at this ofice and by ali
newsdealers in all parts of the country.

Perforated Tin Plates

 FOB ater chear one Horizonala silide ville

 PUBLICATIONS FOR 1891.
The prices of the direnern pupiliations in the United

The Searienitict American, spanisisi Edition (monthis) 5.00

The sceinutuc comerican and suppeme
The Scientitic American and Architects and Build- ${ }^{87.00}$
The Scientitic A American. supplement, and Archi- ${ }_{9.00}^{5.00}$
tects and Builders Edition.
This incluopes poonatae Rates for for Six mon. Menths.
or express money order, or draft to order of by postal
This includes postage, which we pay. Remit by postal
Or express money order, or draft to order or
MONN © CO.. $\mathbf{3 6 1}$ Hroadway, New York.

ゆDocrtisements．

 tisements at the same rate per apare line．by measure
ment．as the letter press．
Advertisements
must
 $\$ 85$ Lovell Diamond Safety \＄85
 Strictly high grade in every particular．No better machine made at any price．
Bicycle Catalogue Free．Send six cents in stamps for orur 100－page illustrated catalogue JOHN P．LOVELL ARMS CO．， 147 Washington Street，BOSTON，MASS TCE－HOUSE AND COLD ROOM－－BYR

Parsons\＆SonsCo．
Kissena Nurseries，Flushing，N．Y
Rhododendrons
Hardy Azaleas．
 JENKINS STANDARD PACKING！

WORKING MODELS And Experimental

After being on the Market Five Years The＂ACME＂still Leads！
 roceester machine tool woris，brown＇s Race，rochester，v．y． CULELER DESK THE PHONOGRAPH．－A DETALLED

 The

Remington

 has set the copy for writing machines for 15 years． It is to－day the
Standard

and expects in the future as it has in the past， to lead all others to lead all others in adding improvements to what will always
Typewriter
Wyckoff，Seamans \＆Benedict， 327 Broadway．New York．

HW．JOHIS＇ AsBESYGS STEAM PACKING
 Boiler Coverings， Building Felt， Liquid Milboard，

 DEsCRIPTive Price list and samples sent rrer．H．W．JOHMS MFG．CO．， 87 Maiden Lane，N．Y．

GATE Valve

 The Lunkenheimer Brass Mfg． C_{o} ．

SVACLIOE WALIEABIE MOONWORKS SCIENTIFIC AMERICAN SUPPLEE－

ฐcinntific Antricau

The Most Popular Scientific Paper in the World
Only $\$ 3.00$ a Year，Including Postage．Weekly
This widely circulated and splendidly illustrated teen pages of useful information and a large number of
orikinal engravings of new inventions and discoveries． representing Engineering Works，Steam Machinery，
New Inventious．Novelties in Mechanics，Manufactures， New Inventions．Novelties in Mechanics，Manufactures，
Chemistry．Electricity，Telegraphy，Photography，Archı－ tecture，Agriculture，Herticulture，Natural History， etc．Complete list of patents each week．
Terms of Subscription．－－One copy of the ScIEN－
TIFIC AMERICAN will be sent for one year－ 52 nembers－ postage prepaid，to any subscriber in the United States， Canada，or Mexico，on receipt of three dollars by the publishers；six months， 81.50 ；three months．$\$ 1.00$ ．
Clubs．- Special rates for sereral names，and to Post Clubs．－Special rates for sereral names，and to Post
Masters．Write for particulars． The safest way to remit is by Postal Order．Draft．or
Express Money Order．Money carefully placed inside of envelopes，securely seaied，and correctly addressed， seldom goes astray，but it at the sender＇s risk．Addres
all letters and make all orders．drafts，etc．，payable to all letters and make all orders．drafts，etc．，payable to
MUNN \＆CO．， $\mathbf{3 6 1}$ Broadway．New York． §rientific gancricall §upplement This is a separate and distinct publication from THE SCIENTIFIC AMERICAN，but is uniform therewith in size，
every number containing sixteen large pages full of en gravings，many of which are taken from foreign papers．
and accompanied with translated descriptions． SCientific American supplement is published week－ If，and includes a very wide range of contents．It pre－
sents the most recent papers by eminent writers in all the principal departments of Science and the Useful Arts，embracing Biology Geology，Mineralogy，Natural
History，Geography，A rchæology，Astronomy，Chemistry History，Geography，Archæology，Astronomy，Chemistry
Electrcity，Light，Heat．Mechanical Engineering，Steam
and Rallwas Engineering，Mining，Ship Build 1 ng，Marine and Rallwas Engineering，Mining，Ship Building，Marine
Engineering，Photography．Technology，Manufacturing Industries，Sanitary Engineering，Agriculture，Horti－ vast amount of fresh and valuable information obtain The most important Engineering Works，Mechanisms and Manufactures at home and abroad are illustrated
and described in the SUPPLEMENT．
Price for the SUPLEMENT for the United States and Price for the SUPPLEmENT for the United States and
Canadi，$\% 5.00$ a year；or one copy of the Scientific Amer Canada，$\%$ ． 00 a year；or one copy of the ScIENTIFIC AMER
ICAN and one copy of the Surplement，both mailed for one year for t．0．Sing．e copies， 10 cents．Adiress，and
remit ty postal order．express money order，or check，
MUNN \＆CO．， $\mathbf{3 6 1}$ Brondway，New York． Publishers ScIENTIFIC AMERICA：
Building Edition．
The Scientific American architects＇and build copies， 25 cents．Forty large quarto a pages，equal to about two hundred ordinary book pages；forming a large and splendid Magazine or Architecture，richly
adorned with elegant plates in colors，and with other fine engravings：illustrating the most interesting examples of modernarchitectural construction and allied subjects． A special feature is the presentation in each number
of a variety of the ：atest and best plans for private resi－ dences，city and country，including those of very mod
erate cost as well as the more expensive．Drawings in perspective and in color are enven，together with full
Plans，Spec：ffcations，Sheets of Details，Estum Plans，Spec：fications，Sheets of Details，Estmates，etc．
The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any Archi－
tectural publication in the world．Sold by all newsdeal ers．\＄2．50 a year．Remit to

CO．，Publishers，
造
PRINTINE INKES

[^0]:

 Candifin Prients may now be otained by the

