to bring pipes to be laid in the trench. In Fig. 2 of the engraving the relations of trench, pipe-laying plant, and portable railroad are clearly shown. Below the pipe-laying apparatus the new line of water main is indicated lying at the bottom of the excavation.
The pipes, as fast as required, are run up to the scene of operations upon the portable railroad. The hoisting apparatus consists in general terms of a rectangular platform carried on four wheels and extending over and across the trench. Through its floor a longitudinal opening is arranged, directly over the center of the excavation, large enough for a pipe to pass through in a borizontal position. The superstructure serves as support for the jib tackle of the crane and to carry pulleys, etc., for handling the pipe. As the length of pipe is run alongside, skids or short timbers of wood are laid from the car to the platform, and a pair of skids are also laid across the opening over the axis of the trench. Two or more ropes are brought from the platform to the car, passing under the pipe and then partially around and over it, returning to the upper framework. At this point they pass through pulleys and are brought to the floor, where there is a steam windlass, which is seen mounted on the platform. On drawing in the ropes, the pipe, it is obvious, will be rolled up the inclined plane formed by the skids, and can be brought directly over the trench. The arrangement is what seamen call a common "parbuckle." It is often used in the city in l-wering heavy barrels into cellars.
Slings are then placed. sound the pipe now lying on the skids over the apertr : e. Tackle is hooked on, and it is lifted a little by the steam windlass, and the skids are withdrawn. It is then lowered into the trench. This stage of operation is shown in the cut. As it descends, the pipe layers guide it into position. Its small or spigot end is entered into the hub or socket of the preceding length, and it is blocked up in a horizontal position in line with the work. This ends this stage of operations.
The joint has next to be calked with oakum. This is driven by hand with a calking iron. It extends all around the pipe within the hub, and is of as even thickness as possible. It forms a base for the lead, which latter is the actual joint-making material. It should be noted that there is a slight space left between the abutting ends of the pipe to allow for changes of tewperature
To complete the joint melted lead has to be introduced into the space in front of the oakum and the lead in turn has to be calked. As the apparatus just described is moved forward, the 'lead-melting plant seen in its rear is moved into its place. This consists of a house with furnace and lead pot, ladle, and crane. Its interior is shown in Fig. 3, the wen being engaged in lowering a ladle full of melted lead. Next to the large urnace is a smaller circular furnace. This is used to keep the ladle hot when it is not in use.
The lead is lowered, as shown, into the trench, where it is received by the pipemen and poured into the joint, as shown in Fig. 4. Before doing this a band of iron hinged at the bottom is placed around the pipe and bolted at the top, so as to inclose the annular space in front of the oakum. A clay mouth or funnel, Fig. 5, is arranged for the lead to be poured into. The connection of two pipe ends, hub and socket, with their oakum and lead filling, and with the band in place, is shown in the small sectional view at the foot of the cut.
The lead at once solidifies. The band is removed, and the calkers attack the lead with large-faced calking irons and hammers and drive it home. This operation expands the lead and makes it fill the joint perfectly. The metal being somewhat yielding does not form too rigid a connection, and allows for changes of temperature. In spite of numerous attempts, leadcalked joints have never been displaced. The trench in rear of the apparatus is filled in as fast as it progresses, and the work is complete up to that point.
The object of the line is to carry water from the new reservoir between Rockville Center and Baldwins, on the south side of Long Island, to the Ridgewood reservoir and new pumping station at East New York. It will be a pressure line, and will have a capacity of twenty-five millions of gallons per day. It follows the line of the old aqueduct for part of the way. The sectional view, Fig. 2, shows the aqueduct full of water on one side of it. The aqueduct embankment is thus, in part, utilized in its construction.
The work is being executed by Mapes, Crawford \& Valentine, of Brooklyn, N. Y. They are the designers of the ingenious and efficient apparatue whose results have taken the direction of greatly accelerating the work we have described.

Professor Orton, State Geologist of Ohio, say that the natural gas supply is rapidly and surely being exhausted. The way in which the gas is wasted makes the average stranger sick at heart. Great roaring wells, huge batteries of the cheapest and most wasteful types of boilers blowing off steam night and day, empty furnaces kept hot for weeks at a time, strike him as crimes against the economy of nature.

Sriuntific Ammerian.

ESTABLISHFI 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
. D. MUNN.
A. e. beach.

TERIS FOR THE SCIENTIPIC AMEICICAN

 One copy, one year, for the U. S., Canada or Mexico..One cops, six months, for the U. S., Canada or Mexico
ne copy, one year, to any foreign country
 Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., 361 Broadway. corner of r ranklin Street, New York.

The Scientific American Supplement

Building Edition.

NEW YORK, SATCRDAY, JANUARY 3, 1891.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 783.
For the week Ending January 3, 1891.
Price 10 cents. For sale by all newedealers.
ARMS OF WAR.-The Lebel and Mannlicher Guns.-The new German arma rifife.--Its construction and arrangements for secur
ing magazine action. - A comparison between it and the Lebel ritle of the French army.-6 illustrations.
I. Chemistry.-Method for Rendering Aniline Colors soluble in Benzene, Carbon Disulphide, etc.-An excellent suggestion, and
details of a method for rendering aniline colors soluble in carbons and similar solvents... Recovering Tin from Tin Plate Scrap.-By B. Schultize.-A
method of recovering tin from scrap by chemical reactions in the

iii. Civil engineering.-The Metropolitan Rallway of Paris.

 Construction of a subterranean railway without entirely stoppinsurface transit.-4 illustrations.
 Use of Water Power and Electricity in Tunneling.-A new fe ture in railroad engineering, to be used in the Andes Mountains. . ELECTRICITY.-Electric Power Transmission in Mining Opera-
tions. - By H. C. SpaUlning.-Review frem the electrical stand-tions.- By H. C. SpAULDING.-Review from the electrical stand
point of the work that electricity can do for the civil engineer point of the work that electricity can do for the civil enginee
followed by a series of papers by prominent engineers, prepare and published under the auspices of the American Institute of Mining Engineers.- 2 illustrations.
Small Electric Motor for Amate
Small Electric Motor for Amateurs................................
-A Eorge M. Hopkimple Gramme electric motor for construction by the ama--A simple Gramme electric motor for construction by the ama-
MEDICAL AND HYGIENE.-Alimentation as a Therapeutic Measure.-By Dr. G. Archie STockwell.-A valuable and pro-
gressive review of the philosophy of alimentation and of inanition... of the development of a petroleum field in South A frica............ The Chicago International Exhibition of 1893.-By JAMES
DREDE.. VII. NA DAL FRG INEERING.-The 25 de Mayo.-A new twin screw ViII. TECHNOLOGY.-The Central Tobacco Factory in Constantiin Constantinople.- 5 illustrations...................................
The Pintsch Gas System.-By ROBERT M. DIXON.-An interestlng review of this rapialy extending apphation kas.-The rea

Now therefore I, Benjamin Harrison, President of the United States, by virtue of the authority vested in meby said act, do hereby declare and proclaim that such international exhibition will be opened on the first day of May, in the year 1893, in the cityof Chicago in the State of Illinois, and will not be closed befor the last Thursday in October of the same year. And in the name of the government and of the people of the United States, I do hereby invite all the nations o the earth to take part in the commemoration of an event that is pre-eminent in humanhistory, and o lasting interest to mankind, by appointing representa tives thereto, and sending such exhibits to the World' Columbian Exposition as will most fitly and fully illustrate their resources, their industries, and their progress in civilization.

In testimony whereof I have hereunto set my hand and caused the seal of the United States to be affixed. "Doneat the City of Washington, this twenty-fourth
day of December, 1890, and of the Independence of the United States the one hundred and fifteenth.

Benjamin Harrison.
"By the President. James G. Blaine, Secretary of State."
The proclamation marks an epoch in the Exposition. The work heretofore done has represented the civic or ganization of the enterprise. Actual erection of buildings could not be commenced in the absence of the governmental sanction, now granted, and which comes just at the time when it is likely to be the most beneficial. The legislatures of many of the States are about to meet and will be asked to take part in the grand display. That all the States will liberally respond there is no question. The commission may now solicit foreign exhibitors to come to Chicago, and the contributions frow abroad will doubtless be great and wonderful.

In this connection we would call attention to the very interesting and able lecture upon the Chicago Exhibition recently delivered before the Society of Arts, in London, by Mr. James Dredge, editor of Engineering, upon the nature and scope of the great enterprise. We give the paper in full in our Supplement of the present week, Number 783. The lecturer presents a brief history of the project of the fair. Its financial basis he considers to be equal to that of the recent Paris exhibition. He then describes the history, situation, resources, population, area, importance, trade, and industries of Chicago, giving a most glowing picture thereof, of which Chicagoans may well be proud. The author next proceeds to describe the grounds selected for the exhibition purposes, namely, Jackson Park, Washington Park, and the broad connecting strip known as the Midway Plaisaunce, the whole comprising an area of 1,200 acres, more than ample for actual requirements.
The selection of Jackson Park with its lake front for the location of the great buildings is highly commended. He declares that no such favorable site has been ever placed at the disposal of an exhibition exe cutive. The desirability of European participation is next discussed, and the important benefits likely to be realized by English exhibitors are forcibly stated. But whether a British section is created or not, the author urges every Englishman who can spare the money and time to visit Chicago in 1893, for in no other way can he become so readily informed respecting the vast capabilities and resources of America and her wonderful advances in industry and invention. It is evident the undertaking will be full of the greatest interest to the thoughtful foreign visitor
In the discussion which followed the reading of the lecture, some most excellent and some quite funny English ideas were expressed, all of which are given in our Supplement report.

PROGRESS OF THE GREAT RAILWAY TUNNEL UNDER THE HUDSON RIVER.
Since our last account, published in the Scientific American of November 1, about 470 feet have been added to the Hudson River tunnel, which brings the total completed length up to 2,720 feet. This indicates a progress at the rate of about 7 feet per day. The work is progressing without interruption. By re moving the intermediate accumulating pump, and bringing the power of the pump direct to the hydraulic jacks, the Beach pneumatic shield is advanced the width of one of the rings in eight minutes, a progress formerly requiring from 2 to 4 hours. Formerly, the great trouble was in getting the shield ahead, at pres ent the great obstacle is in getting away the excavated silt rapidly enough. A system of chutes is soon to be tried, one under each opening in the shield front, down which the silt will slide direct into the waiting cars, instead of shoveling it by hand as heretofore. The company hope to record ten feet per day when these changes are completed.

NEW TERMINUS OF PENNSYLVANIA RAILROAD IN JERSEY CITY.

The work of elevating the tracks and terminal structures of the Pennsylvania Railroad Company, at their terminus in Jersey City, has so far advanced as to clearly outline its completion, advantages and defects. Entrance to Jersey City has been effected upon a two
track roadbed. By the present change to the elevat ed plan, four tracks will be obtained. Beginning at a point back of the city near what is known as Bergen Hill, a slope ultimately merging into an iron superstructure, similar in design to the Sixth Avenue elevated road, has been constructed, to the station at the water front, about one and a half miles. The part so nearly completed is but one-half, or two tracks, of the system, the present road tracks being moved a little one side, that the business of the road might continue
until the two elevated tracks are ready for use, after which the other half will be erected and wedded to it. The structure is a continuous plate II girder in it continuity, including street bridging, with scarcely an exception.

The broad girders and substantial upright columns
its kindred structure in New York, promise is given of a metallic resonance under moving trains that will be burdensome to nerves near its path.
High in the air, at the river front, timbers of massive strength are being put up, as a superstructure for the erection thereon of the iron train shed.
The work so far as accomplished has ail the characteristics of strength, but few of beauty, as compared with the terminal approaches at Philadelphia.
On the New York side, work has been commenced in raising the height of the ferry houses to accommodate the two-story boats that are to be used in connection with the elevated structures on each side of the river This part of the system we described and illustratedin our issue of February 8 last.

Magnetic Rocks and Ships' Compasses.

The following extract from a letter of Profs. Rucker and Thorpe, which recently appeared in the London Times, may be of interest :
As it has been suggested that the loss of her Majesty's ship Serpent, lately wrecked at night on the north coast of Spain, may have been due to a deviation of the compass caused by magnetic rocks, we think your readers should be warned that such an explana tion should only be accepted after rigorous proof. In the first place, it must be borne in inind that ordinary ironstone is not magnetic. Metallic iron and the mag netic oxide are practically the only substances which could affect the compass to an appreciable extent. Large disturbances generally occur in the neighbor hood of basalts, gabros, and the like, throughout which magnetite is scattered in a more or less finely di vided state. Such rocks are plentiful on the west coast of Scotland, and on the island of Canna there is a cliff named Compass Hill, from the great effect which it produces on the magnet.

We have made a special study of the magnetic properties of this island, and can confirm the statement that its basaltic cliffs are powerfully magnetic. The needle of a compass placed near them may be deviated by two points. The effect, however, diminishes very rapidly with the dis tance, and is inappreciable on a ship's compass 200 yards from the base of the hill to which tradition as cribes, and in which we have ourselves detected, the most powerful magnetic properties. We have tested this on more than one occasion. In particular, in 1888, we approached the island from the north. The course was magnetic S. $1 / 4 \mathrm{E}$., a direction most favorable for the detection of the effect of Compass Hill. We passed it within 200 yards of the shore, but observed no effect on the compass.

Nowhere in the United Kingdow have we discovered a disturbance which extend for a mile and also produces throughout that distance a constant deviation of the compass of as much as a couple of degrees. While, therefore, it is difficult to assign any limit to what might occur in an extraordinary and special case, and while we believe that there are some well-authenticated instances of magnetic rocks affecting seriously the compasses of ships in their immediate neighborhood, the greatest caution ought to be exercised in accepting any such instance as proved. It is contrary to general experience that intense local magnetic disturbances should also be far reaching.

White Ants in India.

That species of Termes known as the white ant is very abundant in India, and is dreaded by all European residents, on account of its extraordinary ravages, especially in the larva state, in which it is truthfully called a worker.
The workers unite in colonies of countless number and take up their abode in the ground, in wood, on the ceiling or roof of a house, making tunnels and forming routes which lead to the center of their nests.
Their deeds are deeds of darkness, for so ingenious are they that they form the tunnels inside and leave the surface of the door or beam intact.
I was standing by the door of our parlor, says C. M. Wherry, in the Graphic (Chicago), talking to a friend, and on putting my hand upon the door frame, found that it was hollow. On further examination it was found to be filled with earth along one side, which the Termes had deposited as they worked their way through.

One morning our sweeper removed a pile about two feet in height from our dining room floor, but the en ergetic creatures, nothing daunted, began their work over again, and by the next morning the pile was a yard in height from the floor and up the side of the wall.
Day after day the sweeper wielded his broom over the spot until he was forced to the conclusion that hey meant to conquer him.
As a last remedy, after a great many experiments, he poured a gallon of kerosene over the spot and was exceedingly rejoiced to find that at last they had been driven away after two weeks of hard fighting. But
alas! his spirits sank within him when one morning few days later he found the pile higher than ever. It became necessary to dig for the queen, as afte her expulsion no more are hatched, and they gradually disappear. A hole in the cement fleor was dug in
which a horse could have been buried, before the queen was found in the center of her colony.
The abdowen of the queen becomes very much dis tended with the innumerable eggs which it contains. It is said that one such insect has been known to de posit 80,000 eggs in one day. The larvæ are a creamy white and transparent enough to show the substance in the body with which the tunnels are moistened when in construction.
After a time they acquire wings, and flying about during the night, lose them. Being particularly at tracted by lamp light, many swarm around the draw ing-room lights until the floor is quite littered with the wingless creatures, which soon become the prey of lizards and toads, and by daylight, of birds. The natives do not eat them as the Africans do.

On account of their secret ravages, the houses of Europeans and of most natives are usually only one story high, with plastered floors and roofs of earth or grass, which can be renewed every few years.
I have known of people being severely injured by the falling of a heavy mud roof, caused by the white ants having eaten out portions of a heavy beam. So common are they, that railroad ties and telegraph poles are often made of iron, as nothing but metal seems to be impervious to their waste.
Trunks and boxes must be kept off the floor, on bricks at each corner, or on stands made for the purpose. It is a common occurrence to walk into a room sowe morning and find a carpet eaten in several places, or a box of clothing tunneled through and through, from which you could not get a square large enough for table napkin. Thus a housekeeper's life becomes one of everlasting vigilance.

American Cars and Locomotives for Foreigit

Two complete trains of drawing room cars have jus been completed for the Buenos Ayres and Ensenada Port Railway Company by the Gilbert Car Manufac turing Company, of Troy, N. Y., U. S. A., and St. Ermin's Mansions, Westminster, England. Each train Ermin's Mansions, Westminster, England. Each train and smoking car, and one baggage car. The extreme length of cars is 65 feet, with the exception of baggage car, which is 53 feet by 9 feet 10 inches wide. The gauge of rails is 5 feet 6 inches. The whole of the ma terial is of the highest class, and the cars are of hand ome design and finish.
The government of New South Wales has placed with the Baldwin Locomotive Works an order for twelve tenwheel passenger locomotives, somewhat similar to the engines of the same type built for the Baltimore and Ohio, and now running very successfully on that road The Railroad Gazette says limited weight-on account of the bridges-makes it necessary to reduce the dimen sions somewhat, while the specification of materials i altered to conform to the practice of the New South Wales government. Thus, the fire boxes will be of copper, tubes of brass, staybolts of copper, and possibly the wheel centers will be of wrought iron. The speci fications are not yet fully determined. The engines will have screw reversing gear. The service for which they are intended is to haul passenger trains weighing 144 gross tons $-2,240$ pounds-at a speed of 22 wiles per hour up a grade of 176 feet per mile, or trains weighing 176 gross tons at the same speed up grades of 130 feet per mile, there being curves of 528 feet radius on the 130 foot grades. In all important respects the engines will conform to American practice. These engines are to be built with the utwost dispatch and shipped direct to Sydney by steamer.

Colorado Electrical Street Railways.

Electricity as a street car motor is rapidly superseding other mediums in Western cities
Denver has already thirty miles of electrical stree road in operation, employing an aggregate of 1,150 horse power of generators, 58 motor cars, each fitted with two 15 horse power motors, and 60 trailers, tra versing the city and reaching out in every direction to suburban points.
The old cable and horse car companies are rapidly adopting what is apparently to be the motive power of the future for all city and suburban traffic. Several additional electric lines are in contemplation. Some re already in process of construction, notably the so-called Suburban line of 15 miles and the Golden line of 21 miles mentioned in a previous issue.
The West End line uses double truck cars 40 feet long and of 2,000 pounds weight, fitted with two 15 horse power Sprague motors, this motor and overhead wires being in general use on all the lines.
The Colorado Springs electrical main line, with branches, is 22 miles long, and runs to Colorado City the former capital of the S tate; to Manitou, connect ing with the new steam railway to the summit of Pike’s Peak, altitude 14,150 feet, and to numerous other point of interest. The aggregate power of the generators of this line is 280 horse, employing 18 motor cars and a like number of trailers.
The various lines are all doing a large and an appo rently increasing and profitable business.

