Stientific Ammericau.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors.
 published weekly at
 No. 361 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIPIC AMERICAN.

One copy, one year. for the U. S., Canada or Mexico..
One copy, six months, for the U. S., Canada or Mexico
One copy, one year, to any foreign country belonging to Postal....... 1 IS 40 Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., 3 Bil Broadwas, corner of Franklin Street, New York. The Sclentific american Supplement

Building Edition

Spanish Edition of the Scientific American

MUNN \& CO.. Publishers,

NEW YORK, SATURDAY, AUGUST 16, 1890.

table of contents of SCIENTIFIC AMERICAN SUPPLEMENT

No. 763.
For the Weok Ending August 16, 1890.

 . MISCELLANEOUS, A Brat Aquarium- An aquarium cootaining

 ${ }^{2}-2$ inubetrations.
XIIL. TECHNOLOGY-A Aparatus for Conling Milk.-Appliance for

the first electrical execution.

In January, 1889, the new law of the State of New York went into effect, whereby electricity was substituted for the rope in the execution of criminals; but it was not until the 6th inst. that the prison authorities at Auburn, N. Y., had occasion to make actual trial of the new method upon the body of a convict.
A wretch named Kemmler, whose crime had been the atrocious murder of a woman, was appointed to be the first to suffer electrical death. No sooner was this announced than a number of persons interested in electricity and electrical apparatus set themselves to work to prevent the execution of the law, first by ap pealing to public sentiment through the newspapers and next by interposing legal obstacles through the courts. It was set forth by these electrical partisans first, that it would be a degradation of the noble science of electricity if it were brought down to so base a use as the killing of criminals; and second, no elec trical apparatus known was capable of generating a current that would killa human being with as muc certainty and regard for humanity as the gallows.
Strange to relate, at the very time when these elec trical discussions were filling the daily papers, when numbers of professors and electrical experts were striv ing, by might and main, to convince the public, through their learned disquisitions, that the alternat ing currents, the wires of which ramified in all direc tions through the city, were innocent and harmless, a this very time there occurred a series of deplorable in cidents, whereby persons who accidentally touched the electric wires in the streets were instantly killed. The solemn essays of the learned-in-their-own-conceit ex perts would appear in the morning papers, proving beyond all question that the wires were perfectly safe they could not extinguish life, and therefore the attempt to use electricity as provided by the new law was absurd. But perhaps the next morning, in the same newspapers, there would be given to the public the shocking details of loss of life occasioned by the These dreadful tragedies came in such frequent suc cession that all argument and talk against the law promptly ceased, and the city authorities hastened and cut down the dangerous wires.
The opponents of the law thereafter took a different tack. They obtained a postponement of the sentenc of the condewned man on account of alleged lega errors in his conviction and the unconstitutionality of the new law. An appeal was taken to the highest court of the State, but the conviction and the law wa sustained. An appeal was then taken to the Supreme Court of the United States, which held that the new law was not in conflict with the constitutional law Further applications were made to the State court but were dismissed, and on the 6th instant the doome
man suffered the statute penalty. He was strapped to a stout chair, electrodes were placed so as to make contact with top of head and base of spine, an alter nating electrical current from a powerful Westing house machine was joined, a switch was moved, and the criminal was struck dead-instantly killed by light ning. The apparatus employed was sure and effective The law requires the presence of witnesses; among foes and friends of the new law, lawyers, and news paper reporters.
The most intelligent oi the witnesses, disinterested persons, also the warden of the prison, declare that as a mode of execution the electrical plan is far preferable to the scaffold.
It is rumored the Westinghouse Company or some of its adherents spent many thousands of dollars in fruit less efforts to nullify and obstruct the operation of the new law. The ablest lawyers and experts, who ordinarily receive large fees, were employed.
The execution of a criminal, whether by the guillo tine, the garrote, the gallows, the gun, or the dynamo is a ghastly business; and it is not surprising that the sensational newspapers, aided by the electrical oppo nents of the law, should have made the most of such an occasion to fill their columns with revolting details.
The foes of the law dwell upon the fact that the muscular contractions of the victim after the switch was turned prove the correctness of their origina position-that Kemmler lingered a few seconds in life hat he was not instantaneously killed, therefore tha electricity is a fail
should be repealed.
We have only to say, if they are not satisfied with the electrical apparatus used at Auburn, if, as the claim, it is not effective, then let us employ the deadly devices which the complainants themselves use, own
and control, with which they fill our streets and slay our innocent citizens. Let them bring the culprit to ou city prison, place bim on a conducting floor, introduce one of their street light wires, and with it, at the moment of execution, touch the hands of the prisoner It will extinguish life instantly. It has rarely been known to fail.

To make labels adhere to tin use a freshly made so lution of gum tragacanth in water.

WIRE AND ELECTRICITY.

Electrically heated flat irons are now made which are very serviceable. The flat iron is of the usual form, but made hollow. The interior contains a lot of coiled wires, through which the electrical current passes and heats the wires red hot. The latter are arranged between protecting sheets of mica and asbestos. You urn a switch, and the flat iron at once heats up ready or use. The street wires supply the electrical curent.
In the same way all kinds of domestic utensils may be heated, such as cake bakers, meat broilers, coffee pots, etc. Electrical platters for keeping food warm when on the table may be had. Electrical heaters fo warming apartments are also made. There is, indeed, oo end to the useful applications of wire and electricity

The Star Mizar.

Every observer of the heavens, who knows by name some of the brightest stars, is familiar with the constellation called the Great Dipper, visible in the north ern sky through the whole night and throughout the year. It consists of seven stars, four in the bowl and three in the handle. An interesting discovery has recently been made by Professor Pickering, of the Har vard University observatory, concerning one of the tars of this beautiful group. Mizar is the name of the star. It is the middle starin the handle, is of the second magnitude, and has attracted much attention ever ince men began to study the stars, because even to the naked eye it is double. It has a companion, Alcor plainly visible to observers endowed with good visua power. Alcor is of the fifth magnitude, and is about 11^{\prime} distant from Mizar. The tiny star seems to be growing brighter, for the Arabians considered it severe naked eye test, and it is now comparatively easy to detect. The telescope shows plainly that Mizar is a double star, its components being of the third and fifth magnitudes, the one a brilliant white, the other a pale emerald. The marvelous discovery is now made that the larger star of the pair is also double, the two tars that compose it being so close together that the elescope cannot separate them. The spectrum of a tar, like the solar spectrum, consists of the seven primary colors, crossed by dark lines. These lines form kind of astronomical alphabet. If the star is comin oward us, they shift toward the violet end of the spectrum. If the star is receding, they shift toward the red end. Two stars very near together, having the same spectrum, cannot be distinguished from a single star as long as they are at rest. If they revolve round each other in a plane inclined to the line of sight, the ines of their spectra will be single when the stars are in conjunction, and double when they are at elonge tion. This is the case with Mizar, and the doubling occurs at intervals of fifty-twodays. Professor Picker ng, therefore, infers that these two stars are immens uns revolving round each other. He estimates that the period of revolution of each sun about the common center of gravity is one hundred and four days, and that the maximum velocity is one hundred miles a second. These conclusions are the result of measure ments of almost inconceivable delicacy.-Youth's Com panion.

Bisulphide of Carbon.

A correspondent writes: An interest of a very prac tical kind attaches to this compound. Carbon bi sulphide (Fr . sulphure de carbone) is a colorless, heavy very mobile and volatile liquid. It is made by the ac tion of sulphur vapor on red hot charcoal, and is used in the manufacture of waterproof materials, the extrac tion of oils from seeds, etc. It has a specific gravity of $1 \cdot 29$, and boils at 114.8 deg. F., but volatilizes ver quickly at ordinary temperatures. The specific gravity of the vapor is rather more than $21 \%_{2}^{\prime}$ times that of tmospheric air, and the vapor not only readily collects near the bottom of any space in which it is produced, but flows along almost like a fluid, and the vapor may thus reach a fire and be inflamed at some distance from its source of production. One of the most striking characteristics of this vapor is the extremely low tem perature at which, when mixed with air, it takes fire According to experiments, this temperature is abou 415 deg. F. (some authorities give it considerably low er). If it is borne in mine that the lowest visible red heat corresponds to a temperature of about $1,200 \mathrm{deg}$. F., while a bright red heat, such as is necessary to in flame a mixture of benzoline va.por and air, correspond to about $2,100 \mathrm{deg}$. F., it will be seen how very low relatively speaking, the temperature of ignition is in the case of bisulphide vapor. The smallest spark from iron, a fire, a cinder after it has lost all appear ance of fire, an even moderately heated stove, etc., are hot enought to set it on fire. The mere striking to gether of two pieces of iron within the inflammable atmosphere is sufficient to ignite it. It is not essential that an actual spark should be produced in order to bring about this result, but if the particle struck off is about 415 deg . F., a temperature far below a red heat gnition will result. The above is an abridgment of the evidence of Dr. A. Dupre, taken for the purposes of a recent Board of Trade inquiry into the burning of
the Livadia, a Liverpool steamer, which was laden with 150 tons of sulphure de carbone, and with other cargo, at Marseilles, and had to be abandoned by her crew off Cape Cette on May 11 last. The inspector appointed by the board thought the casualty due to the leakage of one of the drums in which the sulphure was stored, to the formation of vapor, and to its being drawn up to the formation of vapor, and to its being drawn up the drain pipes through the scuppers, so
into contact with a light in the forecastle.

PHOTOGRAPHIC NOTES.

Silver Intensifier for Gelatine Negatives.-A modified ormula, originally devised by Mr. J. B. B. Wellington, is recommended by a Mr. Richmond, as follows, in the Photo. News:

For use, take one drachm. of the three solutions in the order named, mix, and apply to the plate.
Unifurm Standardfor Lens Mounts.-A very worthy effort is being made among the leading opticians in England to establish a uniform system of screw threads and of lens mounts, so that the lens of one maker will fit in a lens flange of another make. When such uniformity is decided upon, it will be comparatively easy formity is decided upon, it will be comparatively easy to use different manufacturers' lenses and different
kinds of lenses in one screw flange, instead of requirkinds of lenses in one screw flange, ins
ing a separate lens board for each lens.
A Good Mountant. - The following mountant is strongly recommended by Mr . W. Willis for delicate prints: Weigh out two ounces of the best arrowroot, mix it into a thick paste with two ounces of hot water, and then add 18 ounces of boiling water, stirring briskly. Soak half an ounce of gelatine in water until it is thoroughly soft and swollen. Stir this swollen it is thoroughly soft and swollen. Stir this swollen
gelatine into the hot arrowroot, with which it will gelatine into the hot arrowroot, with which it will
quickly incorporate itself. Add ien or twelve drops quickly incorporate itself. Add ien or twelve drops
of pure carbolic acid. This forms a stiff jelly when of pure carbolic acid. This forms a stiff jelly when
cold, and it should be used cold, being brushed on to the back of the prints or applied to them with a sponge. -Photo. News.

slag Cement.

In a recent article on slag cements, Le Genie Civil states these cements are made by finely grinding blast furnace slag, and mixing it with a suitable proportion of fat lime. The grinding has to be very fine, because as the cement is made by a simple mixture it is necessary that the surface on which the two constituents, the lime and the slag, react on each other should be as large as possible, if proper chemical combination is to ensue. As manufactured in France, the cement leaves only 20 per cent on a sieve containing upward of 25,000 meshes per square inch, and only 8 to 10 per cent on a sieve with 4,500 meshes per square inch. The density of slag cements is much less than that of Portland, weighing, bulk for bulk, but from 0.8 to 0.88 time as much. In general, this cement also sets somewhat more slowly than Portland, but when hardened has, in many cases, a greater strength, particularly at early in many cases, a greater strength, particularly at early
dates after setting. In some experiments still unfinished dates after setting. In some experiments still unfinished
the following results were attained with a slag cement the following results were attai

Age. 1 week. 1 month. 3 months.
Breaking load, lb.
$\begin{array}{llll}\text { per squareinch. } & 473.5 & 568.8 & 678.3\end{array}$
These figures are higher than any att́ained in tests made on Portland cements for the new Croton aqueduct. Experiments have also been made with slag cement mortar mixed with, and allowed to harden in, sea water, and gave the following results; the mortar consisted of six parts by weight of cement to ten of sand :

8 Age. Breaking weight, lb. per square inch.
$\begin{array}{rllllll}8 \text { days... } & 2520 & 319 \cdot 9 & 275 \cdot 1 & 273 \cdot 0 & 285 \cdot 8 \\ 28 & \text { " } & \ldots . & 375 \cdot 4 & 327 \cdot 0 & 327 \cdot 0 & 248 \cdot 4\end{array}$
The main objection to slag cement seems to be that if it is allowed to harden in dry air, its strength is very materially reduced, and it is then liable to crack. In the town of Villef ranche-sur-Saone (Rhone) it has been largely used for paving footpaths, some 4,800 square yards having been laid there with the most satisfactory results.

Electrical Notes.

One of the regular items of expense in operating an arc station is that of lamp trimming. As a general rule, and perhaps universally, the carbon trimmers are paid at the rate of about $\$ 2$ per day, and each man has so many lamps assigned to his care. The general mana ger of a large plant in the Southwest informs us, how-
ever, that he has tried the performance of trimming duty on a piece work basis. At first they paid their trimmers $21 / 2$ cents per lamp, so that the men made as much as $\$ 75$ to $\$ 90$ per month, although the circuits are very long. Since the middle of May they have reduced
the rate to 2 cents per lamp, the men still making as much as $\$ 65$ per month. Each man, it
looks after more than 100 lamps per day.
A disadvantage of this method is that the men are hardly likely to take time to give the lamps the care they require, the trimmer being more anxious as to the number of the lamps than as to their efficient burning. On the other hand, the men, since they get so much for each lamp on their "beat," are anxious to secure for each lamp on their "beat," are anxious to secure
new customers, and will readily go out of their way to secure additional business for the station.
Cheap and dishonest competition has cut much of the interior wiring business into pieces, so that reputable contractors often do not care to bid on work. In ordinary work for bells, annunciators, alarms, etc., where conscience is not kept on the alert even by fear of the inspector, the work is frequently disgraceful. If it were plumbing, the architect knows that he would have to deal with a board of health, or with a nervous buyer whose sense of smell had been abnormally debuyer whose sense of smell had been abnormally de-
veloped by the reading of sensational hygienic literature. But wiring-the lowest bid will win the day. This is not as it should be, and until architects are themselves able to judge of the quality of the work and of the goods used in the installation, they should call in a trustworthy expert or engineer, whose modest fee for examination will be recouped many times over in the solid s
property.
While at the outset arc lamps were employed to a considerable extent for interior illumination, their use is at the present time confined almost exclusively to
outdoor illumination, except in cases where large interior spaces are to be lighted, and where the height of the ceiling permits of the even distribution of the light. It has often been remarked, however, that an arc lamp of small candle power ought to find a large field for ap plication for interior illumination, and it is indeed strange that efforts in the past have not been made or have not been successful, if made, to produce a lamp of this nature. We believe that some attempts, with fair success, have been made abroad, but up to the present this field seems to have been entirely neglected in this country. We are glad to note, therefore, the appear ance of a lamp designed for such a purpose. With a good mechanism and good carbons, so as to insure a steady light equivalent to 150 or 200 candle power illumination, there is no reason why such a lamp should not come into extensive use, especially on the core of economy.
Now that electric welding, pure and simple, has at tained a firm foothold in the arts, we see springing up around $i t$, and as a direct result of $i t$, a variety of inost valuable and interesting processes worked out by Prof. Thomson and his associates. Among these we describe in this issue a process for case-hardening, devised by Prof. Thomson, in which the high heat produced by the current is employed to effect the deposition of carbon from a hydrocarbon gas surrounding the piece to be treated. This process will be recognized at once as analogous to that emplosed for the flashing of incandescent lamps in order to obtain uniformity in the filament. In the present instance, however, the body upon which it is deposited combines with the carbon to form a steel coating. Mr. Lemp's process of electric swaging seems also destined to a wide application, not only on account of the nicety with which the operation can be performed, but equally on the score of its econ-
omy. It is safe to say that we have by no means omy. It is safe to say that we have by no mean out limit.
As a method of protection from abnormal currents fusible cut-outs have found wide application, probably as much on account of their simplicity as for any other reason. When applied to the protection of delicate instruments, however, the difficulties encountered in drawing down a fusible metal, on account of its lack o tenacity, and also from its extreme fragility, limit its use. To avoid this, Mr. Stephen D. Field has applied the mercury cut-out in an ingenious manner, by which not only is uniformity and strength obtained, but the cut-out is saved from destruction, and, upon the cessation of the abnormal current, immediately assumes its former guarding functions. The cut-out shows itself to be quite satisfactory in its operation under severe conditions.
In the system of electrically increasing traction as developed and practiced by Mr. Ries, a low tension quantity current is made to flow through a local circuit of almost negligible resistance, of which circuit the driving wheels and that portion of the track rails im mediately below and between them form the principal part. This current produces a slight local heating or incipient welding effect at the points of contact between the wheels and rails, which is practically in stantaneous in its action, and brings about a decided ncrease in the coefficient of friction between the op posing metallic surfaces.
Models exhiblted show an increase in traction due to the current of over 200 per cent. Preliminary tests of the invention, as applied to steam locomotives in tular service, have been very successful.
The traction-increasing current is generated by a
small alternating current dynamo, driven by a rotary engine supplied with steam from the locomotive boiler. The engine and dynamo are mounted upon a common base secured to the boiler in the position formerly occupied by the sand box. One or both pairs of driving wheels are electrically insulated from the body of the locomotive and from each other by the use of special insulation surrounding the driving box and side rod brasses. The insulation so far ewployed has proved itself fully capable of withstanding the exceptionally severe strain to which it is subjected, and tests made after several months of continuous service have led to its permanent adoption for this class of work.
Experiments already made upon a large scale have shown that by this method it is possible to increase the tractive adhesion of locomotives fully 25 per cent, thus enabling them, with a saving of fuel, to haul a largely increased load, to mount heavier grades, and to descend the same under perfect control and without the skidding of wheels. Besides this, it will enable railroads to haul, with their present engines, much railroads to haul, with their present engines, much
longer trains than they can now do, thus not only increasing the carrying capacity of the road, but saving largely the wear and tear upon tracks and bridges that the use of heavier engines for this purpose would en tail. It will likewise enable both passenger and freight locomotives to make better speed and to maintain schedule time notwithstanding ordinary unfavorable conditions
\qquad

Alexander Parken.

Mr. Alexander Parkes, one of the most prolific inventors that has ever been produced by this or any other country, died on June 29, at his residence, Penrhyn Villa, Rosendale Road, West Dulwich. Burn at Birmingham in the year 1813, Mr. Parkes was apprenticed in the year 1827 to the firm of Messrs. Samuel Messenger \& Co., as a modeler and designer, but having practically the run of the factors, his education as a practical metallurgist may be said to have commenced at the same time. In 1840 he was engaged by Messrs. Elkington to superintend the casting department of the electro-plating works they were then on the point of organizing, and while with them, in 1841, he took out his first patent, which in the course of his long life has been followed by what, considering their quality, must be considered as an enormous number of others. The best known of these are the Parkes process for desilverizing lead by means of zinc, and the invention of "parkesine," which has, however, been vention of "parkesine," which has, however, been
since renamed celluloid or xylonite. Another imporsince renamed celluloid or xylonite. Another inupor-
tant patent was one for the construction of weldless tubing by "drawing" flat plates in a press. This process has been largely adopted, though we believe the inventor's name is known comparatively to few. O his numerous patents, which must be quite forty in number, a very large proportion have proved valuable, though as Mr. Parkes was but poorly up in the modern art of self-advertisement, as practiced more particularly by American inventors, his name has been but little known to the general public. His most recent inventions, the last of which was patented at the end of 1887 , relate to the separation of gold from its gangue, by fusing the quartz by suitable fluxes, and this process has been put into operation at the Champion silver mines, New Zealand. Mr. Parkes' death, though occurring at a ripe old age, is a distinct loss to the metallurgic world.-Engineering.

Pumice Stone.

A mine of pumice stone exists on the Teneriffe Peak, of which the working was only started in 1888. The stone is found in that part of the peak called the "Canadas," at about 2,000 feet above sea level, which has an area of some 6.000 hectares, out of the middle of which rises the highest part of the peak. The Russian consul at St. Croix bought this property of the Spanish government in consideration of an anuua payment for the puinice stone working. The Russian consul has associated himself with a Belgian, and they, under the firm styled Aguilar \& Valcke, commenced operations in 1888, but it was only last year exportation was really started. At the Paris exhibition, the consul-general states that this stone obtained a silver medal, and in view of the requirements of England, France, and America, he believes it will levelop a trade of great importance before many years So far, the Lipari Islands have practically furnished the world's supply of this product, exporting about 100,000 tons per annum. The Teneriffe stone being recognized as of excellent quality, and its extraction being a much more simple matter than in the Lipari Islands, it follows that the price is much less.

SIX years ago there were scarcely a hundred electric motors in operation in the United States for any pur pose; to-day there are not less than 15,000 motors in use, applied to not less than two hundred different in dustries, and an industrial revolution is taking place equaling, if not surpassing, in importance that attending the introduction of the steam engine, and marvel ous in the rapidity of its growth.-Sprague.

