§rientifir glmericau.

FSTABLISHED 1845.

MUNP \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O.D. MUNN.
A. E. BEACH.

TERMS POR THE SCIENTIPIC AMEHICAN.

 Une copy, one year. for the U. S., Canada or MexicoOne cops, six months, for the U. S., Canada or Mexico
One copy. one year, toany foreikn country belongink to Postal Union. 1 id Remit by postal or express money order, or by bank draft or check.
MUNN $\&$ CO. 3 fil Broadway, corner of Franklin Street, New York. The Sclentific American 8upplement
is a diatinct paper from the Scientipic american. The supplisniknt
is issued weekly. kvery number contains 16 octavo pakes. is issued weekily. Kvery number contains 16 octavo pawes. uniform in size
ith Scientipic ANERICAN. 'Rerms of subscription for SOPPIEMENT, \$5.00 a year, for U. S. Canada or Mexico. 86.00 a y yar to foreikn
countries belonging to the Postal Union. Sirsie copiea. 10 cente. Bold by all newsdealers throughcut the country. See prospectua last page. Comblord Raten.-The SCientific amprican and Bupplemen
will besent for one year, to any address in U. 8 . Canady or Mexico, will be sent for one yaar, to any address in U. S., Canada or Mexico, on
receipt of seven dolare. To foreikn countries within Postal Union, nine receipt of sever
dollars a year.

Building Edition.

The abchitects and builders hdition orthe scientipic amertaining floor plans, perspective viewe. and sheets of constructive detalls, pertaining to modern architecture. Each number is tllustrated with beautiful plates, showing desirable dwellings, public buildings and archiing this work is invaluable. Has the largest circulation of any architec tural publication in the world.
Single copies 25 cents. By mall, to any part of the United States, Canade
Qr Mexico. $\$ 2.50$ a year. To foreikn Postal Union countries, $\$ 3.0$ a a yeur Combined rate for Bulliding hmition with Scientific anikican. 85.0 a Vear: combined rate for Billiling Enition. Scigntific Ame
and SUP PLEm ENT, 89.00 a year. To foreign countries, $\$ 11.50$ a year.

Spanioh Edition of the Scientific American. lat arerica Cigntifica e innustrial (Spanish trade edition of the Scientipic American) is published monthly, uniform in gize and typo
graphy with the Scientific American. Every number of La Amertca is profusely tlluastrated. It is the fliest sclentifc, Industrial trade pape printed in the Spanish language. It circulates throughout Cuba, the Wes
Indies, Mexlco, Central and South A mear.. Spain and Spanish posees sions-wherever the 8 ? anish language is ; poken. 83.00 a year, post paid to any part of the world. Single copies 2i cents. See prospectua

MUNN \& CO., Publishers,
The safest way to remit is by pos:al order, express New York The sarest way to remit is oy pos:al order, express money order
a co.

NEW Y',RK, SATURDAY, AUGUST 9, 1990.

rable of contents of
SCIENTIFIC AMERICAN SUPPLEMENT
No. 762.
Por the Wiok Endine Anguet 9,1890 Price 10 cente. For eale by all newedcalers

 The Gilow of Phosphorus. The chemistry of the phosphorus
slow combustion and the case of the glow...................

 Work of the Americha scientist.-Alternatiog currentexperiments
described.-21
 the nietal.

 chaves io the system duridg attacke of Rout......................

\section*{e
 | e |
| :---: |
| 12151 |
| . 12180 |}

\qquad

A short distance to the eastward of the lighthouse is The marine observation station of the Western Union Telegraph Co. It is a wooden building about forty 2174 hundred feet. Four large wire cables strengthen the
building against the winter gales, which are very severe at this point. The building is connected by telegraph with New York, and the arrivals of ocean steamers are reported about six hours before they get to their docks at New York. This gives people who have friends on board time to prepare for their recep tion, and enables those who live as far distant as Albany or Philadelphia to reach New York before the passengers are landed. Observations were formerly made frou the cupola of the Surf Hotel, a noted sumwer resort near by, but five years ago the present building was erected, which is specially adapted to the work of warine ibservation. Mr. Peter Keegan is it charge ot this station, having previously performed a similar service on the New Jersey coast. He has been eight een years in the service of the company, ten of which has been passed at this point. During the summer season the vicinity is much frequented by pleasure seekers, but at other times Mr. Keegan and his family only have for neighbors the lighthouse keeper and his fawily and the crew of the life-saving station, while communication with the mainland, excent by telegraph, is not frequent. A constant watch has to be kept for incoming steamers.
Many of the vessels are from fifteen to eighteen wiles away, and some go by in the night and in fogs and cloudy weather. So skillful has Mr. Keegan become in the work of detecting them, that during the whole time that he has been at his post, he has only made one wistake, and that was owing to the substitution of another steamer for the regular one on the Bremen ine. His acquaintance with steamers has been formed entirely by noting their peculiarities at long range. Only once has he read the name of a passing vessel and that was about three years ago, when the Amer ique came within three miles of the shore. Mr. Keegan keeps a careful record of the departure of all regula steanners, also reports of storms, adverse winds, ice berte, and everything which would be likely to cause delay; and from his knowledge of the steamer's ave rage speed, he approximates her arrival, and decides when he must be on the lookout. At night all steam ers, when opposite Fire Island, send up a signal. That of the Inmau line is two blue and red lights followed by a rocket showing blue and red stars. The Cunard rs burn two Roman candles showing six blue balls. These signals merely indicate the line to which the vessel belongs.
To make sure of the name of the steamer, careful observation must be made of the side and stern lights. it is often with the greatest difficulty that their signals can be distinguished at night, as they are not always displayed at exactly the same point, so that as soon as the steamer comes in sight, the observer must fix his gaze steadily upon one of the lights until the signal is given, which makes the work very tedious indeed. During the day the signals are given with different colored flags, but these have been found to be very deceptive, as the colors appear differently under differ ent conditions of the atmosphere.
Yellow is the color which can be the most distiuctly seen on the ocean, and a flag of three colors, one of which is yellow, will appear to be all of that color at a long distance. No signals of this kind can be seen at a greater distance than five wiles. In consequence of this, Mr. Keegan has been compelled to rely upon noting and remembering the peculiarities of the several steamers, and in doing this he has gained great profliency. These peculiarities consist in the general outline of the vessel, position of the smoke stack, cabins, lifeboats, nature of the swoke, etc., as well as the course of the vessel. The Cunard steamers generally pass the observation station in the evening, while hose of the French line pass early in the morning On one of the smoke stacks of the Sorvia is a square white wark, while on the others of the Cunard fleet the mark is oblong. Certain vessels carry their sails in a peculiar way, while one steamer has a derrick in a certain place, while there are a number of other pecertain place, while there are a number of other pe-
culiarities which assist in their identification. Vessels culiarities which assist in their identification.
are of ten distinguished merely by the smoke.
are often distinguished merely by the smoke.
On one line a certain kind of soft coal is burned, and he sinoke is so peculiar that the approach of the vessel is known at Fire Island before the hulls are seen. The fast liners are steering farther and farther away from Fire Island in order to shorten their course, and the diffculty of reporting them is consequently increased.
Last December the life-saving stations from Coney Island to Montauk Point were connected by telephone, so that in case of disaster help can be quickly summoned from one or more of the adjoining stations. The observatory has been wade the central station, and all news of disasters is telegraphed to New York, and thus the owners or consignees of vessels know of a disaster anywhere on the Long Island coast almost as quickly as if it had happened in New York harbor.
lt has hitherto been supposed that the maximum depth of the Mediterranean was 10,785 feet, between Sicily and Sardinia. Lieutenant Magnachi, of Italy, has found a depth of 18,550 feet, between Malta and has found a depth of 13,550 fee
Candia.-Revue Geographique.

Proserving milk.

Fresh and sound milk not later than one hour after milking is placed in jars made of a suitable material. The jars are made in three parts. The bottom part in which eventually the milk is preserved, is first filled; the other two parts together form what is called the mediator. This is screwed into the bottom can and acts as a filler. For this purpose, even after the bottom can is filled, the top filler is kept three parts full. When a number of cans and mediators have been fixed in a tray they are filled, and the whole lowered into water in a suitable boiler. The wilk is heated up to $76^{\circ}-77^{\circ} \mathrm{R}$. (a little over $200^{\circ} \mathrm{F}$.) As soon as the mediator and can are full, by the milk expanding, a tap at the top of the mediator is turned and the whole is thus hermetically closed. The water in the boiler is then raised "to an intense heat, and this will keep the milk for another 50 minutes at a somewhat high temperature." The jars are next deposited upside down perature." The jars are next deposited upside down
in a cooler, and left in this position for $60-80$ minutes. This insures the mixing of the milk, as it is in the This insures the mixing of the milk, as it is in the
nature of the milk that its fatty particles, and therenature of the milk that its fatty particles, and there-
fore the butterwilk, will rise to the surface. The cans fore the butterwilk, will rise to the surface. The cans
are finally placed in an upright position. The vacuum above the milk in the mediator is caused by the contraction of the wilk. The air-tight stopper between the can and mediator is now turned, and as the ordinary temperature is rather higher, the can will be full, and there is little chance of the fat coagulating should the cans be shaken. The mediator is opened, and the milk in it having been run off, it is taken off and the process is complete. The wilk is said not to lose its freshness, pureness, and sweetness, even after eighteen months or t wo years in hot countries, and when opened tastes like new wilk, fresh and sweet.-F. W. T. \boldsymbol{F}.

To Obtalu Beautiful Crystals.

In order to obtain beautiful crystallizations, Mr. H. N. Warren uses the alums. He dissolves 13 ounces of potassa alum in 1 quart of water and leaves the solution in a water bath at a temperature of 26°. At the end of an hour there deposit swall but perfectly regular octahedrons. These are detached and put aside. The solution is afterward cooled to 15.5°, and there are then deposited group crystals, which are rejected, while the first crystals are put back into the solution. The lower part of the vessel is put into a refrigerant misture composed of $\mathrm{A}_{2} \mathrm{O}_{3} \mathrm{~K}$ and $\mathrm{A}_{2} \mathrm{H}_{4} \mathrm{Cl}$, P. E. During this time, the upper layers remain at a temperature of 10°, and a feed tube charged with solid alum is introduced into them, so that the concentration shall remain coustant. After this, the small crystals form so wany centers of crystallization and progressively enlarge. Warren has thus obtained chrowe alum in magnificent crystals, absolutely transparent ferrocyanide of potassinm, etc.-Moniteur Scientifique.

Premiume for Inventors.

The Verein deutscher Eisenbahn-Verwaltungen has offered nine premiums, of a total value of 30,000 marks, for inventions and improvements relating to (1) the construction and mechanical arrangement of railways (three prizes of $7,500,3,000$, and 1,500 marks respec tively); (2) rolling stock and its waintenance (three prizes of $7,500,3,000$, and 1,500 marks) ; (3) the administration and working of railway and railway statistics, as well as important works on railway (three prizes of $3,000,1,500$, and 1,500 warks). Without restricting the scope of the competition, and without binding the jury in its decisions, it is recommended that competitors should confine themselves to the following subjects: (1) Design and construction of a locomotive boiler which, without increasing its weight, afford safety against explosion, and reduces, at the same time working expenses; (2) improvements in the construc
tion of locomotives, especially the valve motion, where tion of locomotives, especially the valve motion, where-
by a better utilization of the steam may be ohtained; (3) proposal and justification of a simpler means of calculating truck hire; (4) the construction of a dura ble and practical coupling for steam pipes or continuous brakes, withont the use of India rubber; (5) the construction of a practical and cheap switch break. 'The competition is limited to in ventions and improvements coveri.sg the period of eight years extending from July 16, 1883, to July 15, 1891, and works and drawings must be sent in between January 1 and Jan ary 15, 1891, to the Verwaltung des Vereins
deutscher Eisenbahn-Verwaltungen, Bahnhofstrasse 3, deutscher Eisenbahn-Verwaltungen, Bahnhofstrasse 3,
Berlin, S. W., frow which complete copies of the regulations governing the competition may be obtained.

The following is given in the Archiv fur Eisenbahn wesen as the railway mileage at the beginning of 1889 Europe, 133,900; Ainerica, 190,000; Asia, 17,800; Africa 5.200 ; Australia, 10,500 ; total, 357,400 , as compared with 293,000 in 1884 . Of the increase of 64,000 wile during the four years, 40,000 is in America and 30,000 in the United States alone; 11,000 miles were opened in $1885,17,000$ in $1886,23,000$ in 1887 , and 13,000 in 1888 ;
showing that the changes in rapidity of railway construction in this country have been closely followed in other parts of the world.

The Approaching Meeting of the Iron and steel
An event of importance in the history of the Iron and Steel Institute of Great Britain will be the holding of its annual meeting this year in the United States.
The provisional programme of the meeting has been issued. While the meetings of the Institute do not begin until, Wednesday, October 1, a cordial invitation is extended by the American Institute of Mining Engineers to attend its sessions, which will be held in New York, on Monday, September 29, and Tuesday, September 30. The meetings of the Iron and Steel Institute at New York will be held on Wednesday morning, October 1, Thursday morning, October 2, and Friday morning, October 3. These meetings will be held in Chickering Hall, Fifth Avenue and Eighteenth Street. During the meetings there will be an excursion, by steamer, on the Hudson River, to West Point and return, and other trips and entertainments are being arranged for. One afternoon will be set aside for the proceedings connected with the unveiling of a sta tue of the late Mr. Alexander L. Hollej. The headquarters of the Institute at New York will probably be at the Park Avenue Hotel. Trips are intended as followe :
Oct. 4 and 5, to visit a number of manufacturing establishments and works in Philadelphia and its vicinity. Oct. 7, to Lebanon, to visit the famous Cornwall iron ore mines, and to inspect the plant, at Steel ton, of the Pennsylvania Steei Company. Oct. 8, to Pittsburg, stopping at Altoona and at Johnstown, the former town famous for the shops of the Pennsylvania Railroad Company; passing tirrough Johnstown-the scene of the great flood of 1889 . Oct. $9,10,11$ and 12, at Pittsburg. A number of excursions will be arranged during these days to iron and steel works, natural gas wells, and the Connellsville coke region. During the stay at Pittsburg, two international meetings will be held. Oct. 13 and 14 will be spent in Chicago. Excursions are being arranged to local iron and steel works and manufacturing estabisishments. Members will inake choice of two alternative excursions from Chi cago-the one to the iron and copper mines of the Lake Superior district (I.), and the o: her to
and coal regions of the Southern States (II.)
I. NORTHERN TRIP TO LAKE SUPERIOR, ETC

Iron Mountain, Michigan, October 15. A visit will be paid to the air-compressing plant of Chapin Minıng Company, at Quinnesec Falls, and subsequently to the Chapin mine, which this year will produce about 800,000 tons of Bessemer ore.
Oct. 16, visit the iron mines of the Gogebic Range which, in 1889, produced $2,016.391$ tons Bessemer ore Oct. 17 and 18, visit the copper wines of Lake Superior including the plant of Calumet and Hecla, the Tama rack Mines, and the stamp mills and suelting works on Torch Lake. Hotel accommodation is so inadequate in this region that the greater part of the members wil have to remain in the sleeping cars. Oct. 20 and 21, visit to the iron mines of the Marquette district, the to Sault Ste. Marie, viewing the large locks through which, in the last calendar year, a freight tonnage of 7,516,122 tons passed, thus affording an opportunity of seeing something of the commerce of the lakes. Oct. 22, leave Sault Ste. Marie for Niagara Falls. Oct. 24, leave Niagara, arriving at New York on Saturday morning, Oct. 25 . Those of the party who desire it
will be conveyed from New York in special trains to Washington and back. It is probable that a recep tion of the members will be given by the Presiden of the United States
II. SOUTHERN TRIP TO ALABAMA AND KENTUCKY. Leave Chicago, Oct. 15, via Louisville and Nashville
Oct. 16 and 17 will be spent at Birmingham, Alabama Oct. 16 and 17 will be spent at Birmingham, Alabama visiting the coal and iron mines, coke plants, blast fur aaces, and rolling mills, thereby affording opportun les for studying this iron district, famous for its recen posits of Shelby and Anniston will be visited, and the charcoal and coke blast furnaces will be inspected Oct. 19 will be spent on Lookout Mountain. Oct. 20 visits to the National Cemetery and to localities of his toric interest. Oct. 21, inspect Middlesbrough, Kentucky, in the morning, and in the afternoon Knoxville, Tennessee. Oct. 23, visit the Pocahontas coal field and visit Roanoke, thost famous of the South. Oct. 23 dustries. Oct. 24, visit Luray Cave, discovered a few dustries. Oct. 24, visit Luray Cave, discovered a few lights. Oct. 25 and 26 , these days will be devoted to lights. Oct. 25 and 26 , these days will be devoted to
Washington. $1 t$ is probable that the party will be received at the White House by the President of the United States. Oct. 27, the party will return to New York. Those of the party who so desire will, after their
arrival at New York from the southern tour, be conarrival at New York from the southern tour, be con veyed. 29.
Prooisional List of Papers for the Autumn Meeting of the Institute in New Yorlc.

1. "American Blast Furnace Yields." By Mr. Jame Gayley, Pittsburg, Pa.
2. "Testing Materials of Construction in the United States." By Messrs. Hunt \& Clapp, Pittsburg.
3. "The Manufacture of Steel in the United States." By Mr. Henry M. Howe, Boston, Mass.
4. "The Thomson Electric Welding Process." By Prof. Thomson, New York.
5. "The Manufacture of Spirally Welded Steel Pipes in the United States." By Mr. J. O. Bayles, New York.
6. "The Development of the Iron Manufacture of Virginia." By Mr. E. C. Pechin, Cleveland. Ohio.
7. "The Use of Water Gas in the United Siates." By Mr. B. Loomis, Hartford, Conn
8. "The Coke Industry of the United States." By Mr. J. D. Weeks, Pittsburg.
9. " Recent Progress in the Manufacture of War Material in the United States." By Mr. W. H. Jaques, Bethlehem, Pa .
10. "The Composition and Wearing Qualities of Steel Rails." By Dr. Chas. B. Dudley, Altoona, Pa.
Provisional List of Papers to be offered by the lron and Steel Institute, at the proposed International Meet ing in the United States, October 9 and 10.
11. "The Protection of Iron and Steel Ships against Foundering from Injury to their Shells, including the Use of Armor." By Sir N. Barnaby, K.C.B., London. 2. "The Recent Development of Marine Engineer ing." By Mr. A. E. Seaton, Hull.
Sir Lowthian Bell has also been asked to prepare a paper embodying his views on the present state of the iron manufacture.

The American Inctitute Fair

The announcement of the annual fair of the Ame ican Institute of the City of New York is always a matter of interest to a grcat number of inventors and manufacturers, from the fact that, at these exhibitions it is possible to bring their devices, their machinery, and their goods practically before so large a body of examiners and possible customers. The just completed returns of the last census show a population of about two and a half millions of people within the city limits of New York and Brooklyn, all of whom are thus within easy distance of the fair as an opportunity for an ordinary evening's entertainment. Besides this, New York is the headquarters of capital itself, while also taking the lead in various lines of industry. It is not strange, therefore, that these fairs are always well attended, and that they present a great variety of exhibits calculated to instruct and interest all classes. The next exhibition wisl open October 1, and remain open for two months. Intending exhibitors should be prompt in applying for space.

reosoting of Wood

The practice of the Eastern Railway Company, of rance, in creosoting sleepers is described in a recen issue of Revue Generale des Chemins de Fer. Sleepers as delivered are stacked and seasoned in the open air. They are then adzed and bored by a special machine, oaded on trucks, and run into a drying oven, where they remain twenty-four hours or more. After drying t a temperature of about 176° Fah., they are run into metal cylinder, 6 feet 3 inches in diameter and 36 feet long, which is hermetically closed. The air is then ex hausted, and a partial vacuum is maintained for about half an hour. Communication is then opened with reservoirs of dead oil, which is allowed to flow in at a temperature of 176° Fah., under pressure. When the oil ceases to flow under moderate pressure, it is forced in by a pump up to a pressure of 83 pounds per square inch, and this pressure is maintained for an hour or an hour and a quarter. Communication with the oil reser hour and a quarter. Communication with the oifreser voirs is then opened again, and the excess of oil no
absorbed by the timber flows back into the reservoir The cylinders hold $16 \leq$ sleepers each. The quantity of oil absorbed is measured by determining the difference in volume of the oil before and after operation. The wood used is principally oak and beech. The oak leepers, absorb from 24 to 2.7 quarts per cubic foot beech sleepers, from 87 to 10 quarts per cubic foot. The whole operation takes about four hours. This method of treatment has been practiced by the company since 1865, with, it is stated, very good results. After fifteen years of service the sleepers taken out have been 15 per cent for creosoted oak and 50 per cent for creosoted beech.

The efforts to raise the poor and degenerate inebriate and his family are practically of no value as ong as marriage with inebriates is permitted. Re cently the legislature of the state of Victoria, in Aus tralia, has passed a law which gives a wife the right of divorce if the husband is found to be an habitual drunkard. If after marriage she discovers that he is an inebriate, she can also get a divorce. The husband can do the saune with a wife if she is proved to be an inebriate. This is a clear anticipation of the higher sentiment which demands relief from the barbarous law which would hold marriage with an inebriate as fixed and permanent.-Jour. of Inebriety.

