## Srientifir gmmericam.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors. PUBLISHED WEEKLY AT
No. 361 BRUADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

## TERNS FOR THE SCIENTIFIC AMELICAN.


 The Sclentitic American Supplement




Bullding Edition.





Spanisil Edition of the Sclentilic American.






TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 758.
For the Week Endine July 12, 1890.
Price 10 cents. For sale by all newrdealere.


The wholesale price of concentrated liquid ammonia Lias recently advanced frow $01 / 4$ ecuts a pound to 9 cents, and at this writing it is extremely difficult to ge enough to supply the demand even at that price. The immediate cause of this great advance in price is due to the unexpectedly large orders from the manufac turers of artificial ice which have been received dur iner the last few weeks
The ammonia which is used in ice makiog is obtain ed from what is known as ens liquor, and is produced in the process of carbunization of cond in gas manu facturing. At this season of the year only about 40 per cent of the aurount of gas liquor is to be had which is available in the winter season, owing to the decreased consumption of gats in sumber. The laws of severa States require gas compauies to remove the ammoni from their product, as it greatly iuproves its quality but it has only been within recent years that th element thus obtained has been utilized for the pro duction of refined ammonia, which is now in suels great demaud that manufauturers find themselves totally un able to supply it. Still another cause exists for the large number of companies from the carbonization a coal in the production of illaminating gas to the making of what is known as watergas. In the latter process no amsnoniacal liquor is produeed, and thos a productive source of supply of the raw material for the mamufacture of concentrated ammonia has been en irely cut off.
Very ingenious machinery is used in extracting the ammoniacal liguor from the gas, and the former is then disposed of to chemical companies, who subject it to a special course of treatment to prepare it for general use.
Sulphate of ammonia is produced by the carbonization of bone and animal matter, but this product is gererally employed as a fertilizer. Aqua ammonia has been made from the salt, but not to any great ex tent, and it so happens that the supply of the sulphat is short, even in foreign lands, where manufacturers
have vainly attempted to supply themselves with the have vainly attempted to supply themselves with the
wuch covered article. Ammonia, also familiarly known as hartshorn, is said to be one of the few sub stances known to the chemistry of the ancients, being referred to by Pliny under the name of vebement odor, which he evolved by mixing litue with nitrum or what was probably sal ammoniac. The name ammonia was given in ancient times because of the fact that sa amononac was originally obtained by heating camel dung in Libya near the teluple of Jupiter Ammon
Iee manufacturers say that some other source of sup ply must be found for crude ammonia, as the demand from the producers of artificialice will freatly increase lt is said that ammonia can be obtained io large quan tities from sha:e, which is a kind of slate found in Peonsylvania, specimens of which are sometimes those who are usually depended upon to supply con centrated ammonia, that with a winter supply of gas they will have littie difficulty in meeting the demand, which is wholly phenomenal at this inme, owing to the large number of iec-waking machines which have $r$ 8 cently been set up.

## A SUMMER SCHOOL OF BIOLOGY.

On Monday, July 7, the summer sciool of biology 109, connected with the Brooklyn Institute will hold its opening session at Cold Spring Harbor, L. I. Mr. Eugene G. Blackford, presiden iknown fish culturist, have co-operated with the ${ }^{11}$ tlemen of the Brooklyn Institute in organizing this school for biological research, which is about to be in augurated under uost favorable auspices.

Cold Spring Harbor is on the north shore of Long Island, thirty-two miles from New York, and has many features which are specially favorable for the student 08 in natural history. The building which will be used as a laboratory is located at the head of the harbor or bay, which is particularly rich in marine life. In the immediate vicinity of the laboratory are a series of 16 ponds, which are fed by inexhaustible springs, which also abound in forms of fresh water life.

The surrounding country is high and rolling, having abundant forest glens and swall streams, which abound in attractive subjects for the student. The laboratory will be abundantly supplied with fresh water from springs in the immediate vicinity, which are used during the hatching season by the commis sioners in propagating fish, and salt water will be ob tained from the harbor near by, from which it will be pumped into a tank or reservoir
There have been provided several row boats, a sail boat, and a steam launch, together with nets, hooks, and dredges for use in collecting and dredying. The steamer Fish Hawk, belonging to the Uuited States Fish Commission, will spend the entire summer in Long Island Sound pursuing a series of investigations regarding the depredations of the star fish among the composing and in other work, ane to wake several
extended excursions on this vessel, when they will have the benefit of the dredging and other operations. The following announcement is made regarding the course of study: "Students who pursue the general course of instruction during the summer and who have time for extra work will be given the facilities neces sary to enable them to carry on courses of special in vestigation; while those students who have already gained the knowledge and experience which is provid ed by the general course will be permitted to give their entire time to special work. No special courses will be laid down in advance, but each student will be at liberty to arrange with the director of the laboratory for such a course as may be practicable. A general course will be open to each student at the laboratory, and will be under the direction of Dr. Bashford, Dean of the College of the City of New York, who is the director of the laboratory.'
There will be an expert photographer provided, an expert in photomerography, an artist for making drawings, and an expert in coloring drawings and photographs. The laboratory will be provided with compound microscopes, two Baker wicrotomes, a Minot microtome, photomicrographic apparatus, a general photographic outfit, together with other appliances and instruments. The sessions of the school will continue for eight weeks. The lecturers who have been announced, with their subjects, are as follows Dr. Williaw G. Farlow, Harvard University, who wil speak on "Alga;" Dr. William K. Brooks, Johns Hop kins University, whose subject will be "Molluska; Prof. H. W. Conn, Wesleyan University, "Bacteri ology;" Prof. William Stratford, College of City of New York, " Photomicrograph;" Col. Nicholas Pike Brooklyn Institute, "Herpetology ;" Dr. Nathamiel L. Britton, Columbia College, "Systematic Botany; Prof. John B. Swith, Brooklyn Institute, "Coleoptera;" Dr. Bashford, Dean College City of New York "Comparative Zoology;" Dr. Byron D. Halstead, Rutgers College, "Fungi ;" Prof. Franklin W. Hooper Brooklyn Institute, "Comparative Osteology ;' Prof John Mickleborough, "Crustacea;" Dr. Geo. T Kemp, Hoagland Laboratory, "Comparative Physi ology ; " Dr. H. Hensoldt, Columbia College, "Echino derms;" Mr. Ludwig Riederer, Brooklyn Institute lecturer and demonstrator on the cutting of micro scopic sections of tissues; Mr. John Ketchum, Brook yn Institute, lecturer and demonstrator on the photo wicrography of fresh tissues.
Professor Albert R. Leeds, of the Stevens Institute and four assistants will carry on a series of investi gations into the causes of the diseases of fresh water ishes, and also as to the origin of the odors arising rom standing water. There is every indication tha the courses of the new summer school of biology wil be marked by earnest and conscientious work, and hat valuable contributions will be made to the stor of scientific knowledge.

## THE CHICAGO WORLD'S FAIR

A splendid site chosen. The long contest in respect the site for the great exhibition has been definitely settled. On the 2d inst. the World's Fair National Commission formally accepted the joint site, consistng of the lake front and Jackson Park, as the loca tion for the Columbian exposition, by a vote of 78 to 11. This is an admirable location for the fair, give general satisfaction, and assures the success of the rand undertaking.

## Raised Figures on Soft Wood

Ordinary moulding and stamped work and the papie nache and pressed sawdust embossed work have been on the market for a long time, and but few people mistake them now for hand work. Basswood can be compressed to a very large extent, and will swell out again to its original proportions upon being steamed. This property is utilized in the following manuer. A iece of the wood is subjected to great pressure unde a die or stamp. This stamp presses down parts of the oft wood, in a more or less elaborate pattern, lower than the rest of the surface. This process can be quickly performed, and the piece of wood is the passed to a planing machine, which in a twinkling planes down the surface of the wood just even with the top of the compressed pattern. The piece is then taken over to the steamer, where the warm, damp vapor soon swells the compressed parts back to their original size. Thus a handsome raised pattern is pro duced on the planed surface of the wood, which can ardly be distinguished from genuine hand-carved work
A NEW method of obtaining stained glass is done by process of printing. The design is embossed on an ron plate, on which a lump of hot glass is rolled until takes the form of the plate on which the pattern ast. The sunken lines are then filled with ename and the whole plate is fired. This process obviously oes away with the use of leads, is rapid in its execu tion, and has the additional advantage that the desig may be repeated as often as it may be required.

## A Large Girder.

The Keystone Bridge Co. has just completed a girder for the new City Hall of San Francisco which is the largest ever made in the United States, so far as the members of the firm know. It is 105 feet long, and weighs 70 tons. A contract for two girders was given to the company last November, and they have been working on it ever since. The materials for the second one are now being prepared. The girders are intended for the ground floor of the building.
The great problew now is to transport it to the Pa cific coast. The Chicago \& North western and Union Pacific roads have undertaken the job. The long wonster recently was lying on three of the largest freight cars obtainable on the Allegheny tracks. Mr. E. H. Utley, the freight agent for Carnegie, Phipps \& Co., stated that it was necessary to put in additional trusses to distribute the weight evenly on the three cars. As the cars are constructed, the weight of the girder fell on the centers, and the cars would hardly stand the strain. Mr. Utley thinks that the way it is placed in the cars will allow it to go around the curves all right. The usual plan for shipping girders is to carry them in pieces and have the plates riveted together at the place of destination. The company was afraid they didn't have the facilities on the Pacific coast to do the riveting The second one will not be built until they see whether or not it can be transported. The average car in the West will carry about 15 tons, and Mr. Utley says that should anything happen to either of the three cars the road would have some trouble to replace them. -Pittsburg Dispatch.

## Why Thunder storms affect Milk

During electrical disturbances it seems that cream and milk are put into a condition to sour easily. The probable cause of this, the editor of the Cultivator (Albany) explains as follows: The effect of an electrical discharge is to decompose a portion of the atmosphere, by which ozone is produced. This substance has peculiar properties from its intense activity as an oxide of oxygen, and its action is often believed to be, and way be, the cause of the souring of wilk, beer, and fresh wine during what are known as thunder storms. The ozone is diffused through the air, and is believed to be the cause of the strong acid odor which prevails after the storm is passed. No doubt if the milk is submerged in water, and access of air is prevented, no re sult of the kind need be apprehended; and as the more milk is exposed to the air the more it will be affected by the ozone, the milk in open shallow pans will be acidified more readily than that in deep pails, although these may be open. In our long experience, however, the writer adds, we have never had any wilk affected in this way, either in shallow pans or deep pails, and are of opinion that the heat of the air preceding thunder storms is more directly the agent in the souring of the milk than the ozone that may exist in the air after the storm is passed. Carefulness to maintain a proper temperature, by closing dairy honses and cellars against the outer atwosphere, will be a means of safety.

## The Inhabitants of Cheese

Mr. Adametz has just made some wicroscopic re searches upon the wicroscopic organisms that inhabit cheese. From an examination of Ewmenthal, a soft variety of Gruyere cheese, he has obtained the follow ing results: In each gramme of the cheese, when fresh, frow 90.000 to 140,000 microbes are found. This number increases with time. Thus, a cheese 71 days old contains 800,000 bacteria pergrawme. The population of a soft cheese 25 days old and much denser than the preceding is 1200,000 , and that of a cheese 45 days old is $2,000,000$ microbes per grawme. But the population of a cheese is not everywhere distributed the same in it. The center is but moderately inhabited with respect to the exterior portion. The population of a soft cheese, near the periphery, is from $3,600,000$ to $5,600,000$ microbes. According to the mean of these two figures, there are as many living organisms in 360 grammes of such a cheese as there are people upon the earth. $-L a$ Nature.

## A Waterproof Whitewash.

Resenschek, of Munich, wixes together the powder from three parts of silicious rock (quartz), three parts of broken warble and sandstone, also two parts of burned porcelain clay, with two parts of freshly slaked lime, still warm. In this way a wash is made which forms a silicate if often wetted, and becomes, after a time, almost like stone. The four constituents, mixed together, give the ground color, to which any pigment that can be used with lime is added. It is applied quite thickly to the wall or other surface, let dry one day, and the next day frequently covered with water, which wakes it waterproof. This wash can be cleansed with water without losing any of its color ; on the contrary, each time it gets harder, so that it can even be brushed, while its porosity makes it look soft. The wash, or calcimine, can be used for ordinary purposes, as well as for the finest painting. A so-called fresco surface can be prepared with it in the dry way.

## tRADE MARK decisions.

U. S. Circuit Court-Northern District of Hilinois,
sineer manufacturing company os. june manufacturing company.

## Blodgett, J.

That the patentee, Singer, and his successors, have wanufactured sewing wachines publicly known as Singer Sewing Machines," and the nawe "Singer" has come to identify the special kinds of machines made by thew, does not, after the expiration of the patent, give them the exclusive right to the use of the term "Singer" as applied to sewing machines. After the expiration of the patent the public may manufacture machines having the same form of conmanufacture machines having the same form of con-
struction, and even ornamentation, used by the pat entee.
A trade mark consisting of an oval plate attached to the machine, stamped in the center with a shuttle and two crossed needles, whose threads form an " S ," and around the edge with the words "Singer Sewing Machine Co.." and a wreath of leaves, is not, in the absence of a right to the plate itself as a trade wark, infringed by a similar plate with the words "Improved Singer" in the border and the monogram "J. M. Co." Singer "in the
in the center.
n the center.
A manufactu
A manufacturer has the right to buy old machines of another make, and to repair, repaint, and sell thew again without removing the trade mark put on them by their manufacturer.

The Nitrifying Process and Its Specific Ferment.* The process of nitrification has been practically studied for centuries, but it was first in the year 1878 that it was shown by Schloesing and Muntz to be dependent upon the presence of certain minute forms of life, or micro-organisms, or, in other words, to be a fermentation change.
The authors have been engared during the last three years in endeavoring to isolate the nitrifying organism, and the present memoir gives in detail an account of the numerous experiments which were made in this direction.
Nitrification, having been in the first instance induced in a particular ammoniacal solution by means of a small quantity of garden soil, was carried on through twenty-four generations, a minute quantity on the point of a sterilized needle being introduced frow one nitrifying solution to the other. From several of these generations gelatin plates were poured, and the resulting colonies inoculated into identical ammoniacal solutions, to see if nitrification would ensue; but although these experiments were repeated many times, on no these experiments were repe
occasion were they successful.

It appeared, therefore, that the nitrifying organism either refused to grow in gelatin or that the author had failed to find it, or that, growing in gelatin, it re fused to nitrify after being passed through this wedium.
Experiments were, therefore, commenced to endeavor to isolate the organism by the dilution method. For this purpose a number of series of dilutions were made by the addition, to sterilized distilled water, of a very small quantity of an ammoniacal solution which had nitrified. It was hoped that the attenuation would be so perfect that ultimately the nitrifying organism alone would be introduced.
After a very large number of experiments had been made in this direction, the authors at length succeeded in obtaining an attenuation consisting of about $\frac{10}{10 \frac{1}{0} \sigma \sigma 0}$ of the original nitrifying solution employed, which not only nitrified, but on inoculation into gelatin peptone refused to grow, and was seen under the wicroscope to consist of numerous characteristic bacilli hardly longe than broad, which may be described as bacillo-cocci.

These results are the wore striking, for, in the case f the two other bottles similarly diluted, one had not nitrified, but, on inoculation into gelatin peptone, produced a growth already on the second day, while the remaining bottle not only produced a growth, but had also nitrified, thus clearly showing that the number of organisms had been reduced to two, $i$. $e$., one which nitrified and did not grow in gelatin and another which had nothing to do with nitrification, but which grew in gelatin. In the case where nitrification took place and a growth also appeared in the gelatin tube it was obvious that both the nitrifying and non-nitri-
fying organisms were present. Theseinoculation tests, fying organisms were present. Theseinoculation tests,
together with the wicroscopical appearances, were confirined by repeated experiments, with invariably the same results.
It is, however, very remarkable that, although this bacillo-coccus obstinately refuses to grow in gelatin when inoculated from these dilute media. yet in broth it produces a very characteristic growth, which al though slow in commencing, often requiring three weeks before it makes its appearance, is very luxu Tiant.
The
The authors have, moreover, been successful in in ducing nitrification in ammoniacal solutions inoculated
before the Royal Society, March 13, 1890. B * Abstract of a paper read before the Royal Soclety, March 13, 1890. By
Percy F. Frankland. Ph.D., B.Sc. (Lond.), A.R.S.M., etc., Professor
Chemistry in University College. Dundee, add Grace C. Frankland.
frow such broth cultivations, the extent of which has been quantitatively determined.
Although wicroscopically its form differs slightly when grown in broth and the ammoniacal solution respectively, yet its identity was established beyond question by its returning to its characteristic bacillococcus form when grown again in the ammoniacal solution.
'The authors have also been able to induce its tardy growth in gelatin peptone by passing it first through broth cultivations.
The paper is accompanied by carefully executed drawings of the nitrifying organisw when grown in the various media employed.

Relative Costs of Transmission of Power.
The following comparisons of cost of transmission of power by various methods appeared in the Revue Universelle des Mints :

1. Comparative cost on 10 horse power transwitted 1,093 yards: By cables, 1.77 per effective horse powe per hour ; by electricity, $2 \cdot 21$; by hydraulics, $2 \cdot 90$; by com pressed air, $2 \cdot 98$.
2. Comparative cost on 50 horse power transmitter 1,093 yards: By cables, 1.35 per effective horse power per hour ; by hydraulics, 1.87 ; by electricity, 2.07 ; by compressed air, 2•29.
3. Comparative cost on 10 effective horse power trans mitted 5,465 yards: By electricity, $2 \cdot 64$ per effective horse power per hour; by compressed air, $4 \cdot 66$; by cables, 4.69 ; by hydraulics, $5 \cdot 29$.
4. Comparative cost on 50 effective horse power trausmitted 5,465 yards: By electricity, $2 \cdot 37$ per effective horse power per hour ; by cables, 2.65 ; by compressed air, 2.99 ; by hydraulics, 3.02 .
Steam was the prime mover used in each of the above instances, and it appears that for long distances electricity takes the lead in economy over all other systems. It has also a great advantage in the facility with which the power may be subdivided, and there appears to be no doubt that, in future coal mining, elec tricity will be much used for coal cutting, tunneling, hauling, pumping, etc., as well as for lighting.

## Elevator sickness.

The elevator in modern big buildings has only one drawback-the sickness it causes when the car is suddenly stopped. To people of a delicate constitution this sickness is of ten such a serious matter that to them the elevator is a dangerous blessing. This sickness, says a contemporary, can be avolded by observing simple physical laws. Eievator sickness is caused by the same law that throws a person to the ground when he gets off a moving car in the wrong way. The stoppage of the elevator car brings a dizziness to the head and sometimes a nausea at the stomach. The internal organs seem to want to rise into the throat. All this comes from the fact that ail parts of the body are not comes from the fact that an parts of the body are not
stopped at the same moment of time. The feet being uext to the car fioor stop with the car, while other por tions of the body continue moving. If the body as a whole can be arrested at the same time with the feet there will be no sickness. This can be done by placing the head and shoulders against the car frame. Then there will be no sickness, and, according to the Scien tific Press, it is a sure preventive.

## A Powerful objective.

Dr. Van Heurck announces in the Journal de Micro yraphie that Zeiss, working from the formulæ of Pro essor Abie, has succeeded in producing a $0 \cdot 1$ inch 'apochrowatic" objective with an aperture of $1 \cdot 63$, and so constructed that under suitable conditions the whole of this aperture can be utilized. The author tates that with this objective he has resolved the entire frustule of Amphipleura pellucida, not merely into lines, but into pearls as distinct as he has ever seen on Pleurosigina angulatum. Repeated measurements show these pearls to be arranged in lines separated longitudinally by $\operatorname{sol}^{1} \delta \sigma$ part of a millimeter, while the transverse striations are separated by the $\overline{50} \frac{1}{0}$ of a willimeter (about 0.00001 and 0.600014 inch respectvely). Three of the new glasses have been made at a vely). Three of the new glasses have $\$ 2,000$ each.-Microscopical Journal.

## Manufacture of Filtering Material

The process consists essentially in reducing ferric oxide by heating it in contact with gaseous fuel. Smal pieces of iron ore, preferably hematite, are packed into a retort heated externally, preferably by producer gas. When the charge is at a cherry red heat, gaseous fuel is admitted into the retort and brought into thorough ontact with the ore. At the end of four or five hours, f the exit cas be inflammable, the process is finished and the charge raked out and allowed to cool. Ordinary coal gas or other gaseous fuel may be used intead of producer gas. The retorts may be oscillated, rocked, raked, etc., by machinery. The magnetic oxide so produced is available for filtering water, sew age, sugar sirups, alcoholic liquors, etc.
17,550.216 was the population of old Spain in 1887the last census, now made known. It shows increase at the rate of half of one per cent per year.

