Industrial Uses of Carbonic Acid

At Krupp's works, at Essen, liquid carbonic acid, CO_{2}, is used in heavy gun waking. Krupp discovered that by casting steel under pressure (some $1,000 \mathrm{lb}$. to the square inch), and rapidly cooling the metal by means of carbon dioxide, he could obtain heavy pleces free from defects. The pressure of $1,000 \mathrm{lb}$. to the inch is obtained by heating the vessel containing the liquid

benson's saw mill dog.
up to 30° Centigrade. It has been found by experi ment that by heating up the liquid to $2,000^{\circ}$ Centigrade, a pressure of $18,000 \mathrm{lb}$. to the inch may be obtained. The Krupp guns are built up of three cylinders, shrunk one on another. The cold portion over which the heated cylinder is being forced is kept cool during the operation by means of the cold resulting from the expansion of the liquid into the gaseous form In like manner, in breaking up an old gun, the stee core is, by the same means, reduced to a very low tem perature, the shrinkage due to which loosens the cor and allows it to be drawn out.-Industries.

AN IMPROVED CYLINDER HEAD FOR ROCK DRILLS. The cylinder head represented in the illustration is one which can be used for fibrous or leather packing, permitting it to be employed on drills driven by steam or air. It has been pateuted by Mr. George J. Slining

slining's cylinder head FOR ROCX DRILLS. of Negaunee, Mich It is applied on the usual rock drill cylinder, and has bushing made in two equal parts and pro ided with an annu lar flange fitting on a corresponding flange of the cylinder. The xterior of the bush ing is made slightly conical, and on it fits yoke with aper tured lugs, as shown aro in one of the small views, through hich poss bolt hich also polt hrough corres ng recesses in the lange of the bushing and are secured to the head on the other end of the cylinder In the center of th
bushing are recesses in which is placed the packing provided with an annular flange fitting a correspond ing annular recess in the bushing. Recesses in the bushing and in the packing form channels which ex end inward and open at their inner ends into the in terior of the cylinder, as shown in one of the smal views, 80 that the compressed air or steam may pass through the channels and press the packing firmly in contact with the piston rod. The construction is very imple and durable, and the head can easily be remov ed for inserting new packing when desired.
For further information relative to this invention address the patentee, or Mr. Samuel Mitchell, Negau nee, Mich.

Philadelphia the Great Carpet City.

The Philadelphia Press says the textile industry is the greatest of all industries in Philadelphta, and the larges branch of that industry is carpets. The trade has been in a flourishing condition, and in one ward in the city wore carpets are made than in all England combined the former home of the industry. There are at least one hundred and fifty mills in the city producing goods worth probably $\$ 40,000,000$ a year, employing full seventeen thousand persons.

AN IMPROVED SAW MILL DOG

The illustration represents a saw mill dog designed to permit of freely moving the log up or down in cas of knots or crooks striking the collar of the saw, with out releasing the saw. It has been patented by Mr Marcus E. Benson, of West Plains, Mo. On the head block is a standard on which is held a horizontally ad justableframe, the frame having upper and lower slot through which bolts are screwed into the standard. To conveniently move the frame to adjust the dogs, upper and lower pivoted levers ar employed, connected together by a liuk, the upper lever having a han dle for conveniently actuating both levers. The frame has flanges forming guideways engaged by a verti cal sliding carriage carrying th upper dog, and on the carriage is a transverse shaft having a gear wheel meshing with a rack sliding vertically on the inner face of a flange of the frame. The rack supported at its lower end on a coiled spring, and on the lower end of the rack is secured a carriage similar to the upper one, and carry ing the lower dog. A lever is loosely fulcrumed on the shaft carried by the upper carriage, and on this lever is held a pawl adapted to en gage the gear wheel, there being held on the opposite side of th lever a spring-pressed arm with seg pted to be pressed in contact with similar edge on the carriage
On the shaft is also loosely fulcrumed a cam, sup ported on an arm fastened to the lever, so that th cam turns with the swinging of the lever. In opera tion, by the moving of the lever into a vertical posi tion the pawl is disengaged from the gear wheel, and the carriage may be moved into its uppermost posi tion. When the lever is turned horizontally, the paw engages the gear wheel, when the weight of the car riage causes the rack to slide downward until the lower dog is below the top of the head block, permitting the log to be rolled thereon. When the lever is again turned vertically to disengage the dog, the rack is pushed up ard by the coiled spring at its lower end, moving th lower dog with its point into the log, and permitting he operator to move the upper carriage so that th point of the upper dog engages the log from the top the swinging downward of the lever causing the point of both dogs to be pressed into the log. When the lever is moved upward to disengage the points, the cam presses on a releasing arm engaging the rim of the log longside of the upper point, so that the latter is easils withdrawn.

Flaorography.

Fluorography is a process of transferring lithographi or phototypic prints to glass by means of fluorated inks, which, in contact with sulphuric acid, disengage hydrofluoric acid, which eats into the glass. The pho totype is inked with the following compound

Negatives are taken and transferred to the giass The latter is surrounded with a border of wax and covered with sulphuric acid of a density of 64° or 65° Baume. After fifteen or twenty minutes the acid is poured off and the glass is washed with water and leaned with a solution of potassa, then washed with water again and dried with a cloth. According to the Revue de Chimie Industrielle et Agricole, this is the process that gives the best results.

Height of Clonds.

Prof. Moller, of Carlsruhe, has made some interesting observations on clouds. The highest clouds, cirrus and cirro-stratus, rise on an average to a height of nearly 30,000 feet. The middle clouds keep at from about 10,000 to 23,000 feet in height; while the lower cloud reach to between 3.000 and 7000 feet. The cumulus clouds float with their lower surface at a beight of from 4,000 to 5,000 feet, while their summits rise to 16,000 feet. The tops of the Alps are often hidden by clouds of the third class, but the bottom of the clouds of the second class, and especially of the thunder clouds, of ten enfold them. The vertical dimensions of a cloud observed by Prof. Moller on the Netleberg were over 1,200 eet; he stepped out of it at a height of about 3,700 feet, and high above the mountain floated clouds of the mid dle class, while veils of mist lay in the ravines and clefts. The upper clouds were growing thicker, while the lower ones were dissolving, and soon it began to rain and snow.

A SIMPLE AND READILY API-LIED KNIFE GUARD.
The device shown in the cut is designed for use on knives, fishing rods, handles of hammers, and other tools, to facilitate obtaining a firm hold of the article to be grasped, and permit of suspending it from one of he fingers when desirous of using the nand for othe purposes. It is a guard provided with a thumb res and a ring, and is secured to a knife by transverse rivet through the cutting blade. From th front of the guard two lugs extend for ward and fit suugl on the sides of the blade, forming hield, while th ivets are preferably extended on eithe side, so that when used on a carving knife the latter may be laid down without touching the table or table cloth. Instead of applyin the guard as shown it may be arranged with the humb rest and ring on different sides relatively to the handle, as may be preferred on special kinds of knives, ccording to the work to be done.
For further information relative to this invention address Mr. William P. Bailey, the patentee, Stowe Vermont

AN IMPROVED CAR COUPLINE

The device shown in the accompanying illustration is designed to be operated from the sides or top of the car, to work in any climate withont easily etting out of repair, and to be applicanle to a styles of cars, coupling with cars of differen heights that use a link in coupling. It has been patented by Mr. Aaron Lougheed, of Port Arthur Ontario, Canada. The drawhead has a flaring mouth near which is a vertical tubular pin aperture extend ing from top to bottom of the coupler, and through projection on the bottom, in which moves the coupling in, the aperture being closed at the top by a remor able cover, to exclude snow and ice. A guide rod or pron is pivoted below the mouth of the drawhead and is held by a spring to extend downwardly and utwardly when the car is uncoupled, this spring be ing held at one end in a pocket on the inner side of he rod, and extending through slots in the vertical projection on the under side of the drawhead. Th pring thus extends across the aperture below the pin which rests upon it, holding the rod in position, as een to the leftin the top view, so that if a lower car is to be coupled to a higher one, the link of the lower ar will strike the guide rod and be directed therebs into the mouth of the coupling. The slots in the ver tical projection extend to the bottom of the drawhead to receive the free end of the spring, and the end of he arm of a forked lever pivoted between ears farthe back on the bottom of the drawhead. The pin is slight y tapering at its lower end and has a horizontal slo receive the end of the arm of the lever
Within the rear recess of the coupler is a loosely fit

LOUGHEED'S CAR COUPLING.
ting sleeve, having a shoulder which fits a correspond ng shoulder in the bottom of the recess, and holds the sleeve and a slide-rod within it in the forward part of the coupler. The slide-rod is movable longitudinally in the sleeve, and is held forward therein by a spiral spring, the latter being retained in the sleeve by another arm of the lever pivoted between ears on the under side of the drawhead, this arm projecting upward through a recess in the arawhead and through slots in the sleeve and slide-rod. The outer end of the lide-rod has a depending tongue, fitting a groove in the outer end of the sleeve, so that when the rod is pushed inwardly, the incline of the tongue raises the

