A BALLOON ACCIDENT.

An ascension of the balloon Patrie took place from the A venue de la Defense de Paris, at Courbevoie, at four o'clock on the afternoon of Sunday, August 31. Mr . Paul Leprince, the aeronaut, and Mr. George Dumuit, one of his friends, both of the age of 19 years, were in the car. The ascent was very rapid. The spectators who were present saw the balloon assume suddenly a peculiar shape. First it flattened out, then it assumed the shape of a spindle, then that of a ball They supposed at first that the balloon was a dirigible air ship; but the real facts became apparent by the swaying of the balloon, and then by the awful drop that followed.
"The balloon has burst, and the poor unfortunates are lost !" cried the spectators. This is what took place, as narrated by Mr. Paul Leprince, who has been good enough to give us the facts of the case :
"There was nothing unusual about the inflating operations. For a moment, however, the balloon was carried by the wind against the branch of an acacia tree by the side of the road, but I only heard the rustling of the branches, and I did not think of the incident again. My friend and dent again. My friend and I embarked and in a short time reached an elevation
of 1,500 feet, when we beof 1,500 feet, when we be-
gan to hear a peculiar gan to hear a peculiar
whistling sound. I looked in the space about me, but seeing nothing, I climbed on to the ring and then discovered a tear of a few inches in length, partially filled by a branch of filled by a branch of
acacias which had peneacacias which had pene-
trated the interior of the balloon. At this moment the sun dispelled the clouds and shone with all its luster upon the balloon. This produced such an expansion of the gases within that the gas was not able to escape sufficiently rapidly from the valve idly from the valve. The fabric was stretched to its utmost, with a dry, cracking sound, and I at once knew what would follow.
"George," I cried, " the balloon is torn and will not be able to bear the strain of the expansion, and will explode!"

I had scarcely uttered the words before the tearing of the fabric like the rustling of leaves could be heard, and a blue cloud appeared about the opening where the gas was pouring through in great volumes.
"We are lost!" cried George.
"The ballast l " I cried, the ballast!"
Fortunately he did not lose his head, and in an instant two bags were thrown out. I glanced at the barometer and saw that we were 4,740 feet from the ground, and the fall commenced.

Without losing an in-
stant, and without relying at all upon my equipment, I cut off the anchor, I threw out the rope and myovercoat, in fact everything of any weight, and we prepared to throw off our clothes and to cling, at the moment of striking, in the netting above.
I notice that, fortunately, there is a strong wind blowing, which is carrying us along in an oblique line at the rate perhaps of 3 3 or 40 miles an hour. We were falling at an angle, and this perhaps would break the fall somewhat.
The balloon was violently shaken in its flight, and kept swinging and swaying in a horrible manner, but it was this that saved us. During one of the most violent of these swinging movements the lower part of the balloon was thrown to the upper part of the net ting and rested there against the valve in the form of a dome, forming an immense improvised parachute. At once the fall was arrested sensibly. Still we were only about one hundred yards from the earth. I cried
to Dumuit to throw out more ballast, and about 150 lb. more ballast in the form of sand was passed over the side. Now for our clothes. But there was no time. Scarcely had we reached the ropesattached to the ring when a terrible shock was felt, and we and the baske and the balloon and all were rolled over on the ground together. We were not injured, nor did we even lose consciousness. This fall of nearly a mile was accomplished in less than four minutes, during which period, as may be seen, no time was wasted.
I believe that our safety is due to the fact that neither of us lost our presence of mind. The conclu sion to be drawn is that, even in an accident as serious as the bursting of a balloon in mid-air, the stuff out of which the balloon is made is likely to be formed into a sort of parachute by the upward current of air during

FALL OF NEARLY ONE MILE THROUGH THE AIR

Dying Usually a Painless Experience.
The signs of impending death, says the Medical Journal, are many and variable. No two instances are precisely identical, yet several signs are common to many cases.
Shakespeare, who observed everything else, observed and recorded some of the premonitory signs of death also. In the account of the death of Falstaff the sharpness of the nose, the coldness of the feet, gradually ex tending upward, the picking at the bedclothes, are accurately described.
For some time before death indications of its approach become apparent. Speech grows thick and labored, the hands, if raised, fall instantly, the respira tion is difficult, the heart loses its power to propel the tion is diffcult, the heart loses its power to propel the
blood to the extremities, which consequently become cold, a clammy moistur oozes through the pores of the skin, the voice grows weak and husky or piping, the eyes begin to lose their luster.
In death at old age there is a gradual dulling of all the bodily senses and of many of the mental facul ties, memory fails, judgment wa.vers, imagination goes out like a candle. The muscles and tendons get stiff, the voice breaks, the cords of the tabernacle are loosening. Small noise irritate, sight becomes dim, nutrition goes on fee bly, digestion is impaired the secretions are insuff cient, or vitiated, or cease capillary circulation is clogged. Finally the cen tral organ of the circula tion comes to a stop, a full stop, and this stoppage means a dissolution. This is the death of old age, which few attain to.
Many people have an idea that death is neces sarily painful, even agonizing, but there is no reason whatever to suppose that death is a more pain ful process than birth. It is because, in a certain pro portion of cases, dissolu tion is accompanied by a visible spasm and distortion of the countenance that the idea exists, but it is as nearly certain as anything can be that these distortions of the facial muscles are not only painless, buttake place uncon. sciously. In many instances, too, a comatose or semi-comatose state supervenes, and it is altogether probable that more or less complete unconsciousness then prevails. We have, too, abundant evidence of people who have been nearly drowned and resuscitated, and they all agree in the statement that after a few moments of painful struggling, fear and anxiety pass away, and a state of tranquillity succeeds. They see the visions of green fields and in some cases hear pleasing music, and so far from being the downward flight of the balloon. The other lesson ! erable, their sensations are delightful. But where atis that however near death anyone may be, it is always tempts at resuscitation are successful, the resuscitated necessary to keep one's courage. -Paul Leprince, Aeronaut, in L'Illustration.

Snakes in Banana Bunches.

Banana bunches brought from tropical America sometimes contain snakes of the family Boidas tightly wound round the central stem. A specimen of this kind was taken in Savannah, Georgia, and was sent to the United States National Museum. I identified it as the Epicrates augulifer; a native of Cuba. More recently a snake was found in a similar situation in a lot of bananas in Chicago, and was sent by Dr. J. L. Hancock to the National Museum. Dr. Stejneger has identified it as the Boa imperator, the common species of Central America and Mexico. The specimens are always young, as adult boas of the genera named could not be concealed in so small a space. -E. D. Cope.
tempts at resuscitation are successful, the resuscitated
persons almost invariably protest against being brought back to life, and declare that resuscitation is accompanied by physical pain and acute mental misery. Death is a fact which every man must personally experience, and consequently is of universal interest, and as facts are facts, the wiser course is to look them death

To clean iron parts of machinery, tools, etc., two to three cents' worth of paraffine chipped fine are added to one liter petroleum in a stoppered bottle, and during two or three days from time to time shaken up until the paraffine is dissolved. To apply it, the mirture is well shaken, spread upon the metal to be cleaned by means of a woolen rag or brush, and on the following day rubbed off with a dry woolen rag.

Photographic Dyetne and Printing.

In the section of chemical science at the recent meeting of the British Association a paper was read on the action of light on the diazo-compounds of primuline aud dehydrothiotoluidine. It was prepared mainly by Mr. A. G. Green, with the aid of Messrs. Cross and Bevan.
It has long been observed by Mr. Green that the diazo compound of primuline is very sensitive to the action of light, being readily decomposed thereby and losing its property of combining with phenols and amines. On this fact has been founded a photographic process by means of which designs can be produced in fast colors on cotton, silk, wool, linen, and other fabrics. The process can also be applied to wood, yylonite, celluloid, paper, or to gelatine films upon glass, thus affording a very wide range of employment. The process, which is a very simple one, werely depends upon the fact that if a material con taining diazotized primuline be exposed to light under a design, those parts which are acted upon by light will be decouposed, while the parts protected from the light will remain unaltered, and, consequently, on subsequent development with a phenol or amine will produce colors, while the decomposed portions will not. The details depend somewhat upon the material to be treated. As an instance, the production of a design upon cotton cloth, cotton velveteen, etc., was taken. The material is first dyed with primuline from a hot bath containing common salt until the required depth is obtained. It is then washed and diazotized by being immersed for a quarter of a minute in a cold bath containing about one-quarter per cent of sodium nitrate, and strongly acidified with sulphuric or hydrochloric acid. The material is washed again, and exposed damp (or if preferred after having been dried in the dark) to the action of light beneath leaves, ferns, flowers, or other natural objects, or beneath glass or transparent paper upon which may be painted or printed any design which it is required to copy Either the are electric light or daylight may be em ployed. In the latter case the time of exposure will vary with the intensity of the light; under half a minute is required in bright sunshine, and nearly half an hour in very dark, cloudy weather. When the de composition is complete, which may be readily ascer tained by means of a test slip exposed simultaneously the material is removed from the light, and eithe passed into the developing bath at once or kept in the dark until it is convenient to develop it. The develop ing bath consists of a weak solution (one-quarter to one-half per cent) of a phenol or amine made suitably alkaline or acid, the phenol or amine employed depending upon the color in which it is required to produce the design, thus-
For red, an alkaline solution of b-naphthol.
For maroon, an alkaline solution of b-naphthol-di-sul-sulphonic acid.
For yellow, an alkaline solution of phenol.
For orange, an alkaline solution of resorcin
For brown, a solution of phenylene diamine hydro chloride.
For purple, a solution of a-naphthylamine hydrochloride.
lf it is required to produce the design in two or more colors, the respective developers, suitably thickened with starch, may be applied locally by means of a brush or pad. After development the material is thoroughly washed and requires no further fixing. Linen, silk, and wool are treated in exactly the same way. Paper for copying drawings, etc., is coated on the surface with primuline by means of a brush or roller. For the production of galatine films upon before being applied to the glass. In place of ordinary primuline the homologues already mentioned may be used. For silk and wool the primuline may be re placed by dehydrothiotoluidine-sulphonic acid, by means of which colorless backgrounds way be obtained. Concerning the reaction which occurs when the diazo-primuline or the diazo-dehydrothiotoluidine is decomposed by light, nothing definite can yet be said except that the diazo group is completely destroyed, for on treatment with sodium hydrosulphite (true hy posulphite) it cannot be converted into the amido group (re-forming primuline or dehydrothiotoluidine) The reaction may consist in a replacement of the N_{2} The reaction may consist in a replacement of the N_{2}
group by OH or by H , or way be even more complex. group by OH or by H , or way be even more complex.
The diazo compounds of this group of bodies possess an extreme susceptibility to light, far greater than that of other diazo compounds, while at the same time they are far more stable to heat. It is thus possible that this property may depend in some way upon the sulphur which they contain.
Mr. J. Spiller said that Mr. Green had kept him in formed of the progress he had made since he discovered primuline, and he (Mr. Spiller) had worked on the paper basis a good deal. He found that he was deal ing with a material which was extremely sensitive to light; indeed, he should be inclined to describe it as sensitive as the ordinary chloride of silver. At one time he thought it would be worth while to endeavo to use it in the camera, but his patience became ex
hausted when at the end of ten minutes he failed to hausted when at the end of ten minutes he failed to
secure the images. Of course, unless it was sensitive enough to take an impression in that time, it was not of much use in that direction. It was, however, inter esting to find that when leaves and ferns or any object from which copies could be made by transmitted light were employed, according to the length of the exposure impressions either merely surface deep or which pene trated the whole paper were obtained, and the im pressions were wonderfully permanent. They were not destroyed or injured in any way by the vast number of chemical bodies to which he had submitted them. He had tried almost everything he could think of, and nothing would destroy the impressions excep the hydrosulphates to which Mr. Green had referred He should like to hear whether Mr. Green and his col leagues had succeeded in getting a white basis by em ploying some agent to dissolve the unaffected portion of the material operated upon.
The president (Professor Thorpe) remarked that Mr Green's discovery was another instance of history re peating itself. The old process of reproducing archi tects' and engineers' plans on a blue background with white lines was likely to be run very hard by the one they had unfolded to them by Mr. Green. When Sir John Herschel occupied the post he (Professor Thorpe) now filled, on the occasion of the previous meeting of the British Association in Leeds, the blue background process was in full vogue. Now they were likely to have another in its place.
Mr. Green stated that as yet he had not succeeded in getting absolutely white background, but he believed that it would ultimately be obtained

THE NEW "PATRICK" TURBINE WATER WHEEL. A water wheel of inexpensive construction, which annot easily get out of order, and which is designed to give the greatest possible percentage of power from the amount of water used, is shown in the accompany

THE NEW "PATRICX" TURBINE WATER WHEEL.
ing illustration, and has been patented in the United States and Canada by Mr. Adolphe Patrick.
In this wheel the principle of outward horizontal discharge is combined with an upward discharge and to this end the water is conducted into the inner or central portion of the wheel, whence it flows between fixed partitions and intermediate regulating cates, by which it is directed against the buckets of the wheel immediately outside of the guides. The mode of regulating the flow of water on to the bucket f the wheel is simple, avoiding all interfering mechan sm and giving the way clear to the water from the penstock into the wheel case, whence it flows out be tween the partitions and the regulating gates on to the buckets of the wheel. The latter is supported by a central pivot which carries both the wheel case and the penstock, which is attached to it.
This turbine has been largely employed in Canada during the past three years, and is said to have given the greatest satisfaction to all parties using it. For Greuier, Manager, Patrick Water Wheel Co., No. 204 St James Street, Montreal, Canada.

New Zealand Flax.

The purchase of New Zealand flax by the United Scates, in 1889, largely exceeded that of any other country. It is really a species of hemp, and costs, laid down in this market, from $51 / 4$ to $63 / 8$ cents per pound or good Wellington and Auckland brands, as com pared with 9c. for mauila, 6 c . for sisal and $61 / \mathrm{c}$. for
American hemp. It is used extensively by the cordage American hemp. It is used extensively by the cordage
wills in mixes with sisal and manila hemp in makiug ow grade rope and binder twine. The flax for export is usually cut from the swamps, marshes and rive banks. It is in its wild, uncultivated state, and it is cut down and run through the machines without any attempt at selection. The persons usually employed to cut the green flax are paid by the ton, and, in order o get as much weight as possible, they cut as close to the ground as possible. The lower en of the leaf is thick and fleahy, containing a large amount of gum
and vegetable matter, and weighs heavily as compared with upper portions of the leaf; besides, the fiber obtained from the butt end is very much inferior in exture.
To imperfect machinery and carelessness in the selection of green plants way be ascribed the coarsenes and inferiority so often complained of in the flax ex ported frow certain portions of New Zealand. But with improved flux-dressing wachinery and proper care in the selection of the raw material, our consul at Auckland states that a very superior article can be produced. The hand-dressed article prepared by the natives is as fine as silk compared with the modern wachine-dressed fiax of to-day, which demonstrates the fact that the fiber may be reduced to a much finer quality if an improved machine can be invented, but the requisite machinery is lacking.
Many who profess to understand the toughness and durability of the fiber believe that if it could be properly reduced, it would enter largely and successfully into the manufacture of valuable textile fabrics. It is thought that the plant (Phormium tenex) would flourish in many parts of the Southern States.

some Uncommon Metals.

There are quite a number of metals which are very paringly distributed over the earth, and which few people have ever seen, but which have some exceed ingly useful applications in the arts, and, in smal quantities, are in almost constant use. Hydrogen, the ightest of all the elements, was discovered by Cavendish in 1766, and is considered by the best authoritie to be a gaseous metal, just as mercury is a liquid meta at ordinary temperatures. Very few persons have ever seen solid hydrogen. Mercury becomes solid at -40°, but, according to Professor Pictet, hydrogen gas re quires a temperature of -140°, and pressure of over two tons to the square inch, before it liquefies even. By suddenly removing the pressure from this liquefied hydrogen, the cold produced by its evaporation is so great that a part of it solidifies into a state resembling great that a part of it solidifies into a state resembling
metallic grains, which remain visible for several minmetallic grains, which remain visible for several min-
utes. Its metallic nature is also rendered probable by its directly uniting with a metal resembling platinum and known as palladium, to form a sort of alloy. The weight of a single molecule of hydrogen has been cal culated not to be greater than oue ten-thousand-mil lionth of a gramme, and a cubic centimeter of the gas contains at least twenty-one trillions of such molecules. Although these figures are quite incomprebensible to the human mind, they must be approximately correct and represent actual and existing magnitudes.
Lithium is a quite rare mineral, which occurs in some varieties of mica, and also in small quantities in the waters of certain mineral springs. It is considered to possess a distinct medicinal value by some physicians, and is probably taken into the system, at least, as we have detected it by spectroscopic analysis in the blood of a person who had been drinking a strong lithia Barium is a metal closely allied to calcium, the metallic base of lime. It is never used in the metallic tate, but the sulphate of barium is quite extensively used-either honestly or dishonestly-as a substitute for white lead in paint. It is cheaper than white lead, and is not changed in color by the sulphur compounds often present in the air, but possesses less covering power than lead, and is less permanent in other ways. The peroxide of barium is used in the preparation of peroxide of hydrogen, and the phosphorescent sulphide of barium is a constituent of some varieties of luminous paints. The green fire used in pyrotechny is also due to the presence of this metal in the form of a nitrate. Selenium is not a metal, but belongs to the sulphur roup of elements. We must mention, however, the wonderful property by which its electrical conductivity varies according to the amount of light falling upon it ust as the chemical relations of silver are altered by the same means. By this power Professor Bell was en abled to construct an optical telephone, and actually transmitted words and sentences between two distant points which were not connected in any way except by a beam of light, which faithfully carried the vibrations of his voice to a selenium disk, by which they were transformed into electric energy and reproduced in an ordinary telephone. Whether we shall ever be able to see our friends at a distance, as we now talk with them, is exceedingly problematical; but if we ever do so, it will doubtless be through this mysterious connection between light, electricity, and the element selenium.Popular Science News.

To give a brilliant white light, a lamp needs a thorough cleansing every little while. The oil should be poured out of the fount, leaving no dregs on the bottom. The fount should then be washed in strong soapsuds, rinsed in warm water, and dried. It should then be filled with fresh oil. 'The burner should be boiled in soda and water until the network that crosses it is freed from dirt and dust. If the wick has become clogged with the sediment, replace it with a new one.

