a register and recorder for revoliting

 SHAFTSThe illustration represents a mechanism, patented by Mr. Solon M. Terry, of Pittsfield, Mass., for registering the number of revolutions of a shaft running any kind of machinery, and also for registering any fnequalities which may occur in the speed, recording also duration

THE TERRY SPEED REGISTER AND RECORDER.
of stop, the time of day and the day of the week when the irregularities or stoppage occurred. It is probable that there are but few manufacturing concerns in the country which would not save money, and some of them very considerable amounts, by the use of a device for the purposes accomplished by this mechanism. At the present time competition in all industries is exceedingly close, and the manufacturer who does not exceedingly close, and the manufacturer who does not look carefully after all the small wastes in his bu
has but little chance of success. The wastes has but little chance of success. The wastes
occurring from running below speed, from irreoccurring frow running below speed, from irre-
gular speed, and from stoppages, where many hands are employed, are items that too often escape proper attention, and in many cases the employers probably have no conception how large a figure they make, while there are probably few shops run with such regularity that the introduction of such a mechanism would not contribute to an increased efficiency.
The registering mechanism, B, includes a front and rear metallic disk, in which is journaled a shaft carrying a large toothed wheel back of the rear disk, this wheel being adapted to mesh with a pinion, G, to be driven by the drive shaft whose revolutions are to be recorded. This pinion is preferably on one end of a short flexible shaft, I, on the other end of which is a cap, K, to be tightened on the driving shaft. There are ten times as many teeth on the large toothed wheel as on the pinion, so that it requires ten revolu-
tions of the drive shaft to turn the large wheel once. In the disks are journaled five other shafts, each having a pinion and intermeshing gear, so that the first shaft turns the second, the second turns the third, and so on up to the sixth, each shaft, by its complete revolu tion, turning the following shaft only one-tenth of a revolution. The outer ends of the shafts extend through their bearings in the outer disk, where their ends are tapered and a dial, B , is secured with six sepa rate scales, or one for each shaft, an indicator band being so secured by an adjustable cap to the end of each shaft as to rotate therewith, while it can be readily turned back, when it is desired to start the hands anew at O, by a firm pressure of the fingers. Upon one of the shafts is a lug, and on the main back plate is pivotally mounted a lever adapted to be

Hayton's mechanical movement.
tripped by the lug with each revolution of such shaft, the lever having on its other end a sharp point or marker, D, normally held in contact with a strip of paper on a recording drum. Upon the main vertical back plate of the registering mechanism is mounted a clock, A, the mainspring shaft of which is extended to the rear and carries a broad-toothed gear whee adapted to give motion to the recording drum, C. This drum is designed to make two revolutions in twentyfour hours, and has a central longitudinal serewfour hours, and has a central aperture, in which fits a screw arranged to give a lateral motion to the drum as it is rotated by the gear wheel on the mainspring shaft of the clock, so that each succeeding row of warks or perforations made by the marker will be separate and distinet from the preceding row. Upon the periphery of the drum is removably secured a record strip, which preferably has the days, hours, and divisions of hours printed thereon for a whole week, as partly shown in the diagram, which is a sample of a record as made according to this invention between the hours of 1 and $3: 30$. The speed of the drive shaft at the time this record was made was $200 \mathrm{r} \in$ volutions per minute, and the absence of marks on the record at 2:20 Thursday indicates a stoppage of the shaft at that time. The clock employed in connection with this register is a superior eight-day marine move ment, with a double spring, and when once adjusted in the position it is to occupy, is designed to make an absolutely perfect record, showing not only the times of regularly starting and stopping the machinery and all intervening stoppages, but the exact rate of speed for each portion of every hour during the week, whether this comes from great differences in the work done, or low or high pressure steam in a steam engine, or a variable flow of water in a water wheel plant. The entire registering and recording mechanism, except its connection with the drive shaft, is inclosed in a substantial case, the key to which may be kept by the fac tory owner or superintendent.
This device is manufactured by the Speed Register

diagram of record made by the terry speed register AND RECORDER.
with manufacturers at a low rental, by Mr S. H Pomeroy, general agent, Pittsfield, Mass.

AN IMPROVED MECHANICAL MOVEMENT

A device for converting reciprocating into rotary motion, avoiding all dead centers, and designed to transwit power without any undue friction or lost motion, is shown in the accoupanying illustration. On the base plate is arranged a longitudinally extending guideway, vertical plates from which support at their upper ends a second guideway, and in these ways slides a frame having heads at each end, the rod connected with the machinery furnishing the reciprocat ing motion being secured to one of the heads. Within the frame is an essentially rectangular opening, the bottom and top sides of which each have three rack teeth, while the inner ends thereof are centrally recessed, and have top and boitom shoulders. The top and bottom rack teeth are adapted to be alternately engaged on each forward and backward move ment of the frame by the teeth of a segmental wheel secured on a transverse shaft, having a fly wheel and the usual pulley connected with the machinery to be driven. The small views represent the manner of contact of the teeth of the segmental wheel with the rack teeth and shoul ders of the sliding frame at different positions of the reciprocating rod, whereby a continuous rotary motion is imparted to the transverse shaft For further information relative to this invention address Mr. James Hayton, the patentee, No. 3 Mortison's Avenue, Fifth South, between Second and Third East, Salt Lake City, Utah.

Sir Charles Palmer says, thirty years ago, $7 \cdot 47$ men were employed in British steamers per 100 tons, whereas to-day the ratio is 2.88 men per 100 tons. In 1850 the total of steam ton nage owned in Britain was 167,698 tons, and last year 4,717,730 tons.

OLSEN'S LIFTING TRUSS GIRDER.
proper level at or near the middle, or it can be fastened underneath, on the side of, or above a joist, or on the side of a wall, and be made to bring an immense pressure to bear in any desired direction. In its construc tion are employed horizontaliy extending stretchers, preferably wade of steel or iron, and pivotally connected by vertical links, the latter being connected at their centers by transverse bolts. Extending obliquely between the stretchers are turn buckles which have bifurcated end portions embraced between opposite ends of adjacent links at the points of connection be tween the latter and the stretchers, as shown in the sectional view, the pivots extending not only through the end portions of the links, but through the bifur cated portions of the turn buckles and through the stretchers. Comprised in the turn buckles are screws having oppositely threaded portions, which extend in reverse directions and engage screw-threaded apertures in the bifurcated portions of the turn buckles, there being combined therewith central hand pieces, shown of octagonal form. By means of the hand pieces the screws may be rotated to cause the bifurcated portions of the turn buckles to be moved nearer to or further from each other, when the stretchers will be correspondingly bowed or curved. This lifting truss girder may also be made with four stretchers, and can be made very strong and light, to suit any purpose. By manipulating the screws the girder can be bent both ways; if put wader a floor that has sagged, the girder can be bent to fit, until properly fastened, and then by turning the screws in the opposite direction the floor will be brought to its proper level. After its proper manipulation it may, if desired, be permanently left in place to uphold the flooring or whatever else it may be applied to.
For further information relative to the above invention, address Mr. A. Olsen, the patentee, Ephraim, Utah Territory.

A Science Theater.

ex prof bufus b. bichardsor, ph.d

Germany is not generally looked upon as the land of novelties; but Berlin possesses one novelty so im portant that it seems worthy of attention and description. Every day one sees on each of the several thousand large wooden columns standing at almost every street corner, along with the other theater announcements, the following: "Urania, in the Science Theater (Wissenschaftliches Theater), at 8 P. M.; The Primeval World." or, on another day, "The Journey from the World," or, on another day, "The Journey from the
Earth to the Moon." If one follows this scanding invitation, he will see something interesting. If he chooses the "Journey to the Moon," he will find that he has a popular lecture on astronowy actually put upon the stage.
In the place of actors, to be sure, one finds a single reader or declaimer, who mounts a desk in front of the curtain and gives the lecture to the audience; but all the scenic effects which the stage affords are called in to aid the lecture. After a short prologue on the pur pose of the lecture, the curtain rises on a scene near Berlin on the morning of the last great eclipse of the sun, August 19, 1887. Morning twilight comes on. The world begins to stir in anticipation of the usual sunrise, when lo! in the place of the usual sun, up comes
a blood-red sickle, which soon disappears, and weird a blood-red sickle, which soon disappears, and weird
lights appeararound a black disk. Nature is shrouded lights appeararound a black disk. Nature is shrouded
in a veil worse than pitch darkness. Animals feel the terror which men uninstructed to look for such a phenomenon used to feel. The tension is soon relieved by the reappearauce of the sickle reversed, and the gradual passage into an everyday light. The lecture all the while proceeds, explaining the cause of the strange phenomenon; i.e., that the moon has come between
the earth and the sun. Attention being thus fastened upon the moon, the spectators are made to approach that body by successive scenes.
The next scene affords a look at the earth from a point of view in space at some distance from it. We now see how the same eclipse appears from this point, and see the shadow of the moon sweeping over a small area of the great revolving globe, moving eastward from Berlin over the Russian border, taking its course between St. Petersburg and Moscow into Asia, where we leave it on the dropping of the curtain. In the next scene one sees an eclipse of the moon from a point in space where he beholds both earth and moon in their selative size, and sees the woon pass into the broad shadow of the earth. Thus by two successive stages one is brought nearer the moon, until he sees it as the most powerful telescopes present it. With the mountains all spread out before the sight, a disquisi
tion on the moon's surface is intelligible and impressive.
Not to give every detail, one is at last introduced to the surface of the moon itself. The grandeur of that dead world is an impressive scene. Then comes a scene
representing the moon by earth light, corresponding to our moonlight night, resolved into sunlight at the close of the scene, as the sun rises wasting his glory on those desert fields. Then we are shown an eclipse of the sun as seen from the surface of the moon, or how things of the moon.

Returning to the earth with a comfortable "home again "feeling, but with a new interest in all the opethe High Alps, sunset, evening glow, and following eclipse of the moon, in which the disk is seen still dull red in the earth light, which we had already seen surrounding us when we witnessed from the moon the same occurrence, or what there appeared as an eclipse of the sun by the earth.
Then comes the closing scene, a sunset in St. Paul, a volcanic island of the Indian Ocean, accompanied by a comparison of the so-called volcanoes of the moon with those of the earth. The scene painter has exhausted his art to leave on the mind of the spectator an impression of the glory and beauty of earth encircled by sea and sky and lighted by the glorious sun. The two hours' instruction closed with an appeal to the feelings. The same chords are touched upon which great Nature plays in summer evenings when we have all felt more than we can express.
The other representation, "The Primeval World," lecture on geology, is incomparably more effective in its scenic display. The twelve scenes present the world in its various conditions from primeval chaos down to the present, with the convulsions through which it passed. It would be tedious to catalogue each scene. Particularly grand is a "Volcanic Outbreak of the Devonian Age," which changes the whole face of nature. Impressive also are the "Forest of the Car boniferous Age "and a "Jurassic Landscape," with its
giant lizards. When the eleventh scene presents the "Lake of Zurich," with the morning sun rising upon a simple community of lake dwellers, one feels that the reign of monsters is over, and wants to rise and shout "Hurrah for man!" But when a Mediterranean shore is introduced crowned with eloquent ruins, and pensive music fills the air, the feelings are toned down, and the spectators are sent home in somewhat of that quiet, thoughtful frame of mind in which the old Greek tragedy was supposed to leave them.
The story of the origin of the Urania Institute, of which the theater is only one branch, is a very interesting one. Some years ago Professor Forster, the director of the Berlin Astronomical Observatory and a professor in the university, was troubled by the great number of people, not students, who wished to look at the moon and other heavenly bodies through the observatory telescopes. It did not seem right to shut thew out. Germans always have sympathy with one who "wants to know." The observatory management proceeded in a patient German way to take applica tons and to accommodate the applicants in order so far as possible. But the calendar became clogged with applications six months in advance. Professor Forster appealed to the government, the first and natura resort of a German, for an appropriation to set up telescopes in a separate building, to supply the evident demand. He failed to secure the appropriation.
After this there gradually matured in his mind and the minds of several of his associates the idea of an institution of popular instruction, with not only tele scopes but a great quantity of physical apparatus Then came the thought of calling in that great auxili ary, the stage. Thus what, as a benevolent enterprise confined to the simple soope of giving people a chance to look through telescopes, was about to be abandoned
for lack of funds now became a promising financial for lack of funds now became a promising financial
venture. A stock company was formed, and the result was the Urania. It has already been in operation year, and has, I am told, paid eight per cent on the investment. Yet so strong is the feeling that an educational institution of this sort should be supported by the State, that the proprietors still talk of having the government take it off their hands and give it an ssured durability
The actuating motives of the projectors of the Urania were not mercenary. The movement was in spirit ather like that of the University Extension movemen in England. These men felt that a good deal of the pleasure of the poorer people of Berlin was rather crass. To the minds of many, beer drinking has a proper limit, which has been widely overstepped in Germany.
Then, again, the larger theaters, particularly th Royal Theater, supported by the government, though powerful educational aids, could not reach the poor who could not afford to buy tickets. The cheap thea ter, on the other hand, furnished often cheap stuff, if not worse. Thus came the desire of a cheap theater yet be interesting.
The institute is open from noon until 11 P. M. In the evening before the theatrical representation you may see crowds of Germans who "want to know" investigating wicroscopes, spectroscopes, phonographs electric railways; in fact, all sorts of electric and mag netic apparatus, and other apparatus, a catalogue of which would be too long to give. Near each piece are
"Directions for Use," and willing directors are also "Directions for Use," and willing directors are also constantly moving about the rooms. The six large telescopes have unfortunately been of little use for most of the summer, as rain clouds hovered over Berlin, dropping rain every day for a month and a nalf
previous to July 14, giving a grim humor to the remark in the "Journey to the Moon" that the view of the oon which is here vouchsafed is independent of the weather. It should have been remarked earlier that the eclipse of 1887 is here given as it ought to have been, and not as it actually presented itself.
Occasionally in the place of the stage representation a regular lecture is given. Dr. Schultz-Hencke gives two lectures on photography on two consecutive eve ings, with abundant apparatus and experiments on the stage.
The characteristic feature and the drawing power of the institute is, however, its novel theater. The lec tures that form the basis of the representations are admirably written by Dr. M. Wilhelm Meyer. But they are probably no better than Professor Young could write. In the Urania, however, they go in at he eye as well as at the ear. The scene painter and he declaimer are as important as the writer of the lec ure, who intrusts his work to them, and does not appear before the audience. The one man who appears to be doing the whole thing is the actor or declaimer This is Karl Bergmann, who was an actor of good standing, hut who regards his present position as an mportant promotion. With a voice of admirable clearness and flexibility, ho declaims the lecture as if it were his own, turning confidentially to the audience. using such phrases as "my respected hearers," "I call our attention," etc. If the role which he plays seems n this description of it insignificant, it is not so in fact Many good scientific lectures arc spoiled by bad deliv ry. The Urania avoids that rock by choosing a man who is a master of the art of delivery.-The Inde pendent.

Ullization of Fibers.
A new mode of treating hemp, jute, and other fibers or making materials for the manufacture of tiles, slabs, cisterns, boats, and other articles or structures has been described in a patent specification by B. A. Weatherdon. The fibers are cut and boiled four to six hours in a strong solution of lime by steam at a presure of from 20 pounds to 40 pounds to the square inch After being thoroughly washed, the material is passed o a pulping machine, where it is treated with alum, about 7 pounds to 14 pounds to the cwt., and in some ases with animal size, and in others with vegetable or other oils. From the pulping machine it is run into receiving or storing tanks, fitted for machinery for keeping the pulp in agitation, and while therein it can be dyed if required. Now, the pulp fiber is pumped into vats, and from thence into wire moulds, to be formed into slabs, blocks, etc., the liquor being exracted by suitable pressure. The slabs, blocks, etc. are brought into the drying room, and when dry passed hrough solid steel rollers four to twelve times, steeped in a warm solution of alum, and again subjected to hydraulic pressure. Then they are brought into a bath of vegetable or other oil for four to six hours, and again pressed and steam-rolled as many times as necessary. To finish the process they are dried in hot air and in some cases passed through the rollers once wore.

roads in Hock

Many well authenticated stories of the finding of live oads and frogs in solid rock are on record, and that such things are possible was demonstrated here reently, when the workmen engaged in Varley \& Everill's lime rock quarry, north of the city, broke open a large piece of rock which had been blast ed out, and a frog hopped out of a pocket in the center of the stone, says the Salt Lake Herald. Of course, the occurrence created a tremendous sensation among the workmen, and operations at the quarry were for the time suspended, and the movements of the frog were watched with great interest. The animal was somewhat smaller than the ordinary frog, and was perfectly white. Its eyes were unusually large and very brilliant, but the frog was apparently blind. Where the mouth should have been there was only a line, and on the feet was a dark, horny substance. Mr. Everill at once took charge of the curiosity and put it in a tin can, but the frog died the next morning. He brought it down town, and it was examined with interest by a arge number of people, and it was afterward presented to the

Artificial Sea Water.

Professor Ed ward Perrier lately communicated to the French Academy of Sciences the results of some experimentsmade by him at the zoological laboratory of the Saint Cloud normal school, upon the use of artificial sea water for the preservation of marine animals, and especially of oysters, in large aquariums.
The solutions employed have beon reduced by him o the following formula for from 3 to 4 quarts :
Chloride of sodinm..
Chloride of magnesium

During the exposition, this solution gave as good sults as natural sea water, with very much less expense.

