

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, JULY 5, 1890.	Ear.

M. PASTEUR.

In front of the Pastour Institute, in Paris, is a bronze statue of a French shepherd boy engaged in a death struggle with a mad dog which had been worrying his sheep. With his bare hands, and with no weapon save his wooden sabot, the boy killed the dog, but was horribly bitten in the fight, and this statue represents an actual struggle which took place in October, 1885. The event gave the now famous French savant his first prominent opportunity of experimenting with his antirabic treatment upon a human being. The treatment was successful, and from that time to this many thousands of persons who have been bitten by rabid animals, of all countries and all stations in life, have been visitors to Pasteur's laboratory, to receive such treatment as would insure them, so far as human science could do so, against a horrible death. The French nation raised a monument to the discoverer of this anti-rabic treatment in the shape of the "Pasteur Institute," and there are now many similar institutions in various parts of the world, including one in New York City. Pasteur commenced his researches on rabies and hydrophobia in 1880, when little was known of the disease except that the virus was contained in the dog's saliva. He first proved by experiment that the disease was one localized in the nerve centers, finding that a portion of the matter of the spinal column
of a rabid dog, when injected into a healthy one, causes \mid race between a strong and an attenuated virus. In rabies much more certainly and rapidly than does the cases in which the bite occurs near a nerve center, the injection of the saliva. This also explains the varying fatal malady may outstrip the treatment in the race times of attack of the disease after a bite, the virus between life and death. If the weakened virus can act having to travel up the spinal cord before the symptoms can manifest themselves. The next problem was to weaken the virus, which proved a difficult and somewhat complicated task, as previous attempts to cultivate the special microbe of rabies outside the animal body had failed. But Pasteur's perseverance and But it is not alone for his successful treatment and method overcame the difficulty, and he succeeded in so prevention of hydrophobia that M. Pasteur is entitied far weakening the poison that in his hands it lost its |to a high place among the scientists and benefactors virulent effects, while yet remaining potent enough to of the age. In 1857 he inaugurated researches on the act as a preventive, so that dogs inoculated with this action of the mould in the changes it effects on tar weakened virus might be bitten with impunity by taric acid and the process of fermentation, which mad dogs.
pointed the way because it has not always been successful; but this is $\begin{aligned} & \text { and wine making of the greatest value, and we stepping stones of the present science of bacteri- }\end{aligned}$ something which has never been claimed for vaccina- ology. He proved that the changes occurring in each tion for any form of disease. It is estimated that from of the various processes of fermentation are due to the fifteen to twenty persons out of every hundred bitten presence and growth of a minute organism, that every by mad dogs or cats develop hydrophobia, but in 2,164 peculiar fermentative change is accompanied by the persons treated at the Pasteur Institute to January, presence of a special ferment, and this he proved by 1887, there was a mortality of only 1.4 per cent, while the most careful experimental inquiry, joined with the in 1887 the mortality was reduced to $1 \cdot 3$ per cent, and artificial cultivation of these organisms. In a visit to in 1888 to $1 \cdot 16$ 'per cent. As touching this point, Sir a large London brewery in 1871, he explained by th Henry Roscoe says: "Pasteur's treatment is really a \mid use of a microscope the cause of a serious state of

M. PASTEUR IN HIS CABINET AT THE PASTEUR INSTITUTE, PARIS.
things existing by which frequently as wuch as twenty per cent of the product was returned as unsalable, because the yeast nad contained foreign or unhealthy or ganisms, and, largely from his suggestions, brewing has since become a series of precise and definite operations, capable of control at every point. Much in the same line were the investigations of Pasteur touching wine and its diseases, to the great advantage of the trade of France and other wine-producing countries.
Next in order of time came the investigations of Pasteur in relation to a plague which broke out among the silk worms in the South of France, on account of which the production of silk in that country had almost ceased in 1865. Pasteur plainly pointed out the cause of the trouble, and the means necessary for the alleviation of its effects and ultimate extermina tion, the latter, however, being an end which has not yet been reached. Other prominent examples of Pasteur's activity in a similar line, at once dependent on the character of microbes and their propagation, had reference to the chicken cholera in France, which he succeeded in practically annihilating, and another disease particularly fatal to cattle and sometimes to man, called splenic fever or wool sorters' disease. The latter plague had been fatal to millions of cattle, but since the adoption of Pasteur's method of inoculation for its prevention, it has now almost disappeared, and the arricultura insurance societies will not insure cattle unless they have been thus inoculated.
In a summary of the life work of Pasteur, delivered at Birmingham, England, in October of last year, Sir Henry E. Roscoe describes him as "a man devoted heart and soul to the investigation of nature, a type of the ideal man of science-whose example may stimulate even the feeblest to walk in his footsteps, if only for a short distance, whose life is a consistent endeavor to seek after truth, whose watchwords are simplicity, faithfulness, and industry, and whose sole ambition is to succeed in widening the pathway of knowledge, so that following generations of wayfarers may find their journeys lightened and their dangers lessened."

The Accident to the city of Paris.

The inquiry instituted by the London board of trade into the cause of the accident to the Inman line steamer City of Paris has been concluded, and, accord ing to the verdict
"The primary cause of the casualty was the extra ordinary wearing down of the ring in the bracket sup porting the extreme end of the propeller shaft, whereby the end dropped from its proper position about seven inches, thus producing a bending effect on the shaft at its forward support coexistent with each revolution of the engine. This probably produced a rupture of the external surfaces, gradually extending inward, and finally a total fracture. The cause of the water finding its way into the engine room and other compartments was that a large portion of the low pressure cylinder fell or was driven against the condenser, tearing it away and thereby opening a large communication with the sea, through which the water rushed in such volume that before any of the inlets could be closed they became covered with water and out of reach. The water passed into the dynamo room and port engine room through the bulkheads which were broken by the ruptured machinery, and into the two compartments

The court suggested, as points worthy the consider ation of naval architects and marine engineers, but no as intended in any way as an adverse comment upon the vessel, the invention of a governor to control marine engines in the case of similar breakdowns, the desirability of isolating each water-tight compartment as far as possible, and the improvement of the supports of the outboard bearings of long propeller shafts.

The Importance of a Good Specification

The necessity of having an invention well described and every novel feature of the invention defined in both the drawings and specification preparatory to filing in the Patent Office was well set forth by the late Judge Grier, one of the more distinguished of the patent law judges of the Supreme Court of the United States, when he said, "There are few things more diff cult, even for well educated and practical lawyers, than to describe a new invention clearly, and point out the principle which distinguishes the subject of it from al things known before. As inventors are rarely experts, either in philology or law, it has long been established as a rule that their writings are to be scanned with a good degree of charity. But it is easy to abuse this liberality to the purposes of fraud."

A beet sugar manufactory, with a capacity of 400 tons a day, is said to be almost completed at Grund Island, Neb. The beet has sixteen per cent of sugar, and farmers realize $\$ 60$ per acre at $\$ 4$ per ton for the root. The diffusion process of extracting the saccharine principle is used. In a fourteen-battery circuit it is claimed that the remarkable result of $99 \cdot 8$ per cent of the sugar can be extracted.

Srientific Ammericam.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors published weekly at

No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

ERMS FOR THE SCIENTIPIC AMEIICAN

 ${ }_{4}^{{ }^{38}}$

The Sclentific American Supplement

Spanish Edition of the Scientific American.

NEW YORK, SATURDAY, JULY 5, 1890.

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 757.

> For the Week Ending July 5, 1890
> Price 10 cents. For sale by all newedealers.
 Justrations...
BTAA NY.-Goldie's Birthwort.-A gigantic flowering plant
which may be grown in a small pot, its flowers measuring over a Which may be grown in asmall pot, its flowers measuring over a
foot in diameter.

 indon, said to be the largest in the world.-Full description aud
 UI NAAAL ENGINEERING-Sisknipg of the Quata.-Notes of

The stock of fire crackers in this country at the present time is said to be from twenty-five to thirty per cent less than is usual at this season. This short age is due in part to labor strikes in China, where all the small crackers and wost of the large or cannon crackers are made, and also to the imposition by th Chinese governwent of the lekin, or tax, both of which have acted as a check upon manufacturers. Strike are of frequent occurrence in China, and laborers ar thoroughly organized, having what are here called unions and guilds. Strikes are sometimes attended with loss of property as well as of life.
The annual receipts of fire crackers in this country are from eight hundred thousand to one million boxes, and orders for these goods have to be sent forward on year in advance. The Chinese manufacturing year begins June 1, and this is about the date whe American merchants send forward their orders for next year's supply. The usual voyage from New York to Hong Kong is 120 days, so that there are only left, after a passage to China and return, 12 days of the year. The ship Wandering Jew arrived in New York on April 29 with 135,000 boxes o fire crackers on board, and she is the last ship which can arrive before the Fourth of July, the Great Ad miral, now on the way, not being due until August 1 It is, therefore, positively known that there will b short supply of fire crackers, and this has had the effect of advancing the price from 80c. a box, which was paid last year, to $\$ 1.25$ per box.
Crackers are made principally in Canton and in the country surrounding that city. A cannon cracker fac tory in the suburbs of Canton is described by an eye witness as follows
The building is of sun-dried brick, with a tiled roof twelve feet from the ground, and this space is divided into an upper and lower apartment, each with the ceiling about six feet high. The interior of the building when visited was strewn with pieces of paper, while vessel containing powder were standing round, the content of which seemed to be in imminent danger of being exploded, and men, women and children were actively engaged in the manufacture of the goods.
The paper needed for the cracker is cut to the re quired length and then weighed to see that the quan tity for each cracker is exactly the same. The in strument used in weighing is of the rudest description, being a stick about two and one half feet long, sus pended from the ceiling by a string, which is attached to the center of the stick, and a stone is placed as a weight on one end and the articles to be weighed on the other. The paper is rolled into cylindrical form by means of a flat piece of wood held in the hands and then one end is creased with a pair of pinchers and a string tied into the crease as a temporary mean of preventing the powder from running out when the cylinders are placed in a perpendicular position to be oaded. The last named process is as follows
The cylinders are bunched together like cigars turned on end, and then pinched with an awl, and into the aperture thus made the powder is poured from a tin can. Then the stem of the cracker is inserted, which consists of a piece of thin, tough paper, with just suffi cient powder twisted up in it to make it burn quickly A piece of paper is temporarily pasted over the end containing the stem for the purpose of preventing the powder from running out, as the crackers are now placed on that end.
The string placed temporarily around the pinched end is now removed and clay tamping is hawmered into the aperture and then the paper is removed from the stem end and the clay tamping is applied there which prevents any powder from sifting out
The cracker is now ready for the thin piece of red paper which goes around the outside and completes it The stems are then very neatly braided together, which orms the crackers into packs, and these are each wrap ped in thin paper and ornamented with a red labe with pictures of dragons upon it. Red is the festiv color of China, and as fire crackers are used principally on festal occasions, that color is rigidly adhered to in the manufacture of these goods. The packs are placed in boxes and in the proportion of forty packs to the box. There is a regular division of labor in the cracker factory, each person having his or her special work to do, and in this they become very expert
The above is a description of cannon cracker manu facture, but the same will apply to the small crackers The latter, however, are generally made in the rura districts, and are brought down the river to Canton in junks.
There is a large home consumption of fire crackers, and the Chinese think that their explosion will ward off evil spirits. They are fired off on numerous occa sions, but particularly on the Chinese new year, which is a variable date regulated by the changes in the moon. Foreigners residing at Canton have what they call the Canton salute, which consists in the firing off 100 at one time of six boxes of small crackers and two or three boxes of cannon crackers, and this is given on the departure of some one of their number for home. Of the million boxes of crackers sent each year to
this country, a number are reshipped to South America, where they are used on social occasions as well as at public fetes. They are used in the south at Christmas time, and also in Canada on May 24, which is Qupen Victoria's birthday. Cannon crackersare made in this country, but the small ones cannot be preduced here at anything like the price they can be furnished by the Chinese. Their product is carried half way round the world, pays duty, and is then sold for 85 round the world, pays duty, and is then sold for 85
cents a box. In the McKinley tariff bill now before cents a box. In the McKinley tariff bill now before
Congress, the duty on fire crackers is placed at 8 cents Congress, the duty on fire crackers is placed at 8 cents
a pound, which will make the tax 63 cents as against a pound, which will make the tax 63 cents as against
28 cents a box, which is the rate paid now. If this provision of the new tariff bill is adopted, it will probably have the effect of stimulating the manufacture of cannon crackers in this country.
Fire crackers are of very ancient origin. Dr. Williams in his exhaustive work on China, entitled "The Middle Kingdom," says: "No evidence exists of the use of gunpowder as an agent of warfare until the middle of the twelfth century, nor did a knowledge of its propulsive effects come to the Chinese until the reign of Yunglop in the fifteenth century-a thousan years after its first employment in fire crackers."

SPEED TRIAL OF THE CRUISER PHILADELPHIA.
The new cruiser Philadelphia, built for the govern ment by Messrs. Cramp \& Sons, at Philadelphia, has been so far completed as to be able to make her four hours' trial under steam, as required by the contract. hours' trial under steam, as required by the contract. By the terms of the latter the vessel was to be capable
of making a mean speed of 19 knots per hour during a of making a mean speed of 19 knots per hour during a
four hours' run at sea. If she made less, then the confour hours' run at sea. If she made less, then the con-
tractors were to forfeit $\$ 50,000$ for each quarter knot below the standard. If she exceeded 19 knots, the contractors were to receive a premium of $\$ 50,000$ for each quarter knot in excess of the standard.
The trial took place on the 25th of June, off the southeasterly end of Long Island, a measured course of forty miles having been marked out for the purpose. The conditions of sea, wind, and tide were as favorable as could be asked. According to all the accounts so far given, the trial was a complete success. It is believed the ship made an avergae of $191 / 2$ knots per hour, and earned a premium of $\$ 100,000$ for her builders.
The Philadelphia is an unarmored cruiser of 4,324 tons. There are seven other ships of about the same size, but they are not all yet completed. It is not claimed that any of these vessels is able to fight a modern armored ship. The object in building these cruisers is to provide a fleet of fast vessels having speed enough to keep out of the way of ironclads and overhaul merchant vessels.
The contract price of the Philadelphia was $\$ 1,350,000$ She was built from English designs, obtained by the Navy department several years ago, and though she is a good vessel, can hardly be said to represent the latest and best type of cruisers. Her construction was authorized and bids opened in 1887. It has taken not quite three years to build and put her on trial.
A full page engraving showing a portrait of the Philadelphia, and various details representing the mode of her construction, was given in the Scientific American of August 10, 1889

How Diphtheria is Spread by Corpses.
Dr. Baker, the secretary of the Michigan State Board of Health, has issued a circular stating that in March two corpses, those of a woman and child of the same family, dead of throat disease, certified by the attending physician not to be "dangerous to the public health," were conveyed from Montmorency County to Lapeer County, Michigan, where in just a week from the day the coffins were opened and the remains viewed a person who was thus exposed came down with diphtheria. Many others, says Dr. Baker, would probably have been exposed except for the action of the local health officer, Dr. C. A. Wisner, who, suspecting that the cause of the deaths was diphtheria, warned the neighbors and forbade the opening of the coffins at the funeral. He promptly isolated the first person that was attacked, and no epidemic resulted. This, Dr. Baker adds, is quite different from the result of a similar occurrence at Zanesville, Ohio, last spring, where many deaths resulted from exposure to a corpse brought from Chicago. It shows the importance of notice to the local health officer of the arrival of a corpse, so that he may take every precaution that may be necessary.-
N. Y. Medical Journal.

Biblical units have the following equivalents: A shekel of gold was $\$ 8$. A firkin was seven pints. A talent of gold was $\$ 13,809$. A talent of silver was $\$ 538.30$. Ezekiel's reed was nearly 11 feet. A cubit was nearly 22 inches. A bin was 1 gallon and 2 pints. A mite was less than a quarter of a glass. A shekel of silver was about 50 cents. A piece of silver, or a penny, was 13 cents. A Sabbath day's journey was about an English mile. An ephah, or bath, contains 7 gal lons and 5 pints. A day's journey was about 23 1-5 miles. A hand's breadth is equal to $35 / 8$ inches. A finger's breadth is equal to 1 inch. A farthing was 7 cents.

To the Editor of the Scientific American:

An India rubber tree was placed on the lawn of a house which has been inhabited several years. Till the tree was planted there no ants had been seen either inside or outside the house. Soon after locating the plant referred to, millions of ants appeared, and they have increased so rapidly that they have now become a formidable nuisance. No expense or trouble has a formidable nuisance. No expense or trouble has been spared to get rid of these pests, the nuisance in-
creasing rather than diminishing. The lawn has been resodded, but still swarms of ants infest the premises. Can any of your numerous readers give me a remedy against this plague, and some information respecting the apparent partiality of these prolific insects for the India rubber plant? None of the adjacent lawns has been invaded, the ants confining themselves to the places on and near where the plant was placed.

ANSWER BY PROF. C. V. RILEY.

C. T.

It is difficult to answer intelligently Mr. Trench's communication in the absence of further particulars, and more especially as no specimens of the ant were forwarded for identification. If the ant is the common house ant (Monomorinus pharaonis), it is safe to say that there is no connection between the India rubber tree and the prevalence of the insect in and about the house, except perhaps that a colony of the ants was between the roots of the tree when this was transplanted, and that the ants thus became colonized in the vicinity of the house. If the ants belong to some other species, and if it be correct that they were not present before the planting of the tree, the ants are, in all probability, attracted by plant lice or scale insects which infest the tree. In this case the nuisance could be easily abated by killing the plant lice, which is best done by spraying with diluted kerosene emulsion or strong soap suds. The destruction of the house ants, if these have once fairly established themselves in a particular locality, is much more difficult, and I cannot do better than to quote here a passage from a recent paper by myself on household pests, originally published in "Good Housekeeping," May 25, 1889, and reprinted in "Insect Life," vol. ii, No. 4, October, 1889, pp. 106-108:
the little red ant.
(Monomoriunı pharaonis L .)
The "red ant," as this insect is almost universally called, is another of the household pests which we owe to the older civilization of Europe, and, like other It has been generally considered of North American origin and as one of the few American species which has become widespread in Europe. It is often confounded in the literature of the subject with Myrmica molesta Say, which is, however, a synonym. In the larger cities of Europe it is as much of a pest to-day as it is in this country. It probably received the scientific name of "Pharoah's ant" on account of a defective knowledge of Scripture on the part of its describer, who doubtless imagined that ants formed one of the plagues of Egypt in the time of Pharaoh, whereas the only entomological plagues mentioned were lice, flies, and locusts.
Ordinarily in households this insect is not a nuisance from the actual loss which it causes by consuming food products, but from its inordinate faculty of getting into things. It is attracted by almost everything in the house, from sugar to shoe polish, and from bath sponges to dead cockroaches. It seems to breed with enormous fecundity, and the incidental killing off of a thousand or so has little effect upon the apparent number. A house badly infested with these creatures is almost uninhabitable. They form their nests in almost any secluded spot, between the walls or under the floors or behind the base boards, or among the trash in some old box or trunk, or in the lawn or garden walk
just outside the door. In each of these nests several females will be found, each laying her hundreds of eggs and attended by a retinue of workers caring for the larvæ and starting out from dawn till dark on foraging expeditions in long single files like Indians on the war path.
Our first recommendation is to find the point from which they all come. They may have built the nest in some accessible spot, in which case a little kerosene will end a large part, if not all, of the trouble. If the nest is in the wall or under the floor, and taking up a board will not bring it within reach, find the nearest accessible point and devote your energies to killing the
ants off as they appear. Where the nests are outside ants off as they appear. Where the nests are outside inhabitants with kerosene or bisulphide of carbon. The nests are almost always in the immediate vicinity of the house. The ants are peculiarly susceptible to the action of pyrethrum in any form, be it Persian or Dalmatian powder or buhach, and a free and persistent use of this powder will accomplish much.
A great number of remedies have been proposed in the household columns of various journals, but nearly all depend upon the use of a mixture of some sort for trapping the ants, and at the best are slow and tedious pueans of warfare. The best of these with
which I have had any experience consists in placing small bits of sponge moistened with sweetened wate in the spots where the ants most do congregate, col lecting the sponges once a day or so, soaking them in hot water and then replacing them. Small bits of bread and poisoned molasses or small vessels of lard in which a few drops of oxalic acid have been put have also been recommended, as wellas the free use of borax, s_{1} often advised for roaches. The people of the Southern States suffer more from these pests than we do at the North, and a Floridian of experience (Mr. C. G. Cone, of Crescent City) recommends a mixture of borax and sugar, well mixed with boiling water, and left here and there on bits of broken crockery. If any one tries this, I should be glad to know the result. A much larger black or brownish ant (Camponotus herculeanus var. pennsylvanicus) often builds its nests in door yards so close to the houses that it becomes a great nuisance, overrunning the rooms, and even getting into the clothes, so as to be a personal discomfort. A case was brought to my notice two years ago in Washing ton, where a fine old homestead was on the point of being sold on account of the annoyance caused by these ants. An investigation showed one enormous nest sev eral feet in diameter in the back yard, and several colonies here and there in other parts of the premises. The large colony was completely destroyed by the use of bisulphide of carbon. A teaspoonful was poured down each of a number of openings, and a damp blanket was thrown over them for a few minutes. Then the blanket being rewoved, the bisulphide was exploded at the mouth of each hole by means of a light at the end of a pole. The slight explosions drove light at the end of a pole. The slight explosions drove
the poisonous fumes down through the underground the poisonous fumes down through the underground
tunnels, killing off the ants in enormous numbers. The main source of the trouble being thus destroyed, the nuisance was greatly lessened, and all talk of selling the old place has ceased
Washington, D. C., June 19, 1890.

Electrical Exhibit at the Brooklyn Institute.

The first annual exhibit of the electrical department of the Brooklyn Institute occurred on the evening of June 21. There were about twenty exhibitors, some of whom had a number of exhibits, so that the hall was fairly well filled with electrical machinery and applimame

The Edison Electric Lighting Co., of Brooklyn, ex hibited a miniature electric lighting plant, showing the three-wire system complete in full operation. Samples of conduits, connections, and other details of the Edison system were also to be seen.
The Perret electric motor was shown in several forms. The Excelsior Electric Light Co., of New York (works in Brooklyn), exhibited a 3 horse are light motor runining a 50 incandescent light dynamo and a 1 H . P. motor. This exhibit illustrated the conversion of a high tension current to a low tension, by the use of a motor and a secondary dynamo. The arc light motor is provided with a very efficient governor, which main tained a uniform speed throughout the evening.
Mr. James Jones, Jr., of the firm of Pearce \& Jones, N. Y., exhibited apparatus used in the fire alarm system. This apparatus clearly illustrated the working of this system
Dr. J. F. Watts showed an improved battery based on the invention of Smee. This new battery is very constant, cleanly and easily managed
Mr. J. P. Wintringham exhibited apparatus for use n static electricity
Professor iV. C. Peckham had a very interesting ex hibit showing the action of a magnet on an electric current. A tinsel cord carrying a current was made to wind itself around a permanent bar magnet, first in one direction and then in the other, by changing the direction of the current. A novel and original experiment shown by Professor Peckham consisted in a suspended disk bearing a series of small bar magnets which were made to revolve around a conductor carwhich were made to r
rying a heavy current.
rying a heavy current.
Professor P. H. Vanderweyde exhibited and ex plained several instruments from the large collection recently presented by him to the Institute.
Mr. J. H. Sharpe showed electric gas lighting apparatus in full operation, also a meter gauge for measur-
Mr. George M. Hopkins exhibited two forms of electrical gyroscope and two forms of Hughes induction balance
This hrief mention does not exhaust the list of interesting apparatus shown on this occasion. The exhibition was very successful, and creditable to those having the matter in charge.

The State Land Commissioners of New York have ranted the applications of the parties interested for granted the applications of the parties interested for
river tunnels, namely, the Hudson River Tunnel Railway Company, now in process of construction, for right of way in New York, and the Long Island Rail road Company for right of way in New York for a tun nel to extend under the East River. The commis sioners will now appraise the value of the right of way

AN IMPROVED WAGON BRAKE.

The brake shown in the illustration does not operate upon the wheel tires, and is designed to effectually stop a vehicle in the widdle of the steepest hill. It has been patented by Mr. Nathan A. Wheeler, of Alpowa, Washington. Suspended beneath the wagon body is a friction disk of metal, fixed to an axle which turns in stirrups pivotally attached at their upper ends to cranks projecting from a transverse shaft, which turns i, boxes supported by main longitudinal girders, one of the small figures being an inverted plan view, showing the manner in which the friction disk is suspended from the wagon body. The stirrups may be attached to the cranks at different points, thus changing the length of the connection between the friction disk and the transverse shaft. The disk and its axle are braced by a bar extending forward to a connection with the lower side of the front axle, but such connection does not interfere with the vertical movement of the disk, which is raised and lowered by a connecting rod and brake lever. The connecting rod is pivotally attached at its rear end to a projecting crank of the transverse shaft, and at its forward end to a crank of the brake lever, which at one end is bent up at the side of the wagon body to be easily reached by the foot of the driver, a spring on the brake lever normally holding the disk out of contact with the ground. Attached to the disk axle is a chain connected to a rearwardly ex tending brake rod, the brake shoe of which is suspend ed by rods pivotally attached to the rear axle, a spring normally holding this brake shoe in elevated position. As the driver mores the brake lever forward and down ward, pressing his foot down upon the treadle, the friction disk strikes the ground, and the motion of its axle winds the chain to pull the rear brake rod forward, and cause its shoe to swing downwardly to the ground, where it will act as a drag. By increasing the pressure, the friction disk is forced more firmly upon the ground, when the rear brake shoe may be brought forward suf ficiently to lift the rear wheels of the wagon. In one

WHEELER'S WAGON BRAKE

of the small views is shown a toothed disk, which may be substituted for the friction disk when the roads ar frozen and icy.

SWIFT'S DOUBLE ACTION AND HAMMERLESS REVOLVERS.

The two revolvers illustrated herewith contain new features, and are made of the best materials and finely finished. In Fig. 1 the most important improvement consists of the barrel catch resting firmly on the ham mer when the pistol is discharged. As the barrel can be thrown open only by pressing down on the catch, it is utterly impossible for it to be opened when ob

Fig. 1.-SWift double action automatic revolver

Fig. 2.-SWIft safety hammerless automatic
structed by the hammer. Tbis absolutely prevent the danger of the barrel opening when the revolver is discharged, an improvement heretofore deemed unavailable in automatic shell-ejecting revolvers.
In Fig. 2 the safety attachment used in the double action revolver is also found. There is also attached a safety device to the trigger, so that the weapon cannot be discharged except when held in the hand in the usual manner. By means of this improvement the re volver can be kept loaded with safety, and will not be discharged either by being dropped or while carried in the pocket. These goods are manufactured by the John P. Lovell Arms Company, Boston, Mass., who will gladly furnish additional particulars to those in terested.

AN IMPROVED SNAP HOOK

The snap hook shown herewith is designed more particularly for use on vessels, and especially in towing rafts of logs, for which, ordinarily, a very heavy hook is employed, which requires to be tied to keep it from falling out of the ring in the boom chain. The invention has been patented by Mr. Nels Nelson, of Aberdeen, Washington. The

NELSON'S SNAP HOOK. latch, which is
somewhat crooked and angular in shape, is pivoted in the nose portion of the hook, and is fitted to work within a slot that opens from the interior, and is in communication with a longitudinal recess opening through the outer extremity of the nose. In this recess is a spiral spring, carrying at its fre end a swivel stud or cone, which bears against an inner stepped end of the latch, the opposite end of the spring resting upon a centering screw
plug that closes the outer end of the aperture, the spring being thus free to adjust itself in al directions.

AN IMPROVED REIN HOLDER.

A device designed to prevent runaways when horses attached to vehicles are left unattended, and especially adapted for application to al kinds of delivery and express wagons, as wel as buggies, etc., is represented in the accompa nying illustration. A transverse shaft is jour naled on the rear of the front axle, as shown in the sectional view, a gear wheel on the outer end of this shaft meshing with a gear wheel on the hub, such gear having a cover to keep out dust and dirt. On the inner end of this shaft is stationary half clutch, keyed to the shaft, and a movable half clutch, these elutches being nor mally held apart by a spiral spring, and upon the movable half clutch is a drum, a strap connected to which passes through a hole in the bottom of the wagon body up through a tube on the inside of the dashboard, as shown in one of the views, to attach ment with one of a pair of clamps which are springsupported in the upper portion of the tube. The spring support is designed to impart a gentle pressure to the clamps, whereby they are held frictionally in any desired position. At the side of the tube on the inside of the dashboard is mounted a vertical rod hav ing a handle at its upper end, while connected to its ower end is a cord passing over pulleys beneath the wagon body to engagement with a cam so supported as to be adapted to bear against a side flange of the movable half clutch. The connection of the cord with stad the rod is made through a short spiral spring, to give a yielding contact in case the teeth of the clutch should meet at their points and not lock to ether, the startinu of the horse the ether, the effecting he ocking of the clutch. To hitch the horse the reins are engaged
between the clamps, which stand normally at the upper end of the tube on the inside of the dashboard, and the rod at the side is elevated, the latter notion, by means of the cam mechan ism, engaging the two half clutches. The turning of the front wheel, from the starting of the horse, will now rotate the transverse shaft, drawing the clamps down the tube, whereby the bit will be drawn tightly into the horse's mouth. To release the device a slight blow is given to the handle a the top of the vertical rod, which per mits the cam to turn, when the half clutches are automatically forced apart by the spiral spring to their normal stadt.
position. The reins are provided with small flat but tons or stays to prevent their slipping through the clamps when wet.
For further information relative to this invention address the patentee, Mr. William E. Ross, No. 155 Jay Street, Rochester, N. Y.

Capsicum as a Counter-irritant.

Dr. Henry J. Buck, writing to the Lancet, says: "I have used this drug for more than twenty years-I may almost say daily-and many of my patients will not travel without a bottle of the 'magic lotion,' as they callit. I find the simplest and most efficacious way of applying it is to soak a large handful of the crushed pods in half a pint of hot water for an hour, then strain, and bottle for use. A teaspoonful of eau-de cologne added will help to keep the solution, or it can be well boiled after preparing. I then have it applied to the affected parts on a piece of linen folded three or four times, or on lint, and covered with gutta percha tissue or a dry flannel. In this way the lotion may be kept on for hours without vesicating, and in many cases the skin is hardly reddened. The stinging and burning sensation produced by the capsicum lotion is, after a few minutes, welcomed by the sufferer, so magically does it often remove the rheumatic or neuralgic pain for which it is being applied. In acute torticollis a cure is often speedily obtained by covering the side affected with the application. In any form of neuralgia, rheumatism, subacute gout, pleurodynia and such like, it wiil be found most useful, and may be reapplied over and over again during the day and night without any fear of vesication.'

AN IMPROVED ICE PLANE

The accompanying illustration represents a simple and convenient implement with which blocks of ice may be shaved, as desired in making mixed iced drinks, the shaved ice passing upward into a box which may be withdrawn from the implement for convenience in placing the shaved ice in goblets or glasses, etc. The form of the plane stock does not differ essentially from an ordinary wood plane, and upright walls integra with the base plate extend up on each side thereof These walls preferably slope in wardly on their inner

FAUGHENDER'S ICE PLANE.
sides, above a certain height, thereby constituting a retaining shoe for the convenient introduction and re ention of a box with an inner open end, with inclined walls, adapted to fit neatly against the adjacent face of the throat plate of the plane. The box is preferably made of tinned or galvanized metal, to prevent rusting and has a handle attached to its end wall to facilitat its insertion or removal from its position in the stock. For further information relative to this invention address Messrs. Faughender \& Crusoe, Piedmont, Ala.

Krupp's largest gun of cast steel weighs 135 tons, nd the barrel is 40 ft . long. Its caliber is $1331 / 2 \mathrm{in}$. The gun has been sent from the works at Essen to Cron

ROSS' REIN HOLDER

A NEAT AND EFFECTIVE CLOTHES BEATER. The illustration represents a light and simple device for switching or beating clothes, carpets, etc., which Omaha, Neb. The beating portion of the implement
 is composed of two spring metal wires, bent and intertwined to form loops, as hown in Fig. 1. Near the handle portion the wires are twisted or braided to form a single body sufficiently long for insertion into the handle, shown in ection, Fig. 2, and having a longitudinal aperture of a diameter greater than the twisted portion of the wires. The rear portion of the handle aper ture is made flaring, whereby a plug may be inserted and driven to place between the separated inner ends of the wires to firmly fasten the beater portion to the handle. To assist in holding the wires in place and impart to them additional elasticity, a flat spring is held at one end by a screw or rivet to the handle and is attached to all the wires at its other end, near the point where the loop portion of the beater commences.

AN IMPROVED TENSION DEVICE FOR BELTS
A device for attachment to any driving pulley, to dispense with the necessity of loose pulleys, and the

ANDERSON'S TENSION DEVICE FOR BELTS. ment therewith. nce a month water twenty feet
for contact with the belt of the drive pulley, a lever being secured to the hanger of this pulley, with pinion and rack attachment. To stop the revolution of the countershaft, the lever is thrown in the direc tion of the drive pulley, as shown in the illustration throwing the hanger downward to such an extent a to elongate the belt. This movement of the lever also pushes forward a rod pivoted on the lever having rack eeth, which causes the disks at either side of the drive wheel to make a partial revolution, causing the two enders to form a shield covering two-thirds of the rive pulley, whereby the belt is held out of engage

RIFE'S AUTOMATIC HYDRAULIC ENGINE

This engine (or ram) is very simple in its construc tion, and is designed to be kept in order at little or no expense. It is self-operating and constant in its actio and has performed good work for elevating a continu ous supply of water for irrigation, small towns, railroad tanks, factories, country residences, stock yards, etc The engraving represents the size known as No. 30 weighing 250 pounds, and fitted for 3 inch drive pip and $1 / 4$ inch discharge pipe. One inch discharge pipe an be used where circumstances favor it
On account of the raised base an automatic air feeder is drilled in the elevated base; this does away with aking off the air chamber to exhaust the air, which has to be done, when the old style is used, as often as

When working at full capacity, under an average fall of four to seven feet, the ram uses from 30 to 35 allons per minute, but it is easily regulated t_{0} suit the flow from spring or stream to fifteen gallons per winute if necessary. Many of this kind are at work under various conditions, the fall on the ram varying from 15 inches to 15 feet, and forcing water from 15 t 250 feet high, and in some places to a distance exceed ing one mile. For every foot fall this ram will elevat

In Fig. 2 is shown the construction of the hydraulic engine, the air chamber being removed The lower section or base is clearl shown, as well as the double-acting at tachments, and how connected for pro perly delivering the spring water into the ram so that it may be forced, in a pure condition, by the power of the creek or river water, to any desired place. The spring water is conducted through the spring supply pipe, M and check valve, O (which prevents its return), and is delivered into the base B, directly under the delivery valve which being removed shows the open end of the pipe from which the spring water flows, filling the entire elevated portion of the base with spring water down to the place where the creek or river water discharges through th escape valve; so that when this valv escape valve, so that when this valve coses, the entire force of the moving um of creek or river water through he drain pipe is exerted upon the sping water, driving a portion through the delivery valve into the air chamuse of a shifter in contact with the belt, is shown in ber, J, and is discharged through the pipe, P, to any the accompanying illustration, and has been patented by Mr. Anders G. Anderson, of Nestocton, Oregon Fig. 2 shows a section through the drive wheel, and Fig. 1 represents the application on its periphery of a fender corresponding to about one-third of its circum ference, this fender tying together disks loosely mounted upon the drive shaft at each side of the drive wheel. There is also a movable semicircular fender capable of sliding in the disks and upon the fixed fender, in connection with a friction pulley adapted equired place. When the creek or river water an rpended its force and recoils, a new supply of sprin water promptly follows, replacing the portion just rive in the fows, replacing the portion ju riven into the air chamber ready to be
The spring supply pipe, M, is provided with an over flow pipe, N, through which the spring water may mo mentarily escape when the check valve is closed, prevent ing any check or stoppage in the flow from the spring being always ready to enter the ram and promptly fol low the creek or river water the moment it recedes. Additional particulars and an illustrated catalogue will be furnished free of charge by addressing Rife's

Hydraulic Engine Manufacturing Co., Roanoke, Va. who are the sole owners and manufacturers.

AN IMPROVED POTATO DIGGER

The illustration shows a plan view of a machine for digging potatoes and other vegetables, in which rotary forks are employed having radial tines adapted to oc

AYRES POTATO DIGGER.

cupy oblique positions in upward directions away from each other, while capable of being adjusted vertically. It is a patented invention of Mr. Charles H. Ayres, o Hightstown, N. J. The central portion of the fram is a saddle-like structure, secured by a clip to the draught beam, and united at its lower end on each ide with a cranked arm, the inner end of each of which forms a pivot or axle for the rotary forks to turn upon, while their outer upturned ends have pivoted to hem levers by which the main frame is raised or low ered to adjust the forks. The forward ends of thes levers carry the axles upon which the running wheels turn. The small figure shows a partial sectional levation of one side of the machine, illustrating ts raising and lowering lever. The forks are thus adjustable also in backward directions toward each other, to gradually dig into the row from opposite sides and approach or come together in the rear, thus causing them to act as diggers and lifters and cleaner of the potatoes, and making the whole machine com plete as a plow, without the aid of cultivator teeth in advance to break up the ground ahead of the forks.

AN IMPROVED WABBLE SAW.
The illustration represents a simple and efficient device by means of which the angle of the saw may

ROGERS' WABBLE SAW.
be quickly changed and fixed. It is a patented invention of Mr . Lewis B. Rogers, of Mount Vernon, N. Y. Fig. 1 shows one side of a saw adapted for such

Fig. 1.- RIFE'S AUTOMATIC HYDRAULIC ENGINE.

Fig. 2. RIFE'S HYDRAULIC ENGIN: DISCONNECTED TO SHOW CONSTRUCTION,
use, and Fig. 2 is a vertical cross section of the saw mounted upon a mandrel between two collars. The mandrel has a screw thread which extends nearly to
the saw, with an outside washer or collar, and a nut the saw, with an outside washer or collar, and a nut to hold the latter in position. Fixed in the saw plate on each side, or integral therewith, are projecting knobs adapted to bear against the collar and the washer near their outer edges, these knobs being lopposite to each other, and acting as pivots upon which the saw may be tilted. At right angles with the knobs, and at about the same distance from the center of the saw, are bolts of equal length projecting through the saw plate. One of these bolts may be simply a pin, fitting loosely in a hole in the saw plate, and its ends bearing against the collar and washer, but the other bolt has a screw thread fitting a thread in the saw plate, and has a flat-sided head to which a wrench may be applied. When the saw is placed in position on the mandrel, the outside washer is forced tirmly against the ends of the bolts and knobs, by means of the outer nut, and the angle of the saw is then readily changed by turning the screw threaded bolt which engages the screw-threaded aperture in the sawplate.

Naphtha Locon

The Bellefontaine Street Railway Line, of St. Louis, have concluded to give what is known as the Connelly as motor a fair trial. This is a motor first put into use in Elizabeth, N. J. One motor was runover six months experimentally, developed abundant power for the heaviest loads and a speed of 12 miles per hour, buc there were many mechanical defects which had to be overcome. Two new motors were constructed,
improvement being tested by actual service on the road, and it is claimed that the experimental stage is now passed, and there is no longer any doubt as to the new motor's success. Preparations are being made to manufacture the motors in Chicago and Elizabeth, and possibly in St. Louis.
Upon first thought it would seem to be an easy thing to attach a gas engine to a street car, but, in fact, it has been a very difficult problem, owing to the lack of a suitable appliance for transmitting power from the engine to the car axle differentially. A gas engine geared direct to the car axle as the locomotive is connected to its driving wheels would require an engine of such bulk and power that it would be entirely impracticable. A gas engine of $25 \mathrm{~h} . \mathrm{p}$. has been applied to this purpose, geared direct, and proved an entire failure. It complettly failed to start a street car on a grade or a curve. The usual mechanism furnishes direct transmission of power, but this practice conveys the least power just at the time when the greatest power is required. The most power is needed when a car is starting or on grades. It was evident that a variable transmission, permitting the engine to develop its maximum power when starting or driving a car at minimum speed, was the one essential thing needed for a gas motor. The Connelly motor is said to encompass this desirable point. An ingenious piece of mechanical workmanship is used to cover the requirement. It is called a friction device, that exerts a powerful leverage, enabling an 8 h . p. engine to easily start a loaded car on grades, which could not be started by a $30 \mathrm{~h} . \mathrm{p}$. engine connected to the axle in the common manner. The compound gas engine has high and low pressure cylinders. The fuel tank is a double cylinder, the inner one containing the naphtha and an absorbent material. This is surrounded by a jacket of water, which is connected by pipes to the water jacket about the engine cylinder. The circulation of water from the cylinder to the carbureter is continuous, and it performs a double service, cooling the cylinder of the engine and warming the naphtha, producing evaporation. Air is drawn through the absorbent material, thoroughly carbureted, and supplied to the engine, compressed, and then ignited by an electric spark. The low pressure cylinder next receives the charge and becomes a motive cylinder during the first half of the outward stroke, when, the pressure being gone, it acts as a pump, drawing a fresh charge of gas into the high pressure cylinder. The method of transmitting power from the engine to the axle is quite practicable. The main shaft is set parallel with a disk 30 in . in diameter placed on the face of the fly wheel. On the shaft is a loose friction pulley 12 in . in diameter, that engages with the face of the disk. This loose pulley is prevented from revolving on the shaft by a tongue and gronve but it is moved up or down on the shaft at the will ot the driver, by means of two screw rods which pass through the pulley and revolve with the shaft.
When it is required to slow up or stop, the friction pulley, still in contact with the disk, is run down to near its center, and at this point can be slightly lifted from the disk. To reverse, the friction pulley is run below the center of the disk, while the engine is left to run all the time in the same direction. The engine, it is said, requires no attention after being started, and regulates its own speed, whether the car be running or standing still. The car is started with a gentle motion and with an enormous leverage.

The cost of operating the gas motor is $\$ 1.40$ per day,

14 hours, 90 miles each, while the cost of operating street cars with horses averages from $\$ 5$ to $\$ 6.50$ per day for each two horse car, the average mileage being 60.
The motors are now being constructed, with latest mprovements, in Elizabeth, N. J.-L., H. and Power.

IMITATION OF MAJOLICA.

Cements and seaiing wax are useful for giving to paper and wooden articles a hard glaze, resembling that of majolica ware. The cylindrical vase shown in the annexed engraving consists of a paper mailing tube 3 inches in diameter and 6 inches long, furnished with a pasteboard bottom, which is glued in. The inside and bottom of the vase is provided with two or three coats of asphaltum or shellac varnish to render it waterproof. The outside is covered with jeweler's cement of different colors, or with sealing wax, or both. The bar of cement or wax is melted at the end, and applied to the paper cylinder in the same manner as it is applied in sealing packages. No particular care is required in applying the wax. It is, however, necessary that the edges of adjoining patches of wax be brought into contact with each other to insure the complete covering of the paper. In the example shown in the engraving, olive green jeweler's cement forms the covering of the lower part of the vase. This is blended into cement colored with Venetian red or Indian red, and the cement at the top is flecked with yellow.

The mass of cement is laid on in spiral lines, ând when the covering is complete, the vase is held over a smokeless flame, such as that of a Bunsen burner or alcohol lamp, or it may be held over a coal fire until the cement
fuses. The vase fuses. The vase
should be turned in such a way as to cause the variously colored cements to run into each other. The vase is held by means of a paper tube or a stick insert ed in its open end.
Ornamentation may be applied by cutting leaves, stems, petals, etc., from pieces of thick paper, dipping them in melted cement of appropriate color, allowing them to cool, afterward arranging them upon the vase finally softening the cement of the vase and the orna we by holding a flame or a hot iron ove Care is required at this point to avoid the complete fusing of the cement, as this would spoil the job. Care is also required to avoid igniting the cement or wax, a it is nearly impossible to extinguish it.

How to Prevent Scarlet Fever

At a recent meeting of the American Pediatric So ciety in New York, Dr. J. Lewis Smith, the president of the society, read a paper on a part of the general dis cussion on "How to Prevent Diphtheria and Scarlet Fever." The micro-organism of scarlet fever had not been positively ascertained, but its effects were known from clinical observation. The contagiousness probably did not cease until after desquamation had passed, and it had been said the discharges from the otitis due to it were contagious. Quarantine in a small room at tached to one of the wards at the Foundling Asylum in this city had been sufficient for scarlet fever, but not for measles. The contagious element was more fixed and less diffusible in the former. It remained in clothes a long time. Most prophylactic measures consisted in isolation of the patient, disinfection of the person and air which surrounded him, and of object and persons in close relation with him. He called par ticular attention to the danger in books handled by the sick with scarlet fever, for in them the contagious element remained a long time. At his first visit he wrote a prescription for carbolic acid and oil of eucalyptus, of each one ounce ; spirit of turpentine, six to eight ounces; mix, add two tablespoonfuls to a quar of water, put in a broad basin and maintain a state of constant simmering over an oil stove. He also ordered an inunction of the entire surface of the patient every three hours with carbolic acid and oil of eucalyptus, each one drachm ; sweet oil, seven ounces. A solution of corrosive sublimate might with advantage be ap plied on a probe and cotton to the tonsile and pharynx and ten drops of a solution of two grains to the pint syringed into the nostril every two hours in the young infant. Then there should be constant ventilation
during the active period of the fever, no article should be sent from the room unless properly disinfected, new
families not allowed to move into the apartments before proper disinfection, the physician should disin-
fect his hair and entire person, and not wear the same outer clothing when going to see midwife cases.

The Plate Glass Industry in the United States. The growth of the plate glass industry in this country has been such that one is forced to regard its manufacture as one of the most prosperous industries in the United States. It is a question, however, one which time alone can answer, whether it will continue to be such a prosperous industry, rise being given to the question by reason of the large increase of capacity projected. There are already eight great works in operation, viz.: Crystal City, Duquesne, Creighton, Tarentum, Ford City, New Albany, Kokomo, and Butler, capable of making from $9,000,000$ to $10,000,000$ square feet of glass per annum, according to recent estimates, or almost as much as the present requirements of the country call for. What, then, is to become of the heavy additional production promised is not known, without lower prices for the article can greatly augment consumption. But work on new plants and ad ditions to old ones is going on just the same, nevertheless. At Charleroi, the newest industrial city of Pennsylvania, a huge plate glass establishment is being erected, and will be equipped with glass machinery, at a contract cost of $\$ 308,000$. The Diamond Plate Glass Company, of Kokomo, Ind., through a branch $\$ 2,000$,000 incorporation, is putting up a works at Elwood, Ind., to make 20,000 feet of finished glass a day and to give employment to about 2,500 men. The Pittsburg Plate Glass Company propose doubling their present plant at Ford City, at any outlay of $\$ 1,750,000$, so as to surpass all competitors in the matter of output, at home or abroad. Other companies still are enlarging, and entirely new enterprises of the kind are being either actually organized or talked of in various parts of the country.-Wheeling Manufacturer.

The First Locomotive Manu

The town of Gawler was al alive on Fiday, Apris when the first locomotive made by the enterprising firm of James Martin \& Co., limited, was formally handed over to the railway commissioners. A special rain left the city at $9: 30$, conveying a large number of the commercial world, including the premier, members of Parliament, and his Excellency Earl Kintore. On arrival visitors found the town gayly decorated. Several arches of bunting and evergreens, with a great number of flags and other decorations, gave a most pleasing appearance
After several hours spent in looking over the works, which were in full swing, a banquet on a very liberal scaie was provided. The speeches on this occasion were all well received, especially those of his Excellency, the premier's and the venerable James Martin's. Afterward, when the engine was formally handed over, a model of the regulator handle in silver and an illum inated address were presented to Mr. James Martin, and his reply evidenced how well he appreciated the thoughtfulness of his many old and new servants in making the presentation.
Before returning to the city the governor drove the engine and a number of carriages containing the Sunday school children and many residents several times up and down Murray Street, and this will be to many one of the events of their lives. Indeed, to be driven by a real live earl is the happy lot of few
Although Messrs. James Martin \& Co., limited, o Gawler, have been long and favorably known in con nection with their extensive mining and agriculture manufactures; the recent substantial additions to their buildings and plant and the increase in the number of their employes is due to their having accepted the contract to supply locomotive engines to the South Aus tralian government. The contract was signed on May 1,1888 , and provides for the supply of fifty-two loco motives, to be delivered by installments covering a period of seven years from the date of contract.-Pic orial Australian.

Look Out for Your Ashes.

It would appear that the cause of the accident on board the City of Paris was the breaking of the pro peller shaft, which caused a sudden increase in the velocity of the engines, leading to a general smash-up The breaking of the shaft was due to its having ground away the lignum vitæ, and ultimately the steel in th strut supporting it. It then was out of a straight ine, and in consequence of this broke by the strains brought about by its own revolution. The cause of the accident is, therefore, to be traced to the grinding away of the lignum vitæ of the bearing. One theory is that the liner on the propeller shaft being too tight ly shrunk on, split, thus leaving a sharp edge to grind way the lignum vitæ. Another is that the ashes which are discharged below water on the same side as the broken shaft were continuously carried to the propel ler bearings as the ship was going through the water and that they were th
$-N$ autical Magazine.

Gas Consumption.

The business of supplying gas in this country is only in its infancy. American cities are increasing out of proportion to the general increase of population throughout the country. As evidence of this it may be stated that at the beginning of this century but three cer cent of the total population were dwellers in cities. In 1880 this percentage had swelled to twenty-two per cent, and we nuw must have not less than thirty per cent of the whole population residents of cities and towns
To those intimately associated with or who have followed the advances made in the manufacture of gas, the increasing value of gas works property in this country is settled beyond all question. It is now positively known that the introduction of electricity has really cut no important figure so far as to curtail the gas output, and it is well known that since the introduction of electricity for street illumination, the loss to duction of electricity for street illumination, the loss to gas companies of a few street gas lamps has in all
cases been more than offset by the marked gains from cases been more than offset by the marked gains from
increased private consumption, directly traceable to the demand for more light in order to equal the strong, high candle powers of the electric arc lights and the dazzling brilliance of the incandescent lamps.
The following shows the consumption of gas in cubic feet

	1885.	1800.
Denver.	120,000,000	210,000,000
Macon.	15,000,000	37,000,000
New Albany	15,000,000	25,000,000
Des Moines	40,000,000	60,000,000
Baltimore.	900,000,000	1,200,000,000
Boston.	858,000,000	1,439,000,000
Cambridge	66,000,000	120,000,000
Fall River.	54,000,000	67,500,000
Lymn.	40,000,000	63,000,000
Lowell.	146,000,000	210,000,000
Grand Rapids	40,000,000	100,000,000
Kansas City.	140,000,000	225,000,000
St. Joseph.	50,000,000	70,000,000
Philadelphia	.2,758,000,000	3.250,000,000
St. Lonis.	$790,000,000$	1,080,000,000
Omaha.	40,000,000	150,000,000
Jersey City	160,000,000	290,000,000
Paterson	60,000,000	97,000,000
Brooklyn	510,000.000	1,250.000,000
Buffalo	95,000,000	110,000,000
New York City	..2,375,000,000	8,510,000,000
Rochester.	200,000,000	230,000,000
Troy.	50,000,000	130,000,000
Cincinnati..	730,000,000	1,000,000,000
Columbus.	150,000,000	200,000,000
Providence	350,000,000	485,000,000
Nashville	90,000,000	100,000,000
Richmond.	154,000,000	180,000,000
-Progressive Ag		

Hidden Dangers in Dam Building.
In the construction of water storage dams there is an element of insecurity to be guarded against in some cases, which does not seem to have been publicly no-
ticed. John D. Emersley, in Mining and Scientific Press, referring to the swelling of the ground under o near to the dam, considers it a source of danger.
A valley or wide ravine with a slight descent, and having side hills coming near to each other at its lower end, is economically favorable for water impounding purposes, provided that the collecting surfaces above are large enough to insure the supply required. In the arid regions such a valley is usually so dry that, on the side hills at least, the general water level can only be reached by deep sinking. If solid primary rock, with little permeability, is available in founding the dam, its bulk, when subwerged, will not increase; but if de pendence is placed on a stratified formation containing layers of clay, talc or shale, its expansion when exposed to pressured water must certainly be expected. Every old miner has had trouble with swelling or creeping " ground, and builders of escarpment wall are aware how hard it is to keep some kinds of rock in place during wet weather

Assuming that a dam has been built on an unstable foundation of the kind described, what will the effect be when a pressure of 50,70 , or 100 feet of water comes
upon it? The whole "country rock" above the dam will, in the center of the ravine especially, both under neath and outside of the dam building, be saturated to a great depth. Under the abutments on the converging side hills the pressure will be less, yet every por and interstice will be filled. Should there be the slight est tendency of this water-charged rock to expand either laterally or vertically, it is easy to understand
how even a dam in itself well planned and carefully how even a dam in itself well planned and carefully
built may in time give way, owing to such expansion.
The sapping and weakening effects of water percolating under high pressure may go on for years without being noticed, but if the damerection is ultimately, though it may be imperceptibly, lifted or compressed
by the slow swelling of the ravine or hillside formaby the slow swelling of the ravine or hillside forma neath it, increased pressure may suddenly destroy it.
The wearing or mechanical effects resulting from a sweating process going on in a dam, or the rock under lying it, is not the only evil which is to be feared. The air acting on wet surfaces promotes chemical changes which are followed by disintegration of the affected rocks, and thus slowly yet surely there may be destructive agencies at work where least expected.

Should there be veins of porous rock dipping under a dam fromits upper side, the passage of water through
such veins may of itself prove a hidden cause of disassuch veins may of itself prove a hidden cause of disas-
ter. The escape may be small at first, but a softening and widening we may be sman at first, buns cannot fail to weaken a heavy dam building not very far above it.
If I am right, continues the author, in assuming from reasons stated above that the building of dams on some kinds of stratified rocks renders them unsafe, I trust by calling attention to the subject to encourage investigation and the adoption of adequate engineer ing remedies. It would be some satisfaction to know whether the Johnstown and Walnut Grove dams were
built on stratified rocks. If they were, affording evidence long before they collapsed, which they did not give when first in use, that cracks had been opened in them, it is reasonable to assume that they had been injured by the expansion of the foundation and hillside rocks.

How Rubber Bulbs are Made.

It is commonly supposed by the uninitiated that the bead," or raised line, that encircles a bulb shows the joining of the pieces of which it is made. The fact, however, is that the pieces or original parts of the bulb are invariably joined at right angles to the bead line. Long bulbs, such as syringes and atomizers, are made of two pieces; round bulbs, as pumps and balls, are made of three pieces. New and unique styles that call for variation from the established modes are daily encountered. A competent pattern maker, however, will find little difficulty, as a general thing, in so joinwill find little difticulty, as a general thing, in so join-
ing the parts as to secure the best results, both in vuling the parts as to secure the best results, both in vul-
canizing, where the even swelling of the article must be considered, and in wear and tear, where the seam must run so as to be protected as much as possible jy the general contour of the bulb.
After the pattern maker has decided by measure ment and experiment upon the shape and size of the parts which go to form the bulb, zinc or galvanized iron patterns are made and given into the hands of the cutters. Mixed sheets of the required thickness being spread and afterward cut into convenient sides or squares, the bulb making begins. Each piece cut must have distinctly skived edges. Considerable care is necessary in this, as the strength of the seam depends upon the smooth fitting of the edges. The three parts for hollow balls may, however, be cut with a die. The pieces when cut are arranged in large books with leaves of smooth cloth. If the bulb has a neck, small pegs of with strips of rubber as a nucleus for the neck. The two or three parts of the bulb are then brushed with two or three parts of the bulb are then brushed with
cement the whole length of the skived edge, after which they are thoroughly heated

When thoroughly warmed and softened, the bulb maker, taking a prepared peg. places the neck of one piece on one side of the rubber core, and another neck piece on the opposite side, then presses them firmly to gether, and rolling the whole tube-shaped piece be tween thumb and forefinger, has finished the neck of
 toward him in his left hand, with the thumb and fore finger of the right he pinches the edges firmly together for nearly the whole distance round. The shape is now not unlike that of a "long clam." Into the side aperture, which is left open, is poured a little water or
liquid ammonia. The opening is then made still smaller, and as a final touch the maker puts his lip to the orifice, and puffing out his cheeks till they look like miniature balloons, blows full and hard into the inside of the bulb. The softened rubber under this udden pressure expands, the flattened shape is lost in fuller and more rounded outline, while the operator with a quick nip of the teeth, closes the opening, th mprisoned air and water holding the sides apart in symmetrical corpulency. There are those who can
never learn the knack of blowing up a bulb with the never learn the knack of blowing up a bulb with the
mouth, but are obliged to use a bulb to inject the air. After the makers have done with the now partly nade bulb, it is passed to the trimmers, who, armed with scissors with curved blades, carefully circle the seams, cutting away all unevenness, till the whole ex terior is smooth and ready for the mould. In front of the trimmers are a number of shallow pans partly filled with chalk. Into these the bulbs are laid. A smal dumb waiter takes them down to the mould room and returns the empty pans. The bulbs on leaving the chalk pans are deposited in a small cylindrical box
which, turning a few times, powders them so effectu ally that the rubber cannot adhere to the inside of the mould. An experienced mould worker now taking one-half of a mould in his left hand, with his right gently forces the bulb into it, capping it with the second half. If the pattern maker has done his part faithfully, each will just fit its mould. If not, they will come out of the vulcanizer wrinkled, showing that it was too large ; or, if glazed and imperfect, that it was oo small
A flat iron ring or clamp holds the two sections of the mould together when in the vulcanizer. This is
tightened by iron wedges whichare driven between the
mould ends and the clamp. The moulds after being keyed are piled on cars that run upon small tracks into the vulcanizers, and are cured by steam heat. When the curing process is completed the vulcanizers are opened, and the cars, by a short extension of the track, are run under a simple shower bath which quickly cools them. They are then unkeyed, the moulds twisted open and the bulbs taken out. If the work be well done, the swelling of the liquid within its rubber prison has exerted so intense a force that every line and letier within the mould is reproduced upon the outside of the bulb, while the sulphur combining with the heat has sealed the copies with its magic spell.
The iron peg in the neck is next loosened by means of a blunt awl, and slipped out, leaving the bulb per fect in shape. In the mould room are large car-like boxes into which the bulbs are thrown. A box being full, it is trundled away to the cylinder room, where it undergoes a thorough scouring and polishing in huge slowly revolving cylinders.
When taken out of the cylinders, the dirty yellow color which the bulb bore on leaving the mould has wholly disappeared. It now looks smooth, white, and finished. The neck being cut off the required length by a small adjustable cutter-devised expressly for the purpose-the bulb is ready for market, or for the various fittings which accompany it as adjuncts to the syringe, atomizer, or other bulb. Where a smooth clear-cut hole is needed in any part of the bulb, except the neck, it is cut by a swiftly revolving punch. The neck hole is left by the iron peg as already described A good illustration of the power of the imprisoned team within the bulb may be obtained by knocking a clamp off a mould before it has been treated to the shower bath. The two hemispheres of iron will fly apart as if by magic, the bulb swells to treble its nor mal size, and explodes with a loud report. The mould workers are sometimes badly burned by hot wate which bursting bulbs scatter in all directions.
A well made bulb, one that has a good, energetic spring, that has just the right smoothness of outline that is not scarred by imperfections in the mould and that has the whiteness of a healthy cure, is an ob ject that always wins the respectful admiration of rubber men. Toys, balls, and hollow goods generally are all made in the same manner as bulbs.-India Rubber World

Asafoetida.

The asafortida region is thought to include not only the whole of Southern and Eastern Persia, but also the reater part of Belochistan and Afghanistan, Turkes tan, and the region, now under Russian control, east ward of the Sea of Aral. It is, we believe, cultivated in the Punjaub also, and the bulk of it, at any rate, i brought into commerce via Bombay, where it is re ceived either by way of the Persian Gulf or through British India. The proportion of the drug consumed in the East is enormously larger than that shipped to Western countries. We find from the statistical tables of the trade of British India which have just been issued, that whereas the total imports of asafotida into that country during the last five years have been 37,306 cwts., the aggregate exports have only been 2,014 cwts., or barely 5 per cent of the whole. The firs rustworthy account of the collection of asafortida in Persia was given about 200 years ago by one Engelber Kaempfer, a German scientist ; but from the reports o recent visitors who have observed the mode of collec tion of the drug, this still remains the same in all es sential particulars as in Kaempfer's time. According to that authority, the collection begins about the middle of April, when the earth is removed from the roots, which vary in thickness from a carrot to that of man's leg, and the leaves of the plant are removed Toward the end of May the top of the root is sliced way, and the juice exudes and is scraped off. A few days later another incision is made, and this process i repeated at intervals until the beginning of July, when the crop is at an end. It has been asserted that the usual asafootida of commerce in the agglutinated tear is that which exudes from the root when the whole top is sliced off, while the tears are the solidified juice ob tained from incisions only.-Chem. and Drug.

Kansas Railroads.

Kansas has more miles of railroads than all the New England States put together. She has 1,159 more miles than the great Empire State of New York, whose population and wealth surpasses Kansas four to one She has more than the great States of Pennsylvania Iowa or Texas. Kansas to-day has 8,754 miles of rail roads. Illinois alone surpasses herwith her 9,900 miles Next comes Iowa with 8.364. Following her is Penn sylvania with 8,224 . Then comes Texas with 8,210 miles. Only think of it! During the three years from 1886 to 1888 inclusive Kansas constructed 4,535 niles of railroads, which is more than any one of the 27 of her sister States have in operation to-day, and there are only 13 States in the Union who have a greater mileage of railroads than Kansas built in these
three years.

WALKING ON THE CEILING HEAD DOWN. A performance of considerable scientific interest has been produced in this and other cities which is presented in the illustrations accompanying this article.* In order to procure a perfectly smooth surface to walk on, a board twenty-four and one-half feet long is suspended from the ceiling, and near one end of this is a trapeze. The lower surface of the board is painted, and is smooth and polished. The performer, who is known as Aimee, the human fly, is equipped with pneumatic attachments to the soles of her shoes. Sitting in the trapeze with her face to the audience, she draws herself upward by the arms and raises her feet until they press against the board. They adhere by atmospheric pressure. She leaves the trapeze, and hangs head downward, as shown. Taking very short steps, not over eight inches in length, she gradually walks the length of the board backward. She then slowly turns round, taking very short steps while turning, and eventually returns, still walking backward. This closes the performance.
To provide against accident a net is stretched under the board. The performer has frequently fallen, but so far no serious accident has happened. There is a certain art in managing the fall, as, if the shock were received directly by the spinal column, it might be very severe.
The attachment to the shoe is in general terms an India rubber sucker with cup-shaped adhering surface. It is a disk $41 / 2$ inches in diameter and $5 / 8$ inch thick. To its center a stud is attached, which is perforated near the end. This stud enters a socket fastened to the sole of the shoe. The socket is also perforated transversely. A pin is passed through the apertures, securing the hold between socket and disk. The socket is under the instep and is attached to the shank of the shoe sole.
A wire loop that extends forward under the toe of the shoe is pivoted on two studs which are secured on each end of the transverse central diameter of the disk. This loop is normally held away from the disk and pressing against the shoe sole by a spring. One end of the loop projects back toward and over the rear edge of the disk. A short piece of string is se cured to the India rubber and passes through a hole in the extension or rearwardly projecting arm of the loop. The disk when pressed against a smooth surface is held fast by the pressure of the atmosphere. If now the loop is pressed toward the surface to which it adheres, the string will be drawn tight and will pull the edge of the India rubber away from the board. Air will rush in, and the adhesion will cease. As each new step is taken, one disk is made to adhere by pressure, and the other is detached by the action just described.
The power of the disk to sustain the weight of a performer may be easily calculated.
Each sucker is $41 / 2$ inches in diameter, and contains therefore 16 square inches of surface. The full atmospheric pressure for the area would amount to 240 pounds. The stud and socket attachment provides a central bearing, so that the full advantage of this and of the disk is obtained, and a fairly perfect vacuum procured. As the performer only weighs poout 125 pounds, there is about 115 pound to about 115 pounds to sp

Electrified Wax

Some curious electrical phenomena were lately observed (according to a writer in the Chemische Zeitung) in a stearin and ceresin manufactory in Italy. One evening four vats of whiteceresin (which is a paraffin got from ozois a paraffin got from ozokerit), containing about 500 kg . each, were being stirred to cool. When the point of solidification was nearly reached, the electric light of the place accidentally went out ; and, to the surprise and alarm of the rather ignorant workmen, the mass of ceresin was observed to give pale sparks

[^0] he performer ascends to the top of the audience hall and walks on the ceiling head down, like a fly. The
effect is very startling, and the ease with which it is apparently done is marvelous.
on the slightest motion. If the hand was brought near, loud sparks nearly two inches long were obtained. The phenomenon lasted over half an hour.

AN ELECTRIC TRAP

Our illustration shows a novel application of the idea of execution by electricity, by means of which it is designed to put a speedy end to rodents and all manner of noxious crawling and flying creatures. This electric trap forms the subject of an American patent recently issued to Mr. F. Scherer, a resident of Paris, France. Any suitable lure or bait is located within the cage, behind a grid composed of metal rods or

AN ELECTRIC TRAP.
wires, arranged side by side to form the positive and negative wires of the circuit. When the rat or other foredoomed victim, seeking the bait, comes in contact with the wires of the grid, the circuit is thereby closed Of course, the current must be strong enough to pro duce a fatal shock, or the invention would not succeed as an electric trap.

Steel Railway Ties.

The most startling piece of railroad legislation yet proposed the nation owes to that new State, Dakota. Representative Gifford, of Dakota, lately introduced in Congress a bill providing that all railroad companies shall in future substitute a homogeneous steel cross tie instead of wood, under a penalty of $\$ 1.50$ for every tie instead of wood, under a penalty of $\$ 1.50$ for every
wooden tie used five years after the passage of the act.

The bill authorizes the president to appoint three persons to investigate patented metal cross ties to deter mine upon three of the best ties to be used. "The cost of the steel tie shall not exceed $\$ 1.50$ each, and they must de so constructed as to keep the track in line and prevent the rails from spreading." The bill appropriates $\$ 75,000$ for the expenses of the commissioners. We do not know of any homogeneous steel cross tie offered in this country at $\$ 1.50$, but if one that can be used is made at that price by any of Mr. Gif ford's constituents, they had better advertise it. They will probably be able to sell it without the help of the government. Even with the help of the government they will have a hard time getting it introduced in the place of all wooden ties within five years, unless the government undertakes to pay the cost. At a very moderate estimate these ties would cost in place as much as the entire gross earnings of the railroads of the United States for 1888 , say $\$ 951,000,000$. There is still another difficulty in the case. Steel ties for all the railroads of the country would take about $25,000,000$ tons of steel. In the latest edition of Mr. Swank's "Directory of Iron and Steel Works," the annual capacity of the Bessemer and open-hearth furnaces of the United States is estimated a.t $6,800,000$ tons. So if Mr Gifford's bill passes, we shall be bothered to get steel for other uses. But perhaps it will not pass.-Rail road Gazette.

Fibrous Roots.

At the recent meeting of the American Association of Nurserymen, New York, Mr. Thomas Meehan said that it had been fifty years since he wrote his first article for a horticultural paper, and it seemed to him, although horticulture had made rapid advances in all of those years, that it had not progressed as far on the scientific side as it ought to have done. As a practical example of some scientific truths, upon which good practice is based, he instanced the fact that fibrous roots live only a year. They do their work and then die. Where there are a hundred small roots now about young the will be in few years only a few large ones radiating from it, like railroads on a map. These big roots alone have the strength to send out fibers, and the root is of no value to the tree until new white fibers are growing. Therefore, it may be that a mass of fibrous roots in a tree for transplanting is injurious. They are weak. they have no vital power to put out rootlets, and they may keep the soil from con tact with the big roots, which, therefore, do not find the proper medium in which to throw out feeding roots.
Another fact which observation teaches is that roots die in exact proportion to the amount of tops that are cut off. If a tree is pollarded, nine-tenths of the roots may die and then invite a fungus which spreads to the living roots. It is said that the branches which sprou from these pollards grow strongly because the root are stronger below them but in fact they grow from the food stored up in the trunk, just as shoots thre or four feet long often grow out of logs which lie by the wayside. Generally pollarded trees die after this operation has been fre quently performed. Look for example, at an Osage orange hedge. If one of the trees at the end is al lowed to grow it will make a trunk as big as a man's body in twenty years while the hedge plants of the same age, their vita power being weakened by constant cutting, are no larger than a man's wrist Of course all pruning is not to be condemned, al though it does weaken the vital power of the plant We prune for other pur poses than to make long lived trees.

In the Post Office ap propriation bill lately passed by the Senate is a provision by which mails are to be sorted on board steamers, so that deliveries will be hastened on arrival of vessels. The arrangement is to be in conjunction with the governments, the United States paying its portion of the costs.

THE WEAVER.

The first time that the nest of the weaver of Bengal (Loxia Bengalensis) is seen, it is difficult to believe that it is the work of a bird. One would call it a piece of basket work skillfully manufactured by savages, and the use of which one would have to guess at. It is a sort of tube at least three feet long, tapering upward, closed at the top and open at the bottom, and alternately inflated and contracted. This sort of bag or purse, with several compartments, is woven from a dry grass crossed and recrossed in all directions so as to form a thick fabric with close meshes. The inflated parts. two or three (sometimes four or five) in number, are chambers that are occupied by the bird. The narrow parts are passages that put the chambers in communication. The nest is suspended from the branches of the highest trees (palms, Indian figs, etc.), especially from those that overhang a river or a torrent. It thus swings in the air like a vine, and its situation, along with the fact that its aperture is at the bottom, renders it inaccessible to snakes and birds of prey.
It is said that the separate chambers are so many nests successively constructed by the bird, one at the end of the other, each year ; this may be so, yet it appears to us surprising that the points of junction are so com pletely invisible, and that there is absolutely no difference in the texture nor in the color of the materials.
The habit of weaving is absolutely innate in these birds. As soon as the nests are finished for the females who are about to sit, the males weave a nest for themselves. This has not the form of the nests destined to receive the eggs, but is an inverted cup, open at the bot tom and provided with a pouch alongside of the orifice. Here the male remains and sings while his mate is sitting upon the eggs.
Another peculiarity of these nests is that glowworms are found fastened to the interior of them by means of clay. It is claimed in the Indies that these glowworms are placed there in order to serve as torches to light up the nest. Ac cording to the Hindoos, they are nuptial torches designed to guide the male through darkness to the dwelling of the female. It is probable that Oriental imagination has here given itself play, and that the worms serve rather as food than as worms serve rather as food than as
a light for the birds. As for the presence of these insects in the nest of the weaver, there seems to us no doubt about it. As regards this, the following is the testimony of an Englishman worthy of credence who resided in India for a long time: "Wishing to ascertain for myself," says he, "what ground there was for this popular belief, I proceeded as follows: Knowing that the weavers absented them selves along about four o'clock in the afternoon, I located a person in such a way as to prevent them from returning to the nest, while I approached it. Upon opening it, I found within it a glowworm affixed to the side with a sort of clay. After sewing together the two part of the nest, I replaced it. On the following day I again examined it, and found another and smaller glowworm in it fixed with clay alongside of the spot where the other one was found. I made the same examination of the three other nests, and in two of them I obtained the same result. In the third one, the new ball of clay was there, but I found no glowworm.'
Let us add that, on the subject of the destination of these insects, the observer just cited inclines rather to the popular opinion. "It seems to me difficult to believe that the insect is put there to serve as food. Why should the trouble be taken to fix it thus to the side of the nest? The bird, moreover, is one which never leaves its nest after sunset, which loves the light, and which no one has ever seen taking food after nightfall.'

The faculty of weaving nests is doubtless hereditary among these birds, but some naturalists think that imitation must also play a great role. It is certain, in fact, that great differences are to be found between the nests of the same species. This peculiarity would seem to indicate differences of talent among the various architects. It is supposed, too, that the rudes nests are the work of young or inexperienced birds.
To color white pasteboard the color of leather, soak in solution of copperas and then in ammonia.

THE WEAVER AND ITS NEST.
ment cannot tell us if coal occurs deep down beneath it can pronounce where it does not. In the important paper on "Coal in Southeastern England," read by Mr. William Whitaker before the Society of Arts on April 23, Mr. Whitaker had occasion to refer to Profes. sor Rucker's recent discovery, and after the paper was read, Professor Rucker joined in the discussion. Pro fessor Rucker and Professor Thorpe (of Leeds) have for some time past been noting the behavior of the mag netic needle in various parts of Great Britain, and they found that it frequently misbehaves; in other words it is deflected in certain places from what would be regarded as its proper direction. The explanation is that the deflection is due to great masses of iron-bearing rocks, such as basalt, even when they are buried up beneath chalk and tertiary strata. Thus the new instrument has been the means of demonstrating hitherto unsuspected relations between the masneti properties and geological characters of various dis ricts. Professors Rucker and Thorpe have in this way proved that there was magnetic attraction along certain definite lines which run across England. On is from the Lynn Wash to the line of the Midland Rail way between Hawes and Settle (in Yorkshire), a distance of one hundred and fifty miles. They further stated, with confidence, that a line from somewher

Professor Rucker's New "divining Rod." We have heard a good deal concerning the divining
od being used for finding underground supplies of water. The trick is a very ancient one, and lost noth ing of its cleverness by being handed down for generations from father to son. The divining rod could find out where copper, tin, lead, zinc, or other metals lay buried below the surface of the earth, as well as discover water. The only thing that led to skepticism was that it professed to find too much. But, after all, the divining rod, made of a twig of hazel with a forked end, was perhaps the rude predecessor of the scientific instrument which Professor Rucker has just made known to the Royal Society; just as the rough Paleolithic flint instrument was the antecedent of the modern surgeon's lancet and the cavalry sword. Briefly, Professor Rucker's magnetometer is an adaptation of the well-known magnetic compass. It indicates the which apce of subterranean strata lying beneath those contain much iron, as basaltic and mauy other imneon (blighted they turn again and stretch out their arms in a longing and protesting appeal to the good old New England States, from which they went, and to which they would, like the prodigal, return, to live upon the fat of the land and enjoy the privileges and opportunities of their early days.-T'he Manufacturers' Gazette.

A rafting pin appears to be a very simple thing and of trifling importance, but it is not so inconsequential after all, when the number used annually is taken into consideration, and the amount of hardwood timber consumed in their production is understood. The Tit tabawassee and other boom companies in Michigan us millions of these little and simple devices, one pin being required to every log "tied out" by them; and the firms producing them use up whole " train loads of logs in their manufacture. They are simply a wedge shaped piece of wood with sufficient of the center of the wedge removed to admit the insertion of a small sized rope, so that when they are driven into the cente of each log they cover the rope and hold it firm. When the logs thus fastened in strings reach their destination, a slight blow breaks the pin, loosens the rope, and permits the logs to be handled separately. It will thus be perceived that millions of these little devices are made and destroyed annually.-Timberman.

Recently patented inventions. Eneineering.
Rotary Engine. - Lincoln Haus mann. New York City. This engine has a slotted annular steam chest, an annular disk to which the piston
head is attached, ftting in the slot, with a cut-off valve. head is attached, fitting In the slot, with a cut-off valve,
in combination with levers, connecting rods, and a cam in combination with levers, connecting rods, and a a cam
formed on the disk adapted to operate the valve meformed on the disk adapted to operate the
chanism, with various other novel features.

Railivay Appliances.

Ship Railway Car.-William Smith, Aberdeen, Scotland. This is a car whereon the ship is designed to be practically water-borne in such a way as
to admit of the necessary flexibility of the ca. to enable it to accommodate itself to changes of gradient withou causing undue strain on the vessel, with lateral flex bility of whe
of the line.

Mechanteal.

Auger.-Francis I. Hocfle, Wilming ton, Ohio. The spiral nody of this augar is concavo.
convex wedge shipe in cross sectlon throaghout its length, and formed exteriorly to a straight line through the longtudinal axis of the shank, the point of the wedge being outermoot and forming the continuou ticle to be bored with the least possible friction, and a center will not be needed.
Screw Cutting Devicf. - Henry Westbrook and Robert Burns, Woodstock, Ontario, Canada. This invention provides a new and improved
screw-cutting head, which can be made in two seg. mental parts and hinged toget.ier to permit of opening the head for removing the bolt after the desired lengt of thread is cut, the device being adapted tocut a short,
clean and solid thread and requiring very little driving clean an
power.
Metal Rolling machine. - Lyman White, Waterbury, Conn. This is a machine for rol ng cylindrical forms of metal, providing a novel an one frame or head for rolling cylindrical forms eithe ollow or solid, to reduce their thickness through the entire length or at any point, or to figure, neck, flange orm jointe, point or cut the same
Gin Saw Gummer. - Joseph E. Booker, and John O. Phillips, Raleigh, N. C. This is an im provement adapted for use in fliling gin and linter saws,
and designed to leave the teeth of the saw of full length and with keen points, similar to the teeth frrs ormed upon the saw, the machine being capable of ad justment to saws of diffe
Braiding Machine.-Henry Lauferty, New York City. Combined with the race plate, carrien ported from the center of a terminal ciccle ode sua plate, extending at its tip into proximity to the guide and adapted for the passage of an edge or purling and ad, to form purled or raised edges in fiat braided
thabrics at the time of braiding the body of the fabric.

agricultural

Grain Separator. - James H. Calkins, Owosso. Mich. This is an improvement in separators having a vibratory sieve, supported by elastic arms or bars and operated by suitable connections with for connection and adjusting the pivoted bars or frame and in adjustable stops for coacting with fixed bumpe plates on the sieve frame.

Miscelfaneous.

Tank.-Richard A. L. Blondel, No. 60 Hudson Street, Boston, Mass. This invention covers an improvement in discharcing devices especialy influshing valve, when opened and released, will close slowly or be retarded in, its closing movement, with
various other novel features and combinations of parts.
anel reatures and combinat
Horse Detacher. - George W. Harat its rear end to the whiffetree support that the draught on the whifflerree will tend to hold it in normal position. while the whifferree may be turned
forcibly backward to reverse tts trace hooks and reforcibly backward to reverse to trace hooks and re-
lease the traces, whereby, in case of a runaway, the lease the traces, whereby, in case of a runaway, the
horse or team may be quickly released from the whifle-

Milk Cooler. - Frederick Stiles Burnet, Texas. This cooler consists of a main vessel
with its upper end open and its walls drawn or inclined, a water vessel being held on such main vesel, with space between, while an enveloping sheet is arranged space between, whine an enveloping shet is arranged
to be wet by the water and extended past the space
between the vesels keepng

Paper Box.-John H. Riedell, Brook Yn, N. Y. This is a knock-down box made of two separate parts adapted to be folded and fitted together to form a complete box, the parts of the box to be oled and oliped an an
Folding Target. - Charles O. McBride, Muscatine, Iowa. The target provided by this invention is preferably made of a soft, light wood, strengthened by battens, and is designed for parlor use, with darts or javelins, the target being adjustable for height and having legs w
wheu it is not in service.
Corrugated Structure. - John Mitchell, Anckland, New Zealand. This invention provides a peculiar construction and arrangement of corrugated sheets upon corrugated battens to provide a solid
support for the sheets to give them firmness and strength and lessen the liability of their spreading,

Brush Making Machine. - Charles . Hughes, Brookly, N. Y. Mis is a machine hergne on make a complete brain rom a single block or wooc is also formed the handle, the invention consisting of a reciprocating tool holder and a block holder held beneath it and mounted to turn in conjunction with the aroke of the reciprocating too holder
Sash Fastener.-Abraham C. Gandee, Racine, Ohio. This is a device by means of which t pper or lower sash can be raised or lowered to an esired position, and locked therein, or the upper sas lone can be conveniently raised or lowered, the device
being simple and durable in construction and very ef being sim
fective.
Combined Belt and Sash. - Adolph Gellenberg ecure it around the waist, and a fastening device each side, in combination with a sash of less length fastening devices to engage the fastening devices of the eit, the device to be worn in warm weather when the vest and suspenders are discarded, the sash
cealing the waistband of the pantaloons.
Roofing Fabric. - William H. H. Childs, Brooklyn, N. Y. This fabric consists of a upper and lower layer of paper or other material be other similar material, such material being unwoven and held in place by cords, ribbons, or other filament ous material, of a thickness nififormly equal to the entral layer
Bed Covering.-William T. Doremus, latbush, N. Y. This invention provides a bed cove having tubular parallel weighting pockets, in combinafillings of weighting material applied to the pockets hereby better protecting the occupant and making th overs less liable to displacement.
Sausage Stuffer. - William B. Allyn, Baldwin, Wis. This is a tying attachment designed to be readily and quickly applied to any skin may be held iu position to retain the filling without being tied, and when the skin has been completely filled, both ends of the sausage may be tied with oue
Combination Lock. - Isaac Livingston, Adolph Blum, August Wollen weber, Leopold
Weatheimer, and Harry Cohn, of New York City. This Weetheimer, and Harry Cohn, of New York City. This
is a keyless lock especially adapted for use with travelng bags, etc., and has a latch or keeper with a comcorresponding in contour with the operative knobs orresponding in concour with the operation
Store Service Railway. - Edward . Rorke, Brooklyn, N. Y. According to this inven nection with the dispatch track and return track, wiereby a carrier may be received from the dispatch without lifting the or switched to the return track without lifting
Hoisting Apparatus. - George H. Warren, West Superior, Mich. This is a device
designed to be expeditiously dropped from the shore or dock over a vessel's hatchway, and not be affected b the rise and fall of the tide, being especially adapted for use in removing merchandise and other articles fros lock or into a vehicle.
Baling Press. - James .A. Reeder, Corinth, Miss. This is a portable press for baling hay the press to the rear, where the compacted bale is ti and discharged, the invention providing mechani devices whereby the follower is forced rearwardly through the hay-receiving chamber into the baling
chamber, the bale being discharged through a down chamber, the bale being dial
wardly swinging rear door.
Elevator. - Charles J. Dudley Hobile, Ala. Combined with a screw shaft having right hand thread at one end and a left hand thread a he opposite end are pulleys or drums whose supports are shaft, with a driving gear arranged midway between the opposite pulley supports, the arrangement facilitating a compact disposition of the parts.
Operating Excavator Buckets.Frederick B. Barrows, Duluth, Minn. This invention bucket of a carriage provided with a tail carriage, bucket being held on a rope supported therefrom, and hoisting bucket specially designed to conveniently and automatically transfer coal, grain, and other article
Ega 'rester.-Frederick and Charles
Buehrig, Minier, Ill. This is a box with a cover having a series of openings to receive the eggs sidewise, a movable egg turner having openings corresponding
with the cover openinge, and a slight opening leading into the box, through which all of the egge may be viewed at once as they are simultaneously turned, tally device automatically registering the number eggs tested.
Binding Clip for Papers, etc. - Har lan H. Ballard, Pittsfield, Mass. This is a spring bindıng clip having no attached handles for opening it, but with levers, of a nippers-like construction, and by the use of which papers or documents thus held can be placed on book shelf like an ordinary book
Embroidered Flounced Fabric. Louis Loeb, Jr.. Rorschach, Switzerland. This is new article of manufacture, wherein one or more
flounces are formed with an embroidered free edge and may be produced without requiring the main piece of material to be longer or wider than the finished
founced fabric, while the flounces will be safe against

NEW BOOKS AND PUBLICATIONS
Aluminum. Its history, occurrence, properties, metallurgy, and applications,
including its alloys. By Joseph W. Carey Baird \& Co. Philadelphia. Pp. XXXi, 511 (494). Price $\$ 5$.
While this figures as the second edition of a well nnown work on aluminum already published and is due
o the same author, it is really, to a greatextent, a de book. It is greatly enlarged, and with a very full inde orms an admirable repertory of what is known to the present day about the metal. Numerous illustrations re used where necessary, and an excellent index closes e work. Whether much or hitle can be predich he future uses of aluminum, this work may, at least ion, and manipulation to the present day. The success attained by the previous much smaller edition of his work, an edition now exhausted, moved the anxiety of the public to know more about the "metal of the fature." Mr. Richards in bringing up to date his origial work, and his publishers in putting it into its presnt attractive shape, have undoubtedly ministered to subject in its many bearings, whether as regards pro duction in the metallurgical works or general uses in the mechanical arts.
Cawker's American Flour Mill and waukee Wis.: Riverside Printing Company.
This is a compilation by the well known editor of the United States Mrller and Milling Engineer, and is a wook likely to prove extremely valuable for ans who
wish to reach and communicate directly with those engaged in the American flour and grain trade.
Poor Richard's Almanac. G. P. Put
addition to the quaint sayings of Poor Richard In additio the prefaces proverbs of Poor Richard jamin Franklin, as originally printed in Poor Richard's
Almanacs, from 1733 to 1758, it contains a facsimile of the front page one of the quaint old almanace and a portrait of Benjamin Franklin "printer, Phila-
delphia, near the market."

Received.

Bella's Blue Boor. The story of an ugly woman.
By Marie Calen. Trasiled from the German by
Mrs. W. Wavis. Inlastrated. Worthington Co.
The Mortgage Foreclosed. A story of the farm.
By E. H. Thayer. Belford, Clarke Co. publishers.
SCIENTIFIC AMERICAN
BUILDING EDITION
JUNE NUMBER.-(NO. 56.)

TABLE OF CONTENTS.

Plate in colors of an elegant residence at Mont clair, N. J. Munn \& Co., architects, New York. Perspective view, also a plate showing the north Elegant colored photographic plate, with floor
plans, sheet of details, etc., of a cottage at Blythe plans, sheet of details, etc., of a cotta.
bourne, L. I. Estimated cost $\$ 3,200$.
3. Residence at Yonkers, N. Y. Perspective view and floor plans. D. \&
York. Cost, $\$ 10,950$.
A floor plans, etc. Cost about $\$ 12,000$
Perspective view and floor plans of a residence a
Holyoke, Mass. L. B. White, Holyoke, Mass. Holyoke, Mass. L. B. White, H
architect. Cost complete, $\$ 6,000$.
6. Sketch of two old Bristol houses
7. Sketch of hotel and Post Office, Dartmonth.

A casino erected at Springfield, Mass. Cost com-
plete $\$ 12,000$. Floor plan and perspective.
9. A church recently erected at Greenwich, Conn., at a cost of $\$ 13,000$ complete. J. C. Cady, architect, Now York. Ground plan and perspective eleva-
tion.
10. View of the entrance to the United States Trust A dwelling at Yonkers, N. Y. Cost complete Elegant residence at Stamford, Conn. W. R Floor plans and perspective.
13. View of the iron and wood gate in front of the entrance to the Press Pavilion at the recent Paris
14. Miscellaneous Contents: Fireproofing wooden floors.-" Peach bottom" slate.-The manufac-
ture of granite. - The lien law.--Combustible architecture.-Variety in Gothic architecture.New No. 9 double cylinder planer and smoother, illustrated.-A sliding Venetian blind, illustrat ed.-The Holmes spur feed siltting machine, illus-trated.-Get sound titles to your rea
Heating apparatus for a wagon factory.
The Scientific American Architects and Builders 25 cents. Forty large quarto pages, equal to about
25 two hundred ordinary book pages; forming, practically, a large and splendid Magazine of ArchitecTURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and
allied subjects. The Fallness,
The Fallness, Richness, Cheapness, and Convenience
of any Architectural publication in the world. Sold by all newsdealers.

〇usiness and ゆersomal.

The charge for Insertion under thes head is One Dollar a line jor each insertion: about eight words to a line. as early as Thursday morning to appearin next isue

For Sale-New and second hand iron-working maFor Sale-New and second hand iron-working ma-
hinery. Prom pt delivers. w. P. Davis, Rochester. N..Y. Tuerk water motors at 12 Cortlandt St., New York. Fruit Evaporators. Trescott Mfg. Co., Fairport, N. Y. Preses \& Dies. Ferracute Mach. Co., Bridgeton, N.J For best hoisting engine. J.S. Mundy, Newark, N. J. For steel castings of best quality, write the Buffalo suffalo, N. Y.
Belting.-A good lot of second hand belting for sale Best Ice and Refrigerating Machines made by David Boyle, Chicago, Ill. 155 machines in satisfuctory use Steam Hammere, Improved Hydraulic Jacks, and Tube Expanders. R. Dudkeon, 24 Columbia St., New York. Screw machines, milling machines, and drill presses. The Garvin Mach. Co., Laight and Canal Sts., New York. Safety Elevators, steam and belt power; quick and
sooth. The D. Frisbie Co., 112 Liberty St.. New York. "How to "How to Keep Boilers Clean." Send your address
for free 96 p. book. Jas C. Hotchkiss, 120 Liberty St., N. Y. For Sale-Complete set Power Machinery for making Packing Cases. Great bargain. East New York Shoe
Co.. Albany, N. y. Split Pulleys at low prices, and of eame strength and appearance as Whole Pulleys. Yocom
Works, Drinker St., Philadelphia, Pa.
Practical electrical lighting. By A. B. Holmes.
Fourth edition. 183 pakes. 89 illustrations. $\$ 1.00$. E. \& Fourth edition. 183 pages. 89 illustra
Smallest scientific book. Spons' tables and memo. randa for engineers. Tenth editlon. 140 page.
E. \& F. N. Spon, 12 Cortlandt St.. New York.
Guild \& Garrieon, Brooklyn, N. Y., manufacture pumps, acid blorvers, fliter press pumps, etc.
For low prices on Iron Pipe, Valves, Gates, Fittings, Iron and Brass Castings, and Plumbers' Supplies, write
A. \& W. S. Carr Co.,. 138 and 140 Centre St., New York. For the original Bogardus Universal Eccentric Mill, Foot and Power Presses, Drills, nears, etc., address J.
S. $\&$ G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. The Holly Manufacturing Co., of Lockport, N. Y., The Holly Manufacturing Co.. of Lockport, N. Y.,
will send their pamphlet, describing water works ma-
chinery and containing reports of tests, on application chinery, and containing reports of tests, on application. The best book for electricians and beginners in elec-
tricity is ". Experimental Science," by Geo. M. Hopkins tricity is "Experimental Science," by Geo. M. Hopkins
By mail, $\$ 4$; Munn \& Co., publishers, 361 Broadway, N. Y. Parties having inventions for sale, or wishing to have patented koods introduced or exhibited at the coming exposition, Boston, ad
gress St., Boston, Mass.
We are desirous of securing some specialty to manufacture in connection with our own machinery, having a
well equipped machine shop and the skill and experience to manufacture cheap, consistent with good work Send for new and complete catalogue of Scientific Co., 361 Broadway,

HINTS TO CORRESPONDENTS.

(2301) Pasadena asks how to crystallize small fruits of all kinds. A. The following process may meet your requirements. Make a sirup from
a pound of sugar and a half pint of water, stir a pound of sugar and a half pint of water, stir
until the sugar is dissolved, then boil quickly about three or four minutes. Try by dipping a little in cold water. If it forms a emall ball when rolled between the thumb and finger, it has attained the desired degree.
known as the "ball." Throw the fruit to be conserved a little at a time into this sirup, let it simmer for a moment, lift with a skimmer, draining free from all surup. Sprinkle sugar thickly over boards or tin
paus, place the fruit over it in a single layer, sprinkle paus, place the fruit over it in a single layer, sprinkle
over thickly with grannlated sugar and place in the over thickly with grannlated sugar and place in the oven or sun to dry. When dry, make a sirup as before, and just before it reaches the "ball " degree add the fruit, stir with a wooden spoon until it begins to grain
and sticks to the fruit. When cold, sift off the sugar and put out again to dry. When dry, place in boxes in layers between sheets of waxed paper. Keep in a cool,
(2302) J. M. A. writes : I made a large plunge battery described in Hopkins' "Experimental Science," and 1 used bichromate of soda for exciting
fluid, and the current it produced became so hot as to burn the wire and insulation. I then tried bichromate of potash, with no better results. Please tell m the cause of its getting hot and how I can remedy it.
I made the battery according to directions, and also I made the battery according to directions, and also
the solution. Does the size of wire have anything to do with it heating, if so let me know the kind to use A. Your trouble lies in your wire. It is too small. Use No. 12 or 14. The heating of the wire and burning of
the insulation indicates that your battery is a success.

INDEX OF INVENTIONS
 For which Letters Patent or th
 June 17, 1890,

AND EACH BEARING THAT DATE

deatend of list about copies of these patents.]

Addressing machine, Gerhardt \& Gould
Advertising catalogue. E. Iuckenheime Air ozonizing apparatus, J.
Air ship, C. G. E. Hennig...
rches for ceilings alarm
Arches for celinggs, staircases, etc., constructio
of tiled, R. Gustavino...
Auzer, F. I. Hoefle...
Automatic regulator, J. Kilishaw.
Axle boxes, die for forging, W. J. Parmele
Axle nut. carriage, T. A. Wheele
Axle, vehicle, W. H. Rogers
Baby jumper, D. C. Sheeley
Bas fller and holder, D. G. Stone.. Buling press, J. A. Reeder
Baling press, N. P. Slate.
Balink press, N. P.
Band cutter and feeder, c. Carlson
Barrel rack, Berry \& Wheeler.....
Basket. folding bottle, Schlereth \& Katzenberg...
Bath. See Needle spray and shower bath. Plunger, neede, spray, and shower bath. Battery. Se
Bearing, anti-friction, T. R. Ferrall.
Bed, sofa, R. Lehmann
Bee swarmer, shifter, Jackson
Binding clip for paper, etc., H. H. Ballard..
Blind, sliding window,
Blind stop, M. L. Hall.
Block. See Snatch block. Toy musical box.
Boat seat, J. J. O'Leary.......
Boiler. See Steam boiler. Wash boiler.
Boiler incrustation, means for preventing Bull.................. W. B.

Books, means for binding, J. Lendy
Boot or shoe heel, W. H. Melaney
Boot or shoe seams, staying, H. P.
Boot or shoe sole, w. H. Melane
Boring mill, J. J. Knowiton...
Boring tool holder, L. Prillwitz.........................
Bottle fllling machine. De Kinder \& Roemer
Bottle. mucilage, W. F. Litch
Bottle stopper, C.C. Haler...
Bottle stopper, H. W. Libbey.
Bottles, attachment for preventing the reflling

owl lining, removable and adjustable waterproo Box. See Puzzle bo
Box closure. G. W. Banker
Bracelet. J. R. Mathewson...
Braiding machine. H. Laufer
Brake. See Railwa
Brick, manufacturing. D. H.C
Wises, etc., machine for repressing, B. J.
Bridge, suspension, G. Lindenthal..
Brush and making the same. A. H. Wo
Bucket rope holder, well, F. Toomey..
Buckle. C. H. Farmer.................................
Burglar alarm. S. Broichgans
Burial casket, E. H. Saxton.
Burner. See Oil burner.
Butter, making, D. McGregor
Button. J. R. Smith..........
Button, Traub \& Peters...
Calking vessels, R. B.
Can. See Fruit can
ns, adjustable binding device for_milk, w. H
Cap or bonnet, D. Heidelberger...
Car brake mechanism, A. J.
Car coupling, A. B. Allen...
Car coupling, F. A. Canales.
Car coupling, Davis \& Lewis
Car coupling, A. B. McClave
Car coupling, S. . E. Pheiste
Car coupling, W. J. Walke
Car, dumping, W. A. Sharp
Car electric, L, PAgngt.
Car, electric, L. Paligst..
Car for convegance of ships on ship railwass, w.
Smith....
Car step, extension, W. P. Tracy.

llingworth.............
Carburetor, H. B. Maxim
arding machine stripping mechanism, J. Thom
Carpet stretcher, D. O'Del
Carpets, russ, mats, etc., manufacturing. R.
Carriage, H. Wadsworth
Carriage canopy support, child's, J. A. Anderson.
Carriage curtains, buttonhole shield and latc
for, J. M. Mast...............
Carriage top. folding, J. Quindry.
Cart, hand, w. A. Eddy.....................
Cartridge, F. M. Garland............
Case. See Ekg case.
Cash indicator and register, W. G. Latimer.
Casting sad irons, mould for, J. M. Davies........ 430,430
Chair. See Opera chair. Revolving and tilting
Chair and sleeper, J. W. White
Chair spring attachment, platform rocking, w. I
Bunter Bunker
Chlorine. apparatus for making. E. E.......
Cbromatrupes, mounting for, J. B. Colt.
430,143
430,119

\section*{| 430.461 |
| :--- |
| 430,181 |
 430.181

430,291}

\section*{

Decoy, S. Curlin..
Dental engines, slip joint and coupling for, D.
Coulson.
Derrick, M. S. Hildreth...
Diger. See Potato digge
 Electric meter, Oulton \& Edmondson.
Electric meter Electric meter, G. H. Wade.. Elevator. See Grain elevator
Elevator, c. J. Dudley....... Elevator car, J. E. Snevel Elevator valve controlling mechanism, L.
Hosea Embroidered flounced fabric, L. Lo Loeb, Jr Emery wheels and grindstones, dressing tool for,
T. Wrigley.............................
Engine. See Explosive engine. Gas engine.
Gasoline engine. Piston engine. Rotary engine. Rotary steam engine. Steam engine.
gine cut-off, compound, J. W. Eisenhuth..... Engine cut-off, compound, J. W. Elisen
Engraving machine, J. . Parmerlee............. Exhibiting rack for cloaks, etc., J. H. Eyles......
Explosive engine, double-acting, J. W. Eise
 huth....................................
Explosives, manufacture of, H. . Maxim.....
Explosives, recovering solvents from, H.
 Fabric. See Embroidered flounced fabric.
Fence link, I. N. Elliott et al....... Fence post, v. C. Huey....................................
Fences, machine for making wire and picket,
 Fischer
Firearm, H. F. Wheer
Firearm lock, G. W. McClintock..........................30,396,
Fire escape, A. A. Cameron....................

Fire escape, E. Rank.............
Fire escape ladder, L. J. Chase.,
Fodder binder, Inges \& Earnest.

furnace. Plumber's or
Steam generator furnace.
rurniture, convertible. E. E. Sell
Furniture, convertible. E. E. Sell....................
Game apparatust, detachable, A. Foster. W. Carl.....................
Gas burners, refractory compound for incan-
descent, J. E. Blomen Gas burners, $\begin{aligned} & \text { descent, . E. Blomen ... } \\ & \text { Gas engine, Barrett \& Daly }\end{aligned}$
Gas for gas engines, preparation of, \mathbf{W}. J J
Ritchey
Gas meter, w. N. Milisted.....
Gasoline engine, Barrett \& Daly
Gate, A. C. Baumwa
Gate, w. Chater...
Gate. J. Mason....
Gate, w. J. Shinn
Gate. J. W. Stone.
Generator. See Steam kenerato
Glass carrier, plate, R .
Gerit Glass, traveler for transporting, R. G. Guptill.
Gold, etc.. apparatus for the solution of, s. Emmens..
Gold saving device. C. Trafton
Grain elevator, F. Wyneten
Grain separator, J. H. Calkin
Grinding mill, H. C. Taylor........................
Guard. See Keghole guard. Telephone guard
Gun, automatic, , S. s. Maxim..........
Gun, automatic machine, H. S. MaxIm
Gun, automatic machine, H.
Gun. machine, F. Marland
Gun, magazine sprink alr;'A. J. Emla
Harness, J. C. Simpson.
Harness clip, A. Winter
Harness clip, A. Winter....
Harness hook, McDonough \& Gre
Harvester. cotton, P. J. Looni
Harvester. cotton, P. J. Loonie... . \quad H.
Hat brims, machine for shaping, L.
H. Host..
Hats, ornamenting, G. Yule
Hay rake. horse, J. L. \& J. Smith
Heater. See Hot water heater
Heating apparatus, steam, .
Heddle machine, F. Ulrich.
Hinge, H. J. Weileroth...
Hinge, gate, C. F. Darnell.
. 430,174
..
430,426

H
\mathbf{H}
\mathbf{H}
\mathbf{H}

.. 430,256
430,565 Hobbyhorse. L. R. . Powers Alexande
Hoeing machine Hoisting apparatus, G. H. Warren......................
Holder. See Boring tool holder. Bucket rope
holder. Ccin holder. Order holder. Paper holder. CCin holder. Order holder.
holder. Scarf holder. Sponge holder Hook. See Harness hook. Snap hook. Hook. See Harness hook. Snap Hot water heater, E . M. Arnold...............
House. See Dwelling house. Frame house. Hydrant, Bardo \& Ford
Hydrant, fre, w. T. Y. Schenck...
ice creeper, H. L. Page Ice creeper. H. L. Pake
Incrustation preventive, electric, w. B. Bull.....
Indicator. See Cash indicator. Pressure indi cator. Station indicator.
njector, . R. Willia
nkstand. E. S. Raff .
son
McMaster and making the same, miller
a
insulator, S. Oakma......
ron. See Sad iron.

Joint. See Furniture joint. Tubing joint.
Keyhole guard. G. A. Cavalil...................................
Key seat cutting machines, mandrel for. A.

Kn
Kn

Tiffany........................
Lamp, eentral draught, c. A. Evarts......
Lamp, electric arc, E. Thomson........
Lamp, er makic lanterns, J. B. Colt.....................
Lamp, incandescent, F. C. Rockwell.......400.437,

Lamp, regenerative gas. F. W. Clark
Lamp support, extension. C. Maschmeyer......
Lamps, electro-magnotic cut-out for electric,
Thouson \& Rice, Jr......................

Tobey...............................
Lantern, Rabenstein \& Re
Lantern, magic, J. B. Colt.
Lasting Jack, o. Martin
Lathe, I. Brown, Sr...
Leather softening machine, A..................
Levdrer mechanism, A. L. G. Gauttard.......
Lever mechanism, A. L. G.
Lifter. See Transom lifter.
iffing jack, L. . Crecelius.
Liquids, vessel for receeiving, F, E. Goldsmith.
Lock. See Yirearm lock. Nut lock. Till lock.
Lock, H. L. I.ink.........................
Log rolling machine. G. Mee....
Loom stop motion, J. D. Westga
430,311
430.512

30.183
30.340

Meat rack, C. A. Gloekler...................
Metal heating furnace, J. W. Parmelee.
Metals by electricity, melling or reducing, T. L. .
Meter. See Electric meter. Gas meter.
Milk cooler, w. W. Conder

$\underset{\text { miner's can }}{\text { mill }}$
Miner's candlestick, L. H. Sholder.................
Mouldings, machine for decorating circular, J.
Groble
Groble.....................
Motor. See Current motor.
Muffe furnace, J. B. Archer...
Music leaf turner, D. Schuyler.
Music leaf turner. D. Schuyler.....
Music stand and rack, C. s. Steve
Music stand and ract
Muzzle, H. Sherrill.

Nipple, nursing bottle, A. C. Eggers (r)......11,086, 11,08
Nut lock, A. F. Pritschau.....
Odometer, Slayton $\&$ Reinhold
Oil burner, injector, E. H. Thompson
Opera chair, S. W. Peregrine.................
Optometer. D. R. Pruden.
Order holder, J. F. Brown
Ordnance, apparatus for working, H. S. Maxim
Ordnance, recoil check for
Organ, reed, L. K. Fuller.
 Packing and lining fabrics, machine for making, R. H. Thompson.......................
Packing, stuffng box, Ensign We

Padlock, permutation, C. E. Peck.
Paint, water color. Hodges \& Tracy
Paper fllishing rolls, water box for, H. F. C.......
Paper holder and cutter, roll, J. E. State......
Paper pulp from tobacco, producing, H. Ende-
Paper slitter, H. E. Tidmarsh..
Paper slitter, H. E. Tidmarsh......................
Paper stock, apparatus for making, J. D. Tomp-

Pattern. See Drawers pattern.
Pencil sharpener, J. B. Bartlett
Phonogram blank, T. A. Edison
Phonograph. T. A. Edison.

........ 430.417
$430,274,430,570$

T. Ediso

Photogra phic print washer, J. F
Piano case attachment. J. J. Eli
Picko
Picker. See Waste picker.
Picture or other frames, support for, S. E. Con-
don...

gren...........
Piston, expansible, G. P. Fenne
Planter, corn. W.S. Walker.
Plow, S.
Plow, M. B. Heller
Plow, H. Reid...
Plow attachment
Plow, reversible, H. R. Burrows
Plow, reversible, H. R. Underhill.
Plow, sulky, Danil

430,543 \mathbf{P}
543 Plumber's or jeweler's furnace, Rein \& Straight.
bole and shaft for vehicles, adjustable, wilson \&
Hutching..203
430.116
430.330
Pressure ind:cator for steam engines, F. M. Clark 430,467
430,273Printing blocks, apparatus for producing, A. J.
Dejey...................................
Printing machine feedingPrint machine sheet delivery apparatus, C. B.Printing press, M. Gally.430.378
430,281Puller, See Stump puller.
Pump, w. s. Richardson.Pump, force, B. F. Kendail.
Punch and making the same,430,436
430.251
430,315Punch, paper, J. F. Brown............................$.430,244$
B. Prahar.. 430.35
430,50
Puzze, block, w. T. Altekruse........
Puzze bow,Pyromeier, e. B. Cooper........................... 430,
Pyroxyline compounds, manufacturing artices
rack.
Rail joint fastener, L. A vers........... 430
Railway and cable, cable, H. W. Libbey............. 430,
Railway brake. cable, C. s. Moss................ 430,
Railway, cable suburban, c. 4. Emery....430.188 to 430, 30,50,
430,232
430,140
430,180Railway conduit, cable, Brsson. Jr.. \& Pendle-
ton..430,109
Railway crossing, Hodskinson.......433.441
.430 .515
$8,430.580$Railway signal, automatic, J. K. K. Diffenderffer.. 430.567
Railway signal, electric, E. M. Bentley............ 430.263
Railway sleeper and tie, metal. J. Richardson.... 430,19Railway sleeper and tie, metal. J. Richardson....
Railway switch, street, P. P. B. Downing.........
430.118
Railway switch, street, Koehler \& RoskophRailway switch, street, Koehler \& Roskoph........ 430.188
Railway truss, o. C.Smith....................... 430,304Rake. See Hay rake. Horse rake.
Reamer, expanding, G. Amborn, Jr............... 430.105Reel. See Yarn reel.
Refrikerator car drain, A. A. Wood................ 430,599
Refrikerator, wagon, C. G. Schmidt.......... 430,150Register. See Cash register.
Regulator. See Automatic regulator. ElectricRevolving and tilting chair, J. Gilson 430,314
Rivets, die for upsetting tlanges on, C. H. Brown. 430,374Rivets, die for upsetting Hlanges on, C. H. Brown. 430,344
Road roller, steam, P, Grittn...................... 430,555
Roadway, P. Grimin (r)................... 11008Rock drill, T. B. Kerr.................................
Roller. See Road roller.L. White.L. White..Rooflng, 反able tile for, G. H. Babcock..............Roofng, hip tile for. G. H. Babcock
Roofing til............ 43
tile, G. H. Babcock430,364,Roofng tiles, series of. G. H. Babcock................ 430.362Roofng, valley tile for. G. H. Babcock............... 430,38 430.38Roots, ridge tile for, G. H. Babcick
Rupe socket, Cross \& Reagan...Rotary engine, L. Hausmann..
Rotary steam engineRuling machine, E. KnappSad iron, C. BorgSalt grainer, N. S. Beardslee.............................. 430,
Saw gummer,
Sawing machine, picket, J. Farmwald.............. 43
Scarf holder, H. V. Mañ-Tiechler............ 40,
Scroen, See
Screw cutting device. Westbrook \& Burns...........
Screv, rolled wood, C. D. Rogers.............
Seaming machine, sheet metal. J. A. Hensel.. 430,358
4332,236
430,124
430,475
430,135Section press, G. K. Hubbard........................
Seed distributing apparatus, Martin \& Corser....
Seed. machine for delinting cotton, Watkins \&
Separator
rator.Sewing machine trimmer. E. D. Ludlow............ 430,134
Shaft coupling, universal. L. N. Westover 430.597
Shaft gear, vehicle. C. E. Wnuck.............
Shaft support, vehicle, E. L. BuckinghamSheathing, corner tile for. . . H. H. Babcock 430.37
Shingle sa wing machine, F. Challoner........ 40.51Shoe knife, A. E. Johnson............................... 430.188
Siding strip, H. D. Kendall 430,188Siding strip, H. D. Kendall
Signal. See Railway signal.宽Nash..40,398
430,384
Snap hook, A. M. Hyde................40,518, 430,51!
Snatch block, T. R. Ferrall.........Stand. See Music stand. Switch signal stand.Station indicator. S. B. CraneSteam boiler, J. I. Kinsey....
Steam boiler,Steam engine, oscillating, c. c wage.Steam engine, oscillating. C. C. Wilson
Steam generator, T. L. Sturtevant....Steum trap. J. M. Stuart 430,47
430,594
Steel, recarbonizing. Spannagel \& Springorum ... 430,19Stopper. See Bottle stopper.Stove, P. Glass...............Stove. g. Gas, w. C. Perkins
Straw
Straw conveyer430,185
430.402Stump puller, P. Cuddington...
Switch.
Switch. See Electric switch. Railway switch.
Switch, signal stand, A. A. Strom.............syringe, reservoir, S. E. Cook.
Thale430,407
430,514
Taillor's table clamp, C. E. Erickson.
430.55i
Telegraph and gas lighting d
alarm, Crockett \& Allen.

Useful, Beautiful, and Cheap.
 Or low cost, should procure acomplete set of the ARCHI-
TECTS AND BULIDERS' EDITION of the SCIENTIFIC

 and to persons sabout to build for themsel eses then wiil
find the work suggestive and most useful. Thy zontain coiored patess every class of building, with specification aud approximate cost.
Eight bound volumes are now ready and may be obtained, by mali, direct frum the publishers or from any
newsdealer. Price, $\xi .00$ a
a volume. Sutched in paper covers. Subscription price, per annum, 82.50. Address $\underset{\text { MUNN }}{ }{ }^{\text {and }}$ remit CO., Publishers, 361 Broadway, New York. DIAMONDS and CARBON
 ON GAS ENGINES. -A VALUABLE

 The. First Prize of a Gatd Medal nawarided the

THE HAMMOND
TYPEWRITER CO. 447, 449 East 52d Street,
NEw $\mathbf{y o r k}, \mathbf{u}$.

ELECTRIC TRACTION ON TRAMWAY
 OTTO GAS ENGINES.

 сhicago, phLadelphis New York Agency, Voliney mo mason de co. PRICTION POLLEES CLLTTCHES and ELEVATORS
TYPEWRITERS.

FIRE FELT.

NOW READY.
5 xperimental 8 cience,

By GEO. M. Hopkins.
740 Pages. 680 Illustrations.
PRICE, by mail, postpaid, \$4.00
SEND for FREE ILLUSTRATED CIRCULAR and Table of Contents.

MUNN \& CO., Publishers,
 361 Broadway, New York.

ICE-HOUSE AND COLD ROOM.-BYR

WORKING MODELS \& LIGHT MACHINERY. INVENTIONS DEVELOPED. Send for model Circula

ICE-HOUSE ATD REFRIGERATOR.

ETEN THE BROWNIES MAKE Photograpps PHOTOGRAPHIC OUTFITS FOR AMATEURS,
 18 AQUEDUCT ST., ROCHESTER, N. Y.
Shepard's New $\$ 60$ Screw-Cutting Foot Lathe

PERFECTim NEWPAPER GIE

 HOW TO MAKE DYNAMO ELEGTRIC

ON MECHANICAL ENGINEEEING

NVESTELEw $= \pm=2=$ NoW

ICE and REFRIGERATING MACHINES
The Pictet Artificial Ice Company (Limited), Room 6, Coal \& Iron Exchange, New York.

Pïre

 lighemaminginifrovizat Meleman wostana CONTINUOUS./NEXPENSIVE,RELIABLE ALL IMPURE AND OFFENSIVE ODORSABSOLUTELY REMOVED. Needed in every home, school, hall, and office Each Vaporizer sold is charged for use. No
care except tio replenish once int two months at
expensen
 Sherman "King" Vaporizer Company, Chicopee Falls, Mass., Boston, New York
Philadelphia, or Chicago.

USEFUL BOOKS.

anufacturers, Agriculturists, Chemists, Kngineers, Me-
chanics, Builders, men of leisure, and protessiona men, of all classes. need good books in the line of
their respective callings. Our post office department permits the transmission of books through the mails at very small cost. A comprehensive catalogue of
useful books by different authors, on more than ffty different subjects, has recently been published for
free circulation at the office of this paper. Subjects classitted with names of author. Persons desiring a copy, have only to ask for it, and it will be mailed to them. Address,
MUNN \& CO.. 361 Broadwny, New York
$M \frac{\text { ARCO A. FONSECA \& CO. Gene ral Com- }}{\text { Bogota, Republic of ColombinssionA\&ents }}$

BARREL
 BICYCLES oive

FOR SALE. Foniv Yauntive Patannai
Wanted
THE BEST LIME KIN KNOWN
The Scientific American PUBLICATIONS FOR 1890.
Sthe prices of the diferent puntications in the Unitos
The Scientittc American (weekly one year
The Scientittc American Supplement $\quad \$ 3.00$

 . 2.5 The Scerntitfe American and Supplement, . $\quad 8.0$ ers tidition. 5.0 The Scientitic American. Suppiement, and Archi- 9.00
tects and Builders Edition. Proportionate Rates for Six Months
This includes tostage, which we pay. Remit press muney order, or draft to order of of posta
MUN $\$$ CO.. $\mathbf{3 6 1}$ Broadway, New Yorts.

Əかうertisements．

Victor Bicycles！

For pleasure，business．recrea－
tion，and for anything you
could use a bicycle for．
VICTOORS A RE BEST VICTORS ARE BEST
Send for catalogue． Overman Wheel CO．，Makers

THE COP YING PAD．－HOW TO MAKE how to preparet he gelatine pad，a rd also the aniiine in
by which the cop ies are made，ho wo topply the writte 43x．Price 10 cents．For sale at this offlce and by all
newsdealers in all parts of the country．

POPE MFG．CO
 12 Warren St．，NEW YORE Tyewiriitent Catalogue eree．Address Typewriter Department，
AFG．CO．，Boston，New York，Chicako．

NEW KODAKS

THE EASTMAN COMPANY，
$\frac{\text { Send for Catalogue．} \quad \text { RUCHESTER，N．Y．}}{\text { THE PHONOGRA PH．－A DETAILED }}$

PATENTS！

 preparution of applicationings，speciacations，and the
prosection in the United
States，Canada．and toreign Countries．Messrs．Nunn $\&$
 reasonampieterms． pree of charke，on application，con－
tainink full information about Patents and how to pro－

 MUNN a CO．，Solicitors or Patente，

$\$ 85$ Lovell Diamond Safety $\$ 85$

 Strictly high grade in every particular．No better machine made at any price． JOHN P．LOVELL ARMS CO． 147 Washington Street，BOSTON，MASS

IDEAL MUSICAL BOX
 JACOT \＆SON，

The MOTOR of 19th CENTURK
 wer．For circulars，etc．，address
Charter Gas Engin Co．
Stuplicty，Sately．P．O．Box 148．Aterling，III．
 SHAPING SHEET METAL，－DESCRIP－

FI＿Wー J〇FINS

Asbestos Sectional Pipe Covering

A Non－Conducting Covering for Steam and Hot Water Pipes，etc A．STOEStO READILY ATTACHED OR REMOVED BY ANY ONE

OStOS BOiler OOVOMings．
IE．VV．Johne MIanufacturing Company，
H．W．Johns＇Asbestos Millboard，Shearhings，Building
87 Maiden Lane New York．CHICAGO．PHILADELPHIA．LONDON．

95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March 1877，No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in fringes the right secured to this Company
by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for such
unlawful use．and all the consequences thereof，and liable to suit therefor．

ALUMINUM．－NESCRIPTION OF THE

After being on the Market Five Years The＂ACME＂sill Leas！
 on ROCHESTER MACHINE TOOL WORLS，B＇OWD＇s Race，ROCEESTER，N．Y

DIIS ELEVATORS

THE STANDARD OF THE WORLD For all kinds of PASSENGER nind FREIGHT OTIS BROTHERS \＆CO．

GriAVESELEVATORS．

Dry air refrigerating machine．

MIREROPE

Address JOHN A．ROBBLING＇S SONS．Manufactur ers，Trenton，N．A．
Whapes and
Send for circular．

エエエワ

§ricntific American

The Most Popalar Scientific Paper in the World． oniy 83.00 a Year，including Postage．Weekly．
This widely circulated and splendidy mustrated paper is pub isbed weekly．Every number contains six－
teen pages of useful information and a large number of oripinal engravings of new inventions and discoveries，
representing Engineering Works，steam unchinery， representing Engineering Works，Steam Machinery，
New Inventions．Novelties in Mechantes，Manufactures， New Inventions．Novelties in Mechanics，Manufactures，
Chemistry，Electricity，Te egraphy，Pbotography，Archi－
tecture，Agriculture Horticulture，Nitural Bistory，etc． Complete List of Patents each week． Terms of Subbcription．－One copy of the Scien－
TIFIC ANERICAN will be sent for one postage prepaid．to any subscriber in the United States． Canada or Mexico，on receipt of three dolling by the
publisbers；six montts，\＄1．50；three months，$\$ 1.00$ ． Clubr．－－Special rates for several names，and to Post Masters．Write for particulars．
The safest way to remit is by Postal Order．Draft，o Express Money Order．Money carefully pliced inside of envelopes，securely gealed，and correctly addressed，
seldom goes astray，but is at the sender＇s risk．Ad seldom goes astray，but is at the sender＇s risk．Ad－
dress all letters and make all orders，drafts，etc．，pay－ able to MIUINIV \＆CO．， 361 Broadway，New York． TIETI
Scientific American Supplement．
This is a separate and distinct publication from
THK SCIENTIFIC AMERICAN，but is unitorm therewith in size，every number containing sixteen large pages full of engravings，many of which are taken from foreign papers，and accompanied with translated descriptions．
The Sctavtific American Supplemicnt is published weekil，nad includes a very wide range of contents．It presents the most recent papers by eminent writers in
all the principal departments of science and the Useful Arts，embracing Biology，Geclogy，Mineralogy，
Natural History Georraphy，A rchæology．Astronomy． Nemistry，Electricity，Light．Heat，Mechanical Engi－ neering．Steam and Railway Engineering，Mining Ship Building，Marine Engineering，Photogriphy
Tecnnology，Manufacturing Industries，Sanitary En－ gineering，Agriculture，Horticulture，Domestic Econo gineering，Agriculture，Horticulture，Domestic Econo－
my，Biograolls，Medicine，etc．A vast amunnt of fresh and valuable information obtainable in no other pub incation．
The most important Enjineering Works，Mechanioms． and described in the SUPPI．Eме．т． Price for the ST＇PPIEMENT for the United States and Canada． 45.00 a year，or one copy of the SCIENTIFIC AM－
EIICAN and one copy of the SUPPLEM LENT，both mailed ELICAN and one copy of the Supplem innt，both maile
tor one year for $\$ 7.00$ ．Single copies 10 cents．Address and remit by postal order，express money order，or check．
MUNN \＆Co．， $\mathbf{3 6 1}$ Broadway，N．Y．． MUNN \＆Co．， 361 Br Br
Publishers ScIentific AmERICAN．

Building Edition．
The Scientific American Architects＇and
Builders＇Edition is issued monthly．$\$ 2.50$ a year． Single copies， 25 cents．Forty large quarto pages，equal to about two hundred ordinary book pages；forming a
large and splendid Magazine of A rchitecture，rich－ large and splendid Magazine of A rchit ecture，rich－
is adorned with elegant plates in colors．and with other the engravings；illustrating the most interesting ex－
amples of modern Architectural Construction and allied subjects．
A special feature is the presentation in each number of a variety of the latest and best plans for private resi－
dences，eity ard country，including those of very mod－
erate erate cost as well as the more expensive．Drawings in
perspective and in color are given，together with full Plans，Specifications，Sheets of Details，Estimates，etc．
The elegance and cheapness of this inagniflcent work have won for it the Largest Circulation of any
Architecural publication in the world．Sold by all
newsdealera． newsdealers． 82.50 a year．Remit to

MUNN \＆CO．，Publishers， 361 Broadway，New York．
PRINTING INKS：

[^0]: *In the performance in question,

