80ME THINGS IN WIRE.

There is scarcely a limit to the number of useful and ornamental things that can be made from wire. Two examples are shown in the engravings, Figs. 1 and 2 representing respectively front and edge views of a newspaper and magazine holder formed of a wooden back and wire scrolls; Fig. 3 showing a small wire stand or card receiver baving a zylonite top.
The scrolls of the newspaper holder are formed of three-sixteenths inch square brass wire; the several pieces being bent in the form shown and held in place by clips of the same material soft-soldered by means of a blowpipe. The overlapping portions of the scrolls are also soft-soldered. The lower part of each main scroll is held by a strong staple passing over the wire of the scroll and through the cleat and backboard and clinched on the back of the board. The three wires at the center of each scroll are prolonged below the cleat, as shown, to form a stop for limiting the swing of the scroll.
If care is taken in soldering the clips, the brasswork will require little preparation for lacquering. A stiff brush charged with finely powdered pumice wet with water and applied vigorously to the work will quickly
small as to stand upon a table, or it may be made of the usual table height.

Action of the Soll on Pathogenic Germa.
Pathogenic gerins evidently exist in the soil. The bacilli of tetanus, typhus, and cholera have been ob served, and it is probable that the bacillus of tnbercu losis, the pneumo-coccus, will be found.
The superficial strata of the earth are extremely rich in pathogenic germs. At a certain depth there is a limit beyond which the number of germs rapidly diminishes, until they cease altogether.
In the deep strata of the bacilliferous zone, patho genic species do not exist. Grancher and Deschamps have observed the arrest of the typhus bacillus at a depth of 50 centimeters. In the cultivated superficial strata there are fewer micrococci than bacilli. The bacilli exist in the soil chiefiy as spores. Under this form they best resist destructive agents, and may remain latent for years, retaining their virulence.
It is probable that the pathogenic bacilli germinate in the soil.
The cholera bacilli form numerous colonies at a depth
The cholera bacilli form numerous colonies at a depth
epidemics that follow the turning up of the ground Pathogenic germs leave the earth in many ways to attack men and animals. The soil which adheres to the body, to the feet of animals, and that which is carried by insects disseminates pathogenic germs. Currents of air transport superficial dust, and so prop agate the spores which resist exsiccation. Water also carries germs.
Ordinarily, subterranean waters are on a level with the bacteriological zone. Sometimes this zone is ex posed by fissures or by openings made in the earth The walls of a well are a prolongation of the superti cies, and are favorable to the life of the germs.-The Sanitary News.

```
The Panama Canal Again.
```

The report of the Commission of Engineers to the liquidator of the Panama Canal threw some light on the trues situation as far as the condition of the work done and to be done on the great ditch is concerned, and now we are likely to have another inquiry which prowises to be equally interesting and instructive. The unfortunate shareholders in De Lesseps' enter prise have petitioned the French Chamber, praying

Fig. 1.-NEWSPAPER HOLDER.

Fig. 2.-EDGE VIEW OF NEWSPAPER HOLDER.

Fig. 3.-WIRE STAND OR CARD RECEIVER.
from April to June, at a depth of 2 meters there is no developinent, while at a depth of 1.50 meters the bacillus vegetates. At least 2 per cent of humidity is necessary for the development of the germs. Soil rich in organic material is most favorable to this development
Causes of death of the pathogenic germs exist in the soil. The principal cause is exsiccation. Koch and Duclaux have demonstrated that this is especially hurtful to the micrococci, and here, according to Koch, is the explanation of the fact that micrococci are relatively rare on the superficies of the soil. The cholera bacillus dies rapidly under exsiccations. Netter fixes three weeks as the extreme limit at which the exsic cated pneumo-coccus preserves its virulence.
The two most potent causes of destruction which the microbes encounter are the saprophytic bacilli and solar light.
The saprophytic bacilli are in continual strife with the pathogenic microbes, and have generally the advantage. The bacillus of tetanus is exceptional, and may develop favorably in the presence of other species. Solar light is injurious to very many bacilli. According to Duclaux, it is the most universal means of sanitation, and the most economical and potent to which public or private hygiene can have recourse.
The turning up of the soil liberates pathogenic germs,
but when the soil is not disturbed for a long time, a colossal germination frequently goes on. Exhumation
frees the bacteria long latent in the soil. Hence the
that the liquidator of the defunct canal company be required to make an exact statement of the expenditure of the money confided to M. De Lesseps and his co-directors, showing how much was spent on actual work at the Isthmus, with prices of the respective contracts, and how wuch was frittered away in secret service, home commissions, press subsidy, etc.
The petition suggests that, us the shareholders were practically induced to part with their money upon false representations, the amount of money subscribed being wore than double that stated by M. De Lesseps to be sufficient for the completion of the work, the government should, through the Minister of Public Justice, recover for the shareholders, as in the case of the Comptoir d'Escompte, an indemnification from the directors of the canal company. The committee to whom the petition was refersed has in its turn admitted the principle on which it is based, and has turned it over to the Minister of Justice to take action upon if he approves, so that, judging from the impartial investigation of thes courts into both the Comptoir d'Escompte and the Societe des Metaux scandals, the Engineering and Mining Journal thinks a thorough investigation will now be made.

A REDWOOD tree, 90 ft . in circumference and 33 ft . in diameter, is being cut for the Chicago exhibition. The section to be sent to Chicago will be 9 ft . in height and 60 ft . in circumference, and will weigh $65,000 \mathrm{lb}$. The tree is taken from the forests of Tulare County.

California Asphaltum.

Asphaltum is mined to a considerable extent in Cali ornia, but the annual production is quite irregular, being governed by the local dernand. When a great deal of iron pipe is being laid, large quantities of the substance are used in coating it. Asphaltum is found in the counties of San Luis Obispo, Santa Clara, Ventura, and Santa Barbara. Between 2,000 and 3,000 tons a year are shipped from the deposits.
The mines of the Ventura Asphalt Co., in the Canyon Diablo, Rancho San Miguelito, have come into prominence since 1888, when they were discovered. The material is found at or near the surface. About 1,800 tons have been so far shipped from this deposit. More or less prospecting work has been done, but now large cuts or tunnels are being run into the deposit. At the point now being worked the elevation above sea level is 1,300 feet, but frequent fossils of shells, sharke' teeth etc., arc found, showing that the mass came up from the ocean.
The vein or bed crops out at many points in the shape of fingers or rounded masses connecting with the main body, the width and length of which are unknown, but upon which breasts of 45×16 feet have been worked.
The quality of this asphaltum is unique, possessing as it does great toughness and hardness, and a larger amount of fixed bitumen than other known deposits. The percentage of fixed bitumen is $\mathbf{2 4} \mathbf{4 0}$. It fluses readily in oils, coal tar, and by hydrocarbons, and may be made permanently of the hardness of stone or the pliability of India rubber, according to kind and quan tity of flux (solvent) emiployed and the manner and time of melting, etc.
It has been successfully employed in street paring, and is found not to soften by heat or crack by frost It is in use for this purpose in eoverai cities in California, Utah, Washington, British Columbia, Mexico Guatewala. Sandwich Islands, and Australia. Fo cementing masonry it has been put to use in San Fran cisco, Santa Barbara County, and other places. The Southern Paciflc Co. built a piece of sea wall along the seashore, Ventura County, which was built up of round cobbles cemented together by this asphalt. Two years trial shows no indications of the wall being injured.
A peculiarity of the Ventura County asphalt is that it is elastic. The Santa Ana Water Co. used it for plastoring a reservoir, having first laid up a wall of cobblestones on puddle and then plastering this with hot asphalt. In this opeia reservoir no change in the material is seen ; even in places where the wall settled and cracked, the coating stretched and bent, remain ing perfect and sustaining the water pressure. A pile coated with this asphalt was driven at Goat Island without destroying the coating. In doing this, the weight of 3,000 pounds was dropped 22 feet on the pile The material can be used for coating iron, planks, pipes, etc. Inquiries for the substance from the Eastern States, England, France, Australia, and Centra Ams promise an important shipping buse found.-Min. and Sci. Press.

The Thunder Storms.

It is probably idle to tell people that there is a thou sand times the danger in the sewer pipes that there is in the thunder clouds, but it is true all the same. The deaths by lightning are few indeed. Who of the readers of this paragraph, says the Hartford Courant ever lost a friend that way? Who of them hasn't lost a score of friends by the less brilliant and less noisy destruction that comes up out of the drains? The trouble with the lightning, or the trouble that it gives the people, is in its indescribable suddenness and its abso lute uncertainty. You know neither when it is coming nor where it is going, all you feel certain about is that every storm is pretty sure to leave a number of catastrophes to mark its course. The caprice of the light ning defies the explanations of science, and there is no predicting beyond a few generalities. This much it does seem safe to repert, even in a lively lightning multiplicity of wires, has tended to fewer fat with the of lightning in cities.
In the storm a week or more ago in Hartford, a bolt burst near the Courant building, which shivered a few chimneys hereabout, but evidently lost most of its energy in dancing over telephone and telegraph wires. Moreover, a great deal of electricity undoubtedly works off quietly by such avenues and by lightning rods without a manifest disturbance. But all in all, it is a sub ject and an agency that people know comparatively little about. Our thunder storms come majestically along, the lightning plays about in the clouds, and now and then a bolt goes down to the ground or up from the ground to the clouds. But of ten there are equally evere electric storms when there are no clouds, and when the disturbance is in the earth itself. The telegraph and telephone are thrown into confusion, while the "spectator" sees nothing and knows nothing of what is going on, though he may feel the effects of the current in his mental condition without knowing its cause.

The last number of the Pall Mall Budget received at this office describes as follows an invention recently patented in England, by Mr. Molloy, a member of Parliament, for separating gold from the ore by electricity in connection with mercury.
Mercury, of course, is man's greatest ally in the work of getting gold out of ore. Its affinity for the preciou metal has been known and used for a thousand years. Having crushed your ore to powder, a simple process in which the "gravitation stamp" is only the stone breaker's hammer of the roadside multiplied bs the power of machinery, you pass this powder by means of a shallow flow of water over copper plater faced with the compelling mercury. Each minute partislc of gold which is thus brought in contact with the mercury is absorbed by it, and goes to form an amalgam of mer cury and gold. Then all you have to do is to scrape your amalgam off the plates, put it into a crucible, and apply sufficient heat. Away goes the mercury in the form of a vapor, which subsequently regains its origi nal form and lives to fight another day. What you are left with in the retert is pure gold. There are however, two difficulties, the familiar bugbears of every mining community.

1. The difficulty of bringing every particle of gold into contact. Th mercury does not attract the gold as a magnet would iron. If the particles of gold come and torich it, it gobbles them up, but it declines to go running after them. Now, if you don't crush fine enough, many of the particles will carry a speck of gold within a shell of ore. In that case the mercury cannot crack the nut, and it flows away, kernel and all into the "tailings." If, on the other hand, you crush too flne, you get " float gold," that is, particles so tiny that they are carried on the top of the water without tonching the mercury at all. But even if this difficult be overcome, and contact with the mercury secured

ou have a second to face.

2. The demoralization of the mercury itself from contact with the ore. There are certain "refractory" ores which contain properties inimical to mercury (such for instance as arsenic, iron oxide, sulphur, antimony, or zinc), under the influence of which the mercur oxidizes. It "sickens," as the miner puts it, an "flours," forming into a sort of scum on the surface which interposes between the "quick" mercury and the gold with which it ought to be in contact, and which also keeps flaking off and running to wast with the water. In this way not only is there a great loss of gold, but there is a loss of mercury, too, which is not the least part of the miner's trouble, seeing that it is a most expensive metal
On these two difficulties, in many cases, depends the question whether a gold mining enterprise does or doe not pay. It is clear, then, that to dispose of them for ver would mean sumething like a happy revolution a the conditions of the industry. And that, no less, is Mr. Molloy's ambition. What he claims for his in vention is shortly this, that it keeps the mercury ab solutely "quick," and insures the absolute contact with it of every particle of gold. The point at which Mr. Molloy steps in is after the crushing of the ore. His nvention is a substitute, not for the "stamps," but for he "plates." As, however, for his purpose, the finer the ore is crushed the better, he prefers a crushing apcular box, with the double action of a carriage whee when the carriage is both moving and turning round. That, however, is nothing to do with his invention, which I will now describe.
Reduced to its simplest elements, the machine is an ron disk spinning in a shallow iron saucerful of mercury, on the surface of which the disk floats. In the widdle of the disk is a hopper, through which the flow of water and crushed ore descends upon the mercury. There the centrifugal force due to the rotation of the disk drives it from the center to the rim, pressing it down upon the surface of the mercury all the time, and insuring that every particle of gold shall be absorbed. The residue is driven to the edge of the saucer, and there, freed from the pressure of the disk, it continually wells up, overflows, and runs away as "tailings." All you have got to do, then, is to crush as fine as possible to begin with.
The bugbear of "float gold " loses its terrors. How ver light the particles may be, they are spread, and queezed, and ecrubbed, and radiated over the surface of the mercury between it and the revolving disk which loats upon it. So much for difficulty No. 1. As for No. 2, Mr. Molloy appeals to the powers of chemistry and electricity to rescue him from that. He cannot prevent the hostile elements in "refractory" ore from coming in contact with his mercury, nor can he deprive them of their "sickening" influence. But he can prevent the mercury from oxidizing under that influence by keeping it constantly charged with a supply of nascent hydrogen which has absolute power to cure to counteract, and to prevent its oxidation. Nothing easier. In permanent contact with the mercury he places a solution of certain salts. This solution is connected with the positive pole of a battery, the negative pole of which is connected with the meroury.

Under the influence of the electrie current the solu ion is being constantly decomposed, sending a con stant supply of oxygen into the air and a constan supply of hydrogen into the mercury. This being all bubble with nascent hydrogen never gets a chance of sickening," but is always kept "quick" and fit for work. This electrical process Mr. Molloy manages in the center of his gyrating disk, the solution being contained in a sort of little ebonite moat within the hopper. One horse power suffices to drive both the machine and the dynamos required for the electrical process, and it can put through ten tons in a day. The salts required are " dirt cheap," and the mercury prac tically lasts for ever, and the whole apparatus weigh ouly five hundred weight.

Rumination in Man

"By rumination, or 'chewing thc cud,' we designate condition in which the food raturns, without nausea in small portions, from th stomach, through the cosophagus into the mouth, some time after meals here it is chewed anew and swallowed.
"Rumination belongs to the normal physiological processes of most herbivora, and forms the mos marked characteristic of the whole class of mammal which we call 'ruminants.'
"Here the rumination is a most appropriate arrangement. The herbivorous animals are obliged to partake great quantities of food, as the nourishing value of the grasses is relatively a small one. On the pasture they must make use of their time for gathering and swallowin:; the grass. Afterward, when they have nore time and leisure, they reduce the food to smalle particles and mingle the same with saliva, by the act of rumir:ation.
"In view of this circumstance the stomach of ruminating ...imals differs in construction from that of other animal classes. It consists of four compartments : Paunch, or rumen, honeycomb bag, or bonnet, many plies, or psalter, and reed, or rennet. The first two serve more or less 5.j reservoirs, whereas the two latter contain the glandular elements for digestion.
'At the first act of swallowing, the food materials enter the rumen and the bonnct, whereas after chewing the cud the food passes directly into the psalter and rennet.

Chewing of the cud, which is so very important and appropriate for the whole c!ass of ruminants, occurs, though quite rarely, in man, and is designated then as rumination or merycism
"For man rumination is unnecessary, and more or less hiadrance. One can hardly define rumination as a disease, for the bodily functions are in no way harmed by that process, but as an abnormal, anomalous con dition, which must be socially an uncomfortable and disagreeable burden to its owner."
The above is extracted from a paper read before the German Medical Societ y of \mathbf{N} cw York by Max Einhorn, M.D. The learned doctor described a number of cases of rumination in man, which had come under his knowledge, and he quotes from a large number of authorities on the subject, dating back to the year 1618.

Rumination, as treated in Dr. Einhorn's lecture, is very interesting, and appears in full in the Medica $\bar{\varepsilon}$ Register of May 17.

Fictitious Dividends.

Were the law in France in relation to the payment of fictitious dividends in force in this country, the Ruilway Review thinks, the social status of our State prisons would be considerablv elevated by the influx of a large number of now reputed respectablc citizens. It was only recently that tl : head uf n large company in France, together with his other directors, were sentenced to a severe flne and term of imprisonment for the offense of declaring a fictitious dividend. France is evidently behind the times, or else we are. The practice of declaring and paying dividends with borrowed money has become so common in this country as to attract no more than passing notice, and it is to be feared that were the French law in force, very many stocks which are now sustained by a process of that kind, in order that present holders may unload on favorable terms, would soon seek their natural level, although their promoters might at the same time be forced to take up a temporary residence at some public institution at the expense of the State.

snut ror Colds.

Dr. C. H. Stowell, of Washington, recommends the ollowing in place of solution of cocaine Sodii bicarb.
Magnesitit
Menthol.
Cocaine hydr
Sacch. lactis.
M. Sig. Usech. lactis snof

The most marked relief, says the Chemist and Druggist, will follow the use of this powder, and a few ap plications will do much to abort the catarrhal attack. Its effects are immediate, highly agreeable to the patient, and continuous for a number of hours.

