AN IMPROVED VENTILATOR FOR RAILWAY CARS. The illustration shows a device for attachment to car windows, whereby air may be allowed to enter from eitherside without creating a draught, and dust and.cinders will be effectually excluded. It has been patented by Mr. Robert E. Burke, of Phillipsburg, N. J. Fig. 2 is an inside view of the device applied to the lower rail of the window frame, Fig. 3 showing one of the shutters open, and Fig. 1 being a horizontal sectional view. The ventilators are preferably located in the bottom rail of the window frame, side recesses separated by a central rib being formed in the outer face of the rail, and a shutter being hinged to the outer end of each recess. In each recess are openings communicating with the interior of the car, and in the sash rail near the shutter hinge is a recess covered by

burke's ventilator for railway cars.

a plate having a horizontal and a vertical slot, in which operate a pin and a latch. The pin passes at anincline into the hinged end of the shutter from the rear so that the force applied in opening the shutter will be exerted in the line of its direction of movement. When the device is applied to railway cars, the shutter at the forward side of the window only is opened, the cinders, dust, etc., being then deflected from the open ing. This device can be readily attached to a car after it has been built, and can be conveniently manipulated from the inside without raising the window. It is also adapted for attachment to the windows of dwelling houses, etc.

AN ANVIL ATTACHMENT

The invention illustrated herewith provides means whereby metal may be quickly and easily bent and cut off upon the anvil, and forms the subject of a patent issued to Mr. Charles M. King, of Downieville, Cal Figs. 3 and 4 are side and end views of an anvil having such an attachment. A U-shaped lever having a treadle at one side is pivoted to the sides of the anvil

King's anvil attachment.

block in a cut-away portion near its base, a chain from this lever extending upward to a grooved disk on the end of an arm pivoted in a bracket. Fig. 1 shows the pivot end of this arm, and Fig. 2 the manner in which it is held and pivoted to the anvil block. The arm has at its free end a rectangular-shaped grip large enough to clasp the end of the anvil and admit a fair sized strip or bar of metal between it and the face of the anvil, and is capable of vertical movement in slots in slide flanges of the bracket in which it is pivoted. Springs at the side of the bracket hold the grip above the face of the anvil, to allow room for the insertion of the metal, until the treadle is depressed. When the foot is placed upon the treadle, the arm is raised to bring the grip into position above the face of the anvil, and by further
pressure upon the treadle the grip is brought firmly down upon any metal which may be between it and the anvil, or, if there is no metal there, the grip may be brought down to a solid bearing upon the anvil, so that the triangular upper face of the grip may be used to cut the metal upon. When the grip is not in use for either of these purposes, its arm is tipped down out of the way, at the end of the anvil block.

Brittle Bodies.

Under the head, "What are brittle bodies?" Prof Frederick Kick recently communicated the preliminary results of some very interesting experiments in Dingl. Polytech. Journal, 274, 405. He starts with t wo theses -(1) Those bodies of substances are brittle which, in order to become ductile or plastic, must be subjected to a high pressure, acting uniformly from all directions (2) the hardness of a substance may be determined with numerical accuracy by means of its shearing stress if every bending and every fluxion of the material particles be excluded. To substantiate the first thesis, the following experiments were made with pieces of gypsum, steatite, rock salt, and calcite, all of which are, under ordinary conditions, very brittle. The test materials were cut and ground into prismatic shape. A suitable piece of ordinary iron gas pipe was closed a one end with a well-fitting plug, and filled with molten shellac, avoiding carefully any formation of bubbles Into this were immersed the test prisms, which had previously been coated with shellac solution, and afte filling up the remaining space with shellac, the top wa closed by a second plug. The pipe was allowed to cool slowly for several hours, and then bent into U-shape In dilute nitric acid the iron pipe was dissolved, leav ing the shellac core unaffected. This was dissolved in alcohol, leaving the bent prism of rock salt, steatite etc., in perfectly coherent shape. The softer the en veloping material, the better the results. The author constructed then a simple but effective apparatus, in which oil was the enveloping medium instead of shellac and succeeded in altering the shape of the most brittle substances without affecting transparency or coherence In regard to the second thesis, the author's experi ments are yet few in number. It seems true that th hardness and shearing stress are directly proportional but more experiments are necessary to establish th thesis as a law of nature. Shellac and tin are sub stances of widely differing nature and composition Their hardness, however, is equal, and Professor Kick finds for both the same shearing stress, i. e., 2.6 kilo grammes to the square centimeter.

AN IMPROVED ADJUSTABLE LADDER.

A ladder which may be conveniently adjusted to the inequalities of the ground or other support, and which may be compactly and readily folded when not in use is represented in the accompanying illustration, and has been patented by Mr. Pierre F. M. Burrows. The body of the ladder has four standards arranged in pairs to form the sides, and the front and rear stand ards of each side are filled in at their bottom ends by a block, rigidly attached to the rear standard and adapted to slide in a longitudinal groove in the front standard. The steps and the front and rear standards are held in position by bearing rods attached to the standards by a bolt or screw passed through eyes in the ends of the rods. The under surface of the steps have a transverse groove near each end adapted to receive the bearing rods, to which they are held by staples, and on the under side of the upper
step is a longitudinal attached brace. The steps being thus pivotally attached to the bearing rods, the standards and steps may be readily folded close together, and when the ladder is set up the pivoted steps and rods give adjusting movements to the standards. The back stays or braces are each com posed of two parallel and spaced strips, the limbs being made to interlock or cross each other, and each limb having near the top an adjusting stop, the stops being fixtures adjustable by thumb nuts according to the surface of the ground. The upper ends of the limbs are connected to the rear standards by a swivel or universal joint, and he stays are limited in their movement by a length of chain connecting them with the standards. When the adder is to be used, it is set up per pendicularly to be opened out from its closed position, and the back stays spread from the bottom as far as al lowed by the stops, the latter being adjusted accordingly when the ground

BURROWS' FOLDING ADJUSTABLE LADDER. is rough. When such adjustment ha been properly effected, the ladder is designed to be lime, 20 ; cream of tartar, 20 ; borax, 20 ; red oxide of more safe and rigid, the greater the weight of the person ascending it and the higher the ladder is mounted
For further information relative to this invention address Mr. P. F. M. Burrows, No. 317 Victoria Arcade, Auckland, New Zealand.
copper-protoxide- 9 ; and bioxide of tin, 13 parts. By a single melting a transparent red glass is said to be obtained of a very fine quality, of which various objects can be manufactured directly, without the necessity of a second heating to intensify the color.

