(347) F. W. B. asks: I have a Julien storage battery consisting of 3 cells of $\mathbf{6}$ volts electro
motive force; what is the strongest incandescent light moinve force; what is the strongest incandescent ingt
that could be operated by it? A. About three candle power. Ask for a six volt lamp.
${ }^{(348)}$ C. E. W. asks if there is any fulminating or deflagrating substance which can be ignited by the passage of a spark from a frictional electric ma-
chine. A. With proper connections gunpowder or ful. chine. A. With proper connections gunpowder or ful.
minating mercury can be ignited by the static dis-
${ }_{\text {charge. }}^{\text {(349) J. O. N. writes : The cigar lighter }}$ consisting of two small nickel plated cylinders, through one a wick runs, which is ignited by the application
of a chemical drawn from the other cylinder, has posof a chemical drawn from the other cylinder, has pos-
sibly attracted your attention. What is the substance siby attractect your attention. What is the substance
that effects the ignition? A. We have no analysis of the substance, but believeit to be an amalgam of sodium and mercury. The wick, from the accumulation of and mercury. The wick, from the accumulation of
caustic soda, is supposed to be always damp enough to
($3 \overline{5} 0$) H. H. F. asks : How may a battery of the cheapeat, simplest kind be made and maintained
that is capable of shocking a person to the extent that that is capable of shocking a person to the extent that
ordinary people generally care to stand? A. Use an ordinary people generally care to stand A. Use an
induction coil, such as described in Scievtric Amerinduction coil, such as desc
CAN SUPPLEMENT, No. 569.
(351) G. D. asks what is the most expansive metal suitable for an incubator regulator.
Of solid metals, zinc. For heat regulator, see Scien Of solid metals, zinc. For heat regulator, see Sci.
Fic American Supplement, No. 629 and others.
(352) H. M. P. writes: Can you give me a receipt for bleaching human hair, removed from the head, which will leave it a pure white, without in-
juring its strength 9 A. Binoxide of hydrogen is used juring its strength ? A. Binoside of hydrogen is used
for the purpose, but artificially bleached hair is invafor the purpose, but arti
riably of inferior quality.
(353) A. F. W. asks (1) how to put about forty 16 candle power lamps (incandescent) into a cir cuit so that one lamp can be shut off without inter-
fering with the rest of them. A. If you work from a fering with the rest of them. A. If you work from a
storage battery, arrange your lamps in parallel, and no storage battery, arrange your lamps in paralle, and no
further regulation is needed. If you use a dynamo, you should have a self-regulating one. For dynamo con struction we refer you to Hering's "Principles of Dyna mo Electric Machines," which we can send by mall for 82.50. 2. Also can you tell me in what book or periodical I will find an explanation of the way of wiring a house or building of any kind for incandescent lighting? A. We refer you to Scientific american Sup-
plement, No. 6o3. 3. What kind and how many cells plement, No. 603. 3. What kind and how many cells
of battery will it take to run five 16 candle power in of batery will it take to run five 16 candle power in-
candescent lamps about four hours out of twenty-four to the best advantage? A. Use 25 cells of storage battery or, 50 cells of quart Bunsen battery with 50 volt lamps. 4. Does the Supplement give any information on the storage batteries and how they are made? A.
Many storage batteries are described in the Supple Many storage batteries are described in the Supple
(354) H. M. T.-You will find very com plete tables of planetary elements in "Astronomy for
High Schools and Colleges," by Newcomb and Holden High Schools and Colleges," by Newcomb and Holden,
\$2.50, which we can mail for the price. From its tables we give you the orbital velocity in miles per

Mercury	$29 \cdot 5$
Venus	21.61
Earth.	18:38
Mars.	14.9
Jupiter	8.08
Saturn	$5 \cdot 95$
Uranus	$4 \cdot 20$
Neptune	3.36

(355) J. V. D. asks: What would be the horse power represented by the tide raising a scow
(say 100 ft . by 300 ft . bottom measurement, vertical sides) twelve feet high in five hours? A. If you load your scow so as to displace its area for one foot in
depth, its lifting power will be equal to the weight of he water displaced, which is $100^{\prime} \times 300^{\prime} \times 62 \mathrm{lb} . \times 10$ This product divided by the minutes in flive hours give the value of the power for one minute, which is the unit of time for horse power. Thus:
19,200,000
$\frac{13,200,00}{300} \frac{\min .}{}=64,000$ and $\frac{64,000}{33,000}=1.94$ horse power, or
nearly two horse power, without deducting the friction ravel, because the scow must draw two feet for the full power in rising and just touch the water in falling to make the full power available. This aynemis ex pensive for the machinery required for the small power. A far more efficient system is to impound a large
volume of water and use a submerged turbine for utilizing the power, allowing the water to flush each way at turn of the tide.
(356) S. B. M. asks if there is a motor 2.300 revolutions per minute and develop 30 horse power A. We know of none. The velocity is too great for a practical motive power of any kind. A dynamo may run up to 1,500 revolutions per minute, and develop 30 H. P., without heating journals, with care. Rotary ngines of the Avery type have run at 1,000 to 1,200 revolutions per minute, developing 30 to 40 horse power Turbines are made to run 1,500 revolutions per minute
developing 30 or more horse power, with pressure 100 feet waterhead. Water motors of the hurdy-gurdy type may have very high speed under great pressures from the jet nozzle, possibly reaching the figures that
(357) C. E. M. asks : I intend to puta keel condenser on a small steam launch. Can I proportion my independent feed pump so as.to give a vacuum
without an air pump, and if so, how perfect if all joints are tight? A. You cannot obtain a vacuum witb an ordinary feed pump. Possibly a partial vacuum of provided the condenser is large enough.
(358) J. K. F. says: Please inform me through your Notes and Queries, the largest gun made jectile, callber, the weight of charge of powder, and the

The largest gun was made by Krupp, weighs 118 ton is 45 feet long, 16 inch bore, rified, and throws a pro jectile of neariy oue ton, eight miles, with a charge sions are in course of mar. Others of sill larger dimen claimed is 12 miles, from a 9 inch gun in England, with elevation of 37°
(359) C. E. says : The State of California s about to enact a law requiring all engineers to pro cure a license. I have been a mechanical engineer fo
nearly twenty-five years, yet probably could not answer the theoretical questions necessary for me to pass the examination. Will you please inform me
what books to procure in order to post myself? You will find the desired information in "Questions and Answers for Engineers," by Roper, which we can
(360) R. S. B. asks for information on he following queries: 1. A short and simple formula or ascertaining capacity of cisterns. A. For capacity of cisterns, square the diameter in feet and decimals, multiply the product by 0.804 , which gives the area in cubic feet for one foot in depth; multiply this pro duct by $7 \times$ for the rumber of gallons, 2. Dimensions of 100 barrel cistern. A. A 100 barrel cistern should be 8 feet diameter, and 8 feet deep from the spring of the arch. 3. Formula for ascertaining area of ellipse. A For the area of an ellipse, multiply the diameters to gether, and the product by $0 \cdot 7854$. 4. It is stated tha the cruiser Vesuvius, which has shown a speed of 21.65 knots, is the ficetest vessel in our navy. Is not the Stiletto the fleetest? A. The Stiletto is the fleete 90 feet on the water line, and displaces but 28 tons closed slip, giving method of ascertaining number gallons in cistern, and which is copied from a mathe matical work, correct and reliable? A. The table orrect to a fraction of a gallon.
(361) C. V. H. asks: 1. How the Le clanche disk battery is made, giving proportion of the
ingredients? A. The porous cup is filled with ture of graphite and clean sifted binoxide of mangane in about equal parts. The carbon prism is embedded in this mixture. 2. Suppose a rubber cell be used, and the cell sealed, is there anything in the rubber that would No; but gas may be given off in the reactions in the cell, for which in some combingtions an outlet should
provided.
(362) E. M. La B. asks (1) how pocket the small incandescent scarf ${ }^{\circ}$ pin lamps? A While carbon zinc couple wth bichromate exciting fiuid would give good results, a metal plate-silver or platinum-i generally used for the negative electrode, to save room. Then as exciting fuid a mixture of sulphate of mercury and water may be used. a, Also how many cells simple plunge battery will it take to run one two-can-
de power incandescent lamp? A. Three or four cells.

Enquiries to be Answered.
The following enquiries have been sent in by some of
our subscribers, and doubtless others of our readers our subscribers, and doubtless others of our readers
will take pleasure in answering them. The number of the enquiry should head the reply
(363) G. W. writes: Will you please inform me through Notes and Queries of the Scienor area of smoke stacks for stationary boilers natural drauझht)? I frequently have work of this kind to make, and I think there is a rule in proportion to the rea of grate, but do not know what it is
(364) M. S. O'K. says : We would like your opinion in regard to the following: Does the pleting its stroke, or does it immediately start in th opposite direction? It is controlled by the crank pin which is in continuous motion. We can easily under stand that it stops going in one direction, but the ques tion is, does it pause or does it immediately take the motion of the parts would allow it to course, the lost motion of the pa
retically does it?
(365) S. S. S. asks: Would you kindly the ingredients of the composition used for making bass-relief signs, used for advertising purposes mostly
(366) G. T. asks: Will you please find any, a dome is to a
(367) J. P. W. asks: On a street cable railway one mile long. grade level, the rope (14 dia meter, weighing $21 / 2 \mathrm{lb}$. per ft.) was at a speed of 880 ft . per minute; on the incoming rope are nine cars at equal distances, the same number on the outgoing rope,
weight of each car and passengers $14,500 \mathrm{lb}$. What is weight of each car and passenge
the pulling strain upon the rope?

Replies to Enquiries.

The following replies relate to enquiries recently pub shed in Scientific Amer
(172) A. D. C.-Safety Valve, etc. -For method of computing safety valve, see answers to en
quiries, No. 60, January 26. For removing paint, use strong caustic potash solution in water.
(175) C. S. B.-Air Brakes.-The principles involved in the construction of various air or
vacuum brakes are illustrated and described in ScIENific American Supplement, Nos. 392, 523,642 , which mail at 10 cents each.
(177) G. H. A. - Clean and Whiten ianc Keys.-Wipe the keys occasionally with a soluiron, or for a fine varnish thin the japan varnish of the
ade with turpentine
(178) H. M.-Dyeing Clothing.-See book on the "Dyeing of Fabrics" by Hummel, 32.00
mailed. For eye glasees use dark blne or smoke color.
(180) W. B. D.-Cleaning Shells.-The only safe way is to file, scrape or cut oft the outside coat. For cutting, use a chisel or a draw knife, holding the shell with a strap looped through holes in a
bench. The acid process is sometimes used where the bright parts can be protected with wax, but it is uncer right parts can be protected with wax, but it is uncer tain in the hands of amateurs. Use oxide of tin to
(181) O. K. - Bicycle Enamel. - Hard baking japan, as sold by the varnish makers,isused for
bicycles. See Scientific American Supplement, No bicycles. See Scientific American Supplement, No
316 , for description of japanning and manufacture of apans.
(182) Student. - Phosphorized Oil is made by dissolving six-tenths of one per cent of phos
phorus in cod liver oil. It is called phopphorole, used phthisis. Consult the Pharmacoperia.
(183) W. J. S.-Green on Pickled Gold -You will find a variety of receipts in the "Goldsmi
(184) C. V. A.-Telescopic Camera.-You o not state the kind of object glass, achromatic o plain, and as you say that the eye piece is a single lens, we are led to suppose that the ohject glass is also single With such a telescope we fear that you will have littl matic object glass of excellent definition with a low power Huyghenian eye piece. See Scientific Amer ed forms of ey tronomical telescopes and their object glasses.
(186) E. F. C.-You will be able to do nuch in the way of theoretcal knowledge of electricit power. The experience required will be more readily
attained in practice after your book studies. Read "Electric Lighting," by Du Moncel, \$1.25, and "Elec ric Motors," by Du Moncel, $\$ 3.00$, both of which w
(187) W. S. B.-Fresh Water for Ocea teamers.-Ocean steamers have surface condensers fo utilizing the whole exhaust by condensation and return to the boilers, the dealcency being supplied from the sea. They are also supplied with condensing ap paratus for supply of freeh water from steam, direc
from the boilers, which with the fresh water carried in anks make the equipment complete for ship's use
(188) J. D. B.-Cementing Rubber. Use rob in abber gum in (189) D
(189) Demagnetizing Watch. - Se description of the process of demagnetizing watches
(191) F. L. A. S.-The restoration o cracked oil paintings is the work of an artist. For
well defined principles for a belief, see works on well defined princi
(196) G. C. H.-The answer to your las (239) W. M. H.-Firing Red Hot Shot The shot is heated red hot in a furnace. A sabot hick wad made of wood is rammed down over powder A bundle of damp straw moss or cloth is rammed down fred instantly. Not is then inserted, shoved home, and Ired instantly. Not now used, bombs being safer to th (239) W. H. M.-Hot Shot.-In you issue of January 26, query 239, a correspondent ask
for the method of fring hot shot. A book prepared a board of officers for instruction in heavy artillery, fo the army of the United States, contains the following instructions for hot shot firing. The cartridge bags are made of woolen stuff, and the cartridge is inserted caliber and the end folded under. The bags should b examined carefully, and great care should be taken to prevent the powder from spilling or sifting in the bore. consist of pure clay or fuller's earth, free from sand a consist of pure clay, or fuller's earth, free from sand o
gravel, well kneaded, with just enough moisture to work well. They are cylindrical, and one caliber in length Hay wads should be soaked for ten or fifteen minutes, hay wads are used, vapor may be seen escaping from the vent, on the insertion of the ball, but this is only the effect of the heat of the ball on the water in the wad, so no danger need be apprehended from it. With
proper precautions the ball may be permitted to proper precautions the ball may be permitted to cool in the gin without igniting the charge. The piece, how as the vapor diminishes the fstrength of the pow der. In loading, the piece is sponged with great care, and the worm is frequently passed through the just before putting in the ball. The a me inserted sufficiently elevated to allow the ball to roll down the bore, the cartridge is inserted, the mouth of the outer bag being foremost, the fold down, and carefully pushed
homewithout breaking it; a dry hay wad is placed in it and rammed once then a clay or wet hay wad is placed upon it and rammed twice, and finally, if firing at angles of depression, a wad clay a half caliber in length, or a wet hay wad, is placed on the ball.-L. E.
(239) Hot Shot.-Insert powder car tridge in cannon, cut a sod or turf not less than 4 inches in thickness, fitting the bore of the gun, and ram tightly on cartridge and take aim; on entering red hot ball, roll
or push same on the charge and fire immediately. If the aim is downward, add another sod with the ball.-
E. S.
(240) Niagara Falls.-1. From the brink 200 feet back of the Niagara Falls are rapids running
ver and between bowlders. 2. No level. 3. Velocity over and between bowlders. 2 . No level. 3. Velocity
of current estimated at 25 miles per hour. 4, Not at the Falls, bat at or near Buffalo, where the carrent is 8 to 9 miles per hour, and sorry to say that the $\$ 100,000$
premium is a booming humbug.-E. S.
(241) 50 and 75 horse power engine.-If
more attention is given to the inside than the outside, it. ought. to do the work satisfactorily. A 75 horse power engine of the same pattern and make as the 50
horse power one would only increase the work of keeping up steam, except it would be of the most economi cal automatic cut-off make.-E. S.
Books or other publications referred to above can, in most cases, be promptly obtained through the
ScIENTIFIC American office, Munn \& Co., 361 BroadScientific Amer
way, New York.

TO INVENTORS.

An experience of forty years, and the preparation of more than one hundred thousand applications for patents at home and abroad, enable us to understand the
laws and practice on both continents, and to possess unlaws and practice on both continents, and to possess un-
equaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and all foreign countries may be had on application, and persons contemplating the securing of patents, either at home or
abroad, are invited to write to this offlee for prices, Which are low, in accordance with the times and our ex-
tensive facilities for conducting the business. Adress MUNN \& CO., ofice ScIENTIFIC AMERICAN, sil Broad-

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

January 29, 1889,
AND EACH BEARING THAT DATE.
[See note at end of list about copies of these patents.]

Album, photograph, E. H. Hammann..............

Bed, spring, Cas lor \& McCreery ...
Beehive, Beeson \& Hirschfeld....
Bell, door, W. H. Fauber...........

 396,068
3968,80
396,724
 Blast, hot air, w. O. Miller.. 396,947
Blasting compound, R. Sjoberg Board. See Billiard scoring board.
Boat joint, L. M. Spraque........................... 396,7z6
Boiler, See Range boiler. Steam boiler. Boiler. See Range boiler. Steam boiler.
Boiler, J. B. De Barthe........................... 396,731 Bdt. See Flour bolt.
Bolttigg reel, H. A. Hueffner........................ . 397,057 Book support, F. E. Healer............................... . 3969741
Boor or shoe heel, H. A. Webster................. 397,041
Bottling sodawater, etc., apparatus for, c. c.
Hales..................................96,928
Box. See Axle box. Fare box. Journal box.

 Cars, electric lighting and heating, J. F. Shawhan 396,88 Cars, pipe coupling for railway, P. S. Wiseman
 Carpet sweeper, P. H. Wiedersum.................. 347, 102 Cart, dumping, J. Cable............................... 396,982 Case. See Latch case. Library case. Lock case.
Type case.
Cash or parcel carrier, e. B. Stocking 396,778 Casting steel pipes, a pparatus for, W. E. Koch..... 396,778
Catheter, R. N. Mayfeld 396,75
 Centrifughl machine, G.N. Downs................... 3ur,0i1
Chair. See Dental chair. Surgical chair.
Check rowing attachment, G. L. Banks............ 396,848

 Clothes line frame. F. W. Hofele.. 396,817
Coal hod, E. Barrath 397,042
Collar, horse, R. Brownson................ Conductor support, D. Steuuss.......................... $39.39,03$,
Cork cuttink machine. H. S. Larsen........ rd, combined, Stukes \&

oupling. Bee Car coupling.
C.

