	MREMTCA

a weekly journal of Practical information, art, science, mechanics, chemistry, and manufactures.

THE LAST ADDITION TO THE NEW NAVY-THE U. S. GUNBOAT YORKTOWN,-[See page 69.]

Soricutific ghumericau.

HSTABLISHED 1815.

MUNN \& CO., Editors and Proprietors. pUBLISHED WEEKLY AT
 No. 361 BROADWAY, .NEW YORK.

o. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy, one year, for the U. S. or Canada.
One copy, six months, for the U. S. or Canada
Remit by postal or express money ord
Australia and New Zealand. -Those who desire to receive the SCiENTIFIC AMERICAN, for a
Colonial bank notes. Address
MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.

> MUNN \& CO., 361 Broadway, corner of Franklin Street, Ner The Scientific American Supplement
paper from the Scientific AmmRican. THE SUPPLEMENT is issued weekly. Hvery number contains 16 octavo pages, uniform in size With SCIENTIFIC AMERICAN. 'Terms of subscription for SUPPLEMENT Ing to the Postal Union. Single copies, 10 cents. Sold by all newsdealerg throughcut the country.
Ciombined Lates.-The Scientific american and Supplement will be sent fo
seven dollars.
The safest wa Supplement will be sent Zealand.-The Sclentipic American and rent Colonial bank notes

NEW YORK, SATURDAY, FEBRUARY 2, 1889.

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT

No. 683.
For the Week Ending February 2, 1889. Price 10 cents. For sale by all newedealers.
I. ASTRONOMY.-Notes on Meteorites. ByJ. NorMAN LLockrpr.

H. CHEMISTRY-On the Ocaurence of SOlid Hydroarbons in

COMPLANNTS AGAINST THE PATENT OFFICE.

A series of articles was lately published in the New A series of articles was lately published in the New
York World, containing a long string of complaints York World, containing a long string of complaints
and chảges against the employes of the Patent Office. and charges against the employes of the Patent Office.
They were accused by inference, if not directly, of carelessness, neglect of duty, favoritism, corruption, fraud, bribery, deceit, malice, injustice, systematic efforts to swindle, persecute, and defeat inventors in their endeavors to secure patents; together with other irregularities. But no individual names were mentioned. These revelations were backed up by a curious and interesting collection of letters, opinions, and criticisms given by inventors, patent solicitors, and patent lawyers; some of whom delivered bitter complaints, because the Patent Office had been stupid or failed to do or grant what they wanted; nearly all expressed a belief in the necessity for reform in the management of the bureau. The published matter formed a grand howl, or newspaper earthquake of the most sensational kind.
We are glad to be able to say, however, the Patent Office has survived the shock; the officials are still at their posts; they are not even begrimed with the smoke; and the grand old machine continues to grind out every week its immense quota of five or six hundred patents for new inventions; in reward for the genius of inventors, by which the industries of the country are so constantly diversified, increased, improved, and maintained.
But are there no difficulties at the Patent Office, no opportunities and no practice of knavery, as the World has described? Do the officials never act in bad faith towand inventors? Are they al ways pure and faithful? Do they never purposely delay business, abridge claims, or give real cause for complaint?
It would be strange if they did not. They have great power. They are, for the inventor, his judges and his jury. Moreover, they are mortals, made of clay like the rest of us. They are hunted, badgered, and tempted, from morning till night, by a crowd of anxious applicants or hungry agents, asking for decisions or complaining of those already made. Each wants his case taken up at once, ahead of all others. Many are suspicious persons, who imagine the examiner is trying to steal his invention or defraud him of his rights. There is no end to the mean and irritating things such individuals will say or do. Some agents are so self-sufficient they consider themselves insulted if an examiner calls attention to gross blunders in their papers. In short, the time, patience, and skill of examining officers are often subjected to the severest trials, under which, and the lack of proper facilities for making accurate searches, and the pressure of accumulated work, it is no wonder if many errors, wrong decisions, and irregularities should take place.
Yet, as a whole, it is doubtful if any branch of the public service is so well conducted or shows such splendid results as the Patent Office. The examining officers, as a general rule, are faithful and exemplary men, able, intelligent, and as careful as the circumstances in which they are placed will allow. They do the best they can. But the system under which they labor is defective and leads to endless troubles.
The present law, which aims to provide for a thor ough scientific and legal examination of each application for a patent, was passed more than half a century ago, when the sciences and mechanic industries were in theirinfancy, when inventors were few, patents and new inventions scarce.
More patents are now solicited in a week than were then granted during a year. It was then possible for the government to examine and decide each case with care and deliberation. To do so now is almost out of the question. More than thirty-five thousand applications for patents were made last year. The number steadily increases with the growth of population. Aiready there are three thousand seven hundred classifications of inventions, sub and general, in the Patent Office.
The duty of examiners is first to see that the patent papers are correct in form, clearly illustrate. describe, and claim the invention; and, second, to make sure that the device claimed has not previously been patented here or abroad, nor described in any printed publication in any part of the world. If the invention has been previously patented or described, then the patent must be denied, for it would be invalid if granted. It is obviously impossible, with the meager force of examiners now employed, to make a legal and scientific examination of thirty-five thousand applications a year. Even the classification and printing of our home patents is'so very defective, and the knowledge of them so incomplete, that the examiner cannot be certain of the correctness of his searches among them; while as to foreign patents and other publications, only a superficial glance is, in some cases, attempted. This poor, shadowy, imperfect, and almost useless business of official examination grows necessarily worse and worse every year, and tends toward self-destruction. Would it not be an improvement to sweep it away altogether? Would it not be a simpler and better method to let each inventor become his own examiner?
with granted. Relieve the present examining forco from the duty of determining whether it is best to grant a patent or not, and let the inventor examine and decide the matter for himself. It is just as practicable for him to do this as to search the records when buying a piece of real estate.
Let the cost of patent copies be greatly reduced. Let the present examining force be employed to see that the applicant's papers are in proper form, and the records of all previous patents and descriptions of in ventions kept well classified and easily accessible This will occupy their time to the best advantage; and enable them to perform their duties with satisfaction to themselves and all concerned. A modification of the law appears to be imperative, and if made in the direction we have indicated, the delays, litigations, and other hardships to which inventors are now subjected before the Patent Office probably could never occur.

AN IMPORTANT SUPREME COURT DECISION.

A decision of some importance, as affecting the bearing upon American patents of foreign patents for the same invention awarded to the American patentee, was rendered in the United States Supreme Court on January 21. It was in a somewhat celebrated suit, entitled the Bate Refrigerating Co. vs. George H. Hammond \& Co. A United States patent had been awarded to John J. Bate for a process of preserving meat during twans portation and storage. A Canadian patent for five years had been taken out by him previous to the issue of the United States patent. Before the expiration of the Canadian patent it had been extended on payment of the statutory fees for five years, and before the termnation of the extension had in like manner been ex tended for five years more. The law of Canada authorizing these extensions as a matter of right was in orce at the time the original patent was granted. The Circuit Court had held, notwithstanding this state of things, that the American patent was limited in term by the original Canadian patent of five years. The Supreme Court disposes of this view, and decides that the fifteen years, although composed in part of extensions, is for the purposes of statute 4,887 to be considered as the ntegral term of a foreign patent, and declares the Bate patent unaffected as yet by the C'anadian term, which does not terminate until 1892. Much comment was made upon this decision by the press, but it will be seen that it is not so broad in its effects as stated by many of our contemporaries. The decision was delivered orally by Judge Blatchford.

Removal of a Hotel at Coney Island.
Our readers will doubtless remember the description we published about a year ago, concerning the moving of the Hotel Brighton, one of the largest hotels at Coney Island.
Another neat piece of work has just been accomplished in the removal of the Ocean House at the same place. This large hotel, 42×55, two stories high, with arge piazza, was erected twenty years ago, and at that time stood about 600 feet back from the surf. The many changes in the beach since then have washed all this land away. The hotel was placed upon piles two years since, as the indications were that at any time the foundations might be washed away. This proved true, for last year the ocean had reached the hotel, but uo immediate danger was feared, as the piles were 20 feet long and firmly bedded in the sand. The owners of the hotel thought it safe, and expected, from its situation over the ocean, the attractiveness of the site would benefit the business. This was the fact, but this winter, during a heavy easterly storm, another slice of the beach was removed, and when the storm had subsided, the hotel was left quite alone in the Atlantic, some 50 feet from shore, standing on piles. There was a probability of the sand cutting away and leaving no support for the piles, and also the danger of floating logs or ice battering them down, and it was decided to remove the building. The contract was awarded to Messrs. Louis Heineman \& Sons, of Brooklyn, and they have just successfully removed the building to the solid ground, and it now stands some 300 feet back from the beach. The plan of operations was as follows : Rows of piles were sunk by water pressure under the hotel, reaching to the shore; these were capped, and upon them were laid heavy yellow pine sliding ways. Upon these ways the hotel was raised, the old piles being left standing. By crabs on the shore the building was pulled and slid from its position over the ocean to the bank. It is now securely located on terra firma, and has been preserved from being completely washed away, as the piles upon which it rested were undermined and carried out to sea almost before the hotel had reached its new home.

The late Benjamin B. Hotchkiss, of Bridgeport, in entor of the well known quick-firing cannons, now used in the military and naval services of nearly all nations, acquired an immense fortune as the result of his ingenious devices. He leftan estate valued at over twelve millions of dollars. His heirs are now litigating about the disposal of these millions, and the lawyers are likely to reap a harvest.

The International Exhibition of 1889.
Paris, January 12, 1889.
The first impression one receives on a general survey of the Paris exhibition buildings is an exceedingly favorable one. There is a something about them that is pleasantly impressive, and this feeling augments as one passes through the various departments.
What it is that gives this impression is not at first clearly definable, but reflection discloses that it is the ornamentation, which is charming in its effective unobtrusiveness. Certainly no other exhibition has approached this one in the ornamentation of the windows and walls of the interiors, as well as the exteriors of the buildings. It is too early, however, to dwell upon this point, as much of it is only fairly begun.
The buildings are, as a whole, well advanced, and, so far as one can at present see, the opening day (May 4) will find matters in better order than is usually the case with exhibitions.
An American cannot well avoid a comparison of this with the Centennial exhibition of 1876 , and will at once concede that, so far as the buildings are concerned, this Paris exhibition is quite beyond comparison, not so much in size, however, as in refined beauty.
If one confines himself to the grounds on which the exhibition stands, the Centennial exhibition has the advantage, or if one leaves the scenes outside the entrance gates out of mind, and thinks only of the actual exhibition grounds, then the Centennial again has the advantage. But the entrance to the Paris exhibition will be delightful, especially if one goes through the Trocadero, across the Seine, and past the Eiffel tower. When we come to the arrangements of the exhibits, there may be room for a difference of opinion; for ex-
ample, agricultural implements will be in the agriculample, agricultural implements will be in the agricul-
tural department, which is separate from the machinery department ; hence, the effect, so far as it depends upon the magnitude of the exhibits, is diminished. On the other hand, however, to whatever extent the general machinery department suffers on account of the absence of the agricultural machines the agricultural department obviously gains, and it is perhaps preferable to have each special class of machinery exhibited in connection with the particular class of human industry to which it belongs, or with which it is most intimately associated. Nobody, however, who visited the Centennial exhibition of 1876 is likely to
forget the impression made by the immensity of the forget the impression made by the immensity of the tive crudeness of the building. The Paris exhibition tive crudeness of the building. The Paris exhibition
does not, it must be admitted, duly impress one with its immensity, notwithstanding that some of its buildings are over two miles apart in a continuous line. Even the main buildings are not impressive in their magnitude when viewed from their interiors, which occurs from the internal subdivisions.
It is these internal subdivisions which afford such opportunities for ornamentation, and that, therefore, lend the peculiar charm I have before referred to. At the Centennial one might spend hours in one department (as, for example, in the main building), and after the first coup d'oeil (taking in the immensity), the building would attract but little attention or interest.
The machinery department is well advanced. The Brown engine, of which the Scientific American gave illustrations in 1877, is to be exhibited, and no worthier example of the best American workmanship is to be found. Some of your readers will possibly remember that some of the visiting English engineers fell into a singular blunder at the Centennial exhibition of 1876 ; inasmuch as that they condemned the nickel plating of the Putnam lathes, of the Brown engine, and of some other American exhibits; whereas these exhibits were simply highly finished with ordinary mechanics' tools, and not plated. There are, I hear, firms in England who are producing equally as high a grade of workwho are producing equally as high a grade of work-
manship, but there is, to my mind, no risk at all in prophesying that no piece of machine or engine building will exceed the Brown engine for quality of fit, while none will equal it for finish.
It is reported here that Professr J. E. Sweet has just concluded to exhibit one of his new 100 horse power straight line engines. This is welcome news, for there is an American stamp of originality in this engine, $i . e .$, there are numerous departures from ordinary designs, and a sound reason for every departure.
Both these engines are to drive sections of shafting; the latter, however, not being as yet erected. I do not know if the various sections of shaft in each line are to be connected by a coupling or not. The bearings for the shafting are not self-adjusting in any respect, but this does not much matter, because the frame pillars on which they stand are bolted to heavy stone and cement foundations, and there is nothing to deflect or sag and throw the shafting out of line.
George H . Corliss' experiment of speeding up with gearing is not to be repeated here, nor is it likely to be anywhere else, as far as that goes, for it was too expensive; but it was a beautiful piece of workmanship, and engineers would remember the Centennial if for nothing else but Corliss' wonderful gear wheels.
thing else but Corliss' wonderful gear wheels.
and methods of metal working, except it be with ref erence to the large French steel works, and I purpose, in due course, to investigate these methods, in order to compare them with the American and English.:
A word or two may not be out of place with reference to the feeling in England with regard to international exhibitions. I have frequently asked English manufacturers when there was likely to be such an exhibition in England, and the reply has almost invariably been the same, viz., "We don't want any more international exhibitions. They don't do us any good, for the for-
eigners simply came over and copied our methods." eigners simply came over and copied our methods."
Now, I do not think there is any justice in this. My memory goes as far back, very distinctly, as the exhibition of 1851 , and I cannot call to mind any one branch of industry in which English methods were copied. On the other hand, I well remember how some of the foreign exhibits were held up by the English press as models for the English to follow; china
and crockery ware being prominent examples. In this and crockery ware being prominent examples. In this the Centennial exhibition at Philadelphia returned home and copied many American machines and methods ; and, as a case in point, I believe that Messrs. Smith \& Coventry, of Manchester, did so, with great advantage to their shop methods: and no one will dispute that this firm turn out a high class of work. Awong other things whose acquaintance English engineers have made at exhibitions may be mentioned the Corliss engine, the Wheelock engine, the French metal cutting saw machines, and American watch making machines. Each of these has been copied in England, while I think I may say the same of the Brown \& Sharpe milling machine, the screw machine, and the Morton Poole calender roll grinding machine, and, coming down to maller matters, the twist drill and the emery wheel.
The space allotted to the United States is not equal to the amount applied for, but there is one vacant space that would be exceedingly valuable for any firm whose products were of sufficient importance and sufficiently ornamental to fill it. This space is the facade at the end of the machinery department. The corresponding facades in other departments are being ornamented by the exhibitors in the respective depart ments, as much as 200,000 francs having been subscribed
for the ornamentation of a single facade. Hence, if any American firm applies for this space, it must be for an exhibit that will be effective in appearance and well up in quality. If the Disstons were to put their minds at work, I should think they could get up a design embracing
suitable
uitable.
It is rep
It is reported here that Edison proposes to span the machinery department with a rainbow of incandescent electric lights, which would, without doubt, be a most
effective exhibit.
Joshua Rose.

The Hydraulic Elevator for the Eiffel Tower.

The cylinder for operating one of the lower elevators in the Eiffel tower, in Paris, has just been shipped by the makers, the well known firm of Otis Bros. \& Co., of this city. It is no small tribute to American ingenuity and enterprise that a leading French engineer should appeal to America when confronted with a new problem. The elevator starts from one of the legs of the
tower, and rises, following an inclined path that varies its degree of inclination, until the landing, 489 feet above the ground, is reached. The difficulty arose from the nature of the course the car had to follow. No satisfactory offer could be obtained from French firms. After the 489 foot landing is reached, the difficulty ends, and an ordinary elevator of French manufacture is used for the remainder of the distance. We give some of the dimensions of the great cylinder Diameter, 38 inches; length, 41 feet 7 inches; circulat ing pipe, valve, and water chest, all 9 inches; total weight, $51,400 \mathrm{lb}$. ; working pressure, 180 lb . to square inch. It is two inches thick. The firm have shipped to Paris $300,000 \mathrm{lb}$. of *machinery to run the two elevators.

More Grecian Excavations.

It appears that Delphi, in Greece, where Apollo prophesied for a thousand years, and the Amphictyonic Council sat, may now be purchased by Americans for the purpose of explorations. The Germans have Olympia, the site of the most famous temple of Jupiter, where they have been excavating with rich results. The Greeks are working at the Acropolis in Athens, and the English and Americans in other places. France, Germany, and England have had schools in Greece for study and exploration for some years. The American school has been maintained for six years since its foundation by the Archæological Institute,
supported by contributions from American colleges ill able to give. Delphi is regarded as the richest of all sites, and it can now be had for $\$ 80,000$. The village of Castri, on its site, must be bought and removed. To raise this sum, Professor Charles Eliot Norton, of Harvard, recently' came to New York and laid the matter before a few prominent gentlemen at the house of
Bishop Potter. He pointed out that if there is any
value whatever in the study of the art and literature and philosophy of the ancient world, it must hereafter, in order to be pursued effectively, be pursued in connection with the explorations which are being carried on, both in Asia and Europe, on the sites of Greek and Roman and Egyptian cities and temples. These explorations have already almost revolutionized our knowledge of the Greek and Roman world. •The excavation of Delphi would be attended with results of cavation of Delphi would be attended with results of
the profoundest consequence, and, as Frank Leslie's Newspaper states, no such opportunity has been presented to Americans before, and it is hoped that the sum required may be speedily raised.

For Star Gazers.

Doubtless all of our readers have noticed the brilliant appearance of the planet Venus in the western sky in the early evening hours, and a great many have wondered what its relative position to the earth and sun nay be to cause it to shine with such unusual brightness. Many also have noticed that the planet Mars has lingered near Venus for several weeks, and would like to know the reason for this apparent nearness. To such inquiries the almanacs give no response. They merely record the fact of a conjunction or opposition occurring on a certain day, without giving any explanation of the phenomena.
To that large and ever-increasing class of our readers who are interested in the ever-varying appearance of the heavens we commend the concurrent number of the Scientific American Supplemen'f, which contains a most interesting article on the planets for February, 1889, illustrated with what is an entirely new feature in astronomical record-a map of the solar system, giving the exact position of every major planet for the 1st of February, and the amount of movement of each in its orbit during the month.
Being drawn to exact scale, the distances of the plants from the sun, the earth, or each other may be measured with a fair degree of precision, and the cause of every conjunction, elongation, opposition, etc., appears almost at a glance. It also forms a complete index to the position of the planets in the sky at any time of the day or night. In fact, it is a complete key to the movement of the planets for the month, and we have no doubt that large numbers of our readers will be surprised at the number of questions regarding the solar system which may be answered by means of the map.

The Total Solar Eclipse of the Sun, Jin. 1.
The observations of the parties from the Lick Obervatory, at Bartlett Springs, were very complete, and will soon be published by the Observatory. A communication from Prof. J. E. Keeler says :
"My own observations were made with a $61 / 2 \mathrm{in}$. equatorial telescope, to which was attached a spectroscope with the attachment devised by Hastings, and described in the report of the eclipse at Caroline Island. The phenomena which I observed did not correspond exactly with his observations, but are in partial support of his theory.
Prof. Barnard obtained nine photographs with three cameras equatorially mounted on a polar axis driven
by clockwork. His negatives have not been developed yet.
Prof. Hill observed the times of contact, assisted me in my work, and studied the structure of the corona with the finder of the $61 / 2$ inch telescope. Time was obtained by telegraph from the Lick Observatory
Prof: Leuschner obtained seven measures of the light of the corona with a wheel photometer devised and made by Brashear.
Mr. Geo. W. Yount made an oil sketch of the corona, and several other persons made sketches, which were given to the party.
The sky was a little hazy, but all the observations were considered successful."

oxygen.

Pure oxygen gas, says A. H. in the English Mechanic, may be obtained from the atmosphere at a trifling cost, so as to enable it to be collected in unlimited quantities in gasometers, like coal gas, for application in the arts, manufactures, etc. This process depends upon a peculiar property possessed by the earth baryta of absorbing oxygen at one temperature and evolving it at another. The process is as follows :
Mix the baryta with a portion of hydrate of calcium or of magnesium ; place the mixture in an earthen tube heated to dull redness; oxidize it by passing a current of atmospheric air over it. As soon as the oxidation is complete, connect the tube with the gas holder, and allow a jet of steam to act upon it. This converts per oxide of barium into hydrate of barium, and the excess of oxygen is given off and collected in the gas holder. The baryta is then again oxidized by a fresh current of air and deoxidized by steam. The whole process may be repeated as frequently as required. One ton of baryta thus treated yields about 2,500 cubic feet of pure oxygen every twenty-four hours, and this, as it does not lose any of its properties, at the mere cost of fue and labor.

IMPROVED DEVICE FOR USE IN PAYING HELP.
The illustration herewith represents an improved device for use in paying off the employes of business establishments, and facilitating the proper payments to each, without danger of accidental or designed miscarriage. It has been patented by Mr. David W. Bundy, of Toronto, Ontario, Canada. Fig. 1 shows the device as arranged for use, and in Fig. 2 it is closed for

SWAMEY

BUNDY'S LABOR SAVING PAY DEVICE.

transportation. The main portion consists of a boxlike tray provided with a series of pockets, opposite each of which is the name and a number for an em ploye, these pockets being adapted to receive a num ber of money boxes, each box bearing the number of its respective pocket. The boxes have their respective numbers on the outside of both ends and on the interior of the hinged lid. A cover which is entirely removable

TIME ano PAY ROLL, weti lnoinc frioar- Sow \% ...asty

is provided for the tray, the device being so constructed that the cover can be locked in closed position. To pach end of the tray is pivoted a slotted bracket piece, which slides within the limits of the tray or can be adjusted to project outwardly, as shown in Fig. 1, to hold the tray in an inclined position, to enable the characters on the tray and boxes to be more readily observed, and for convenience in placing and removing the boxes the bracket pieces being adapted to be locked in any position to which they may be adjusted.
This inventor has likewise designed a special form of time and pay roll, to enable business men to record in the most simple and condensed manner the details of the time made by workmen and facilitate making up the amounts due them. In this form, shown herewith, the small letters " M," " A," and " O," under each designation of the days of the week, indicate respec tively "morning," "afternoon," and "overtime." There are two lines opposite each man's name, a mark in the lower divisions of this line indicating attendance

BLISS' FURNACE FOR DESTROTING REFUSE.
while a figure in one of the upper divisions indicates short time in either morning or afternoon, as a figure in the " O " column would indicate overtime.
This inventor has established a factory provided with special machinery for the manufacture of his improved pay device, and may be addressed, for further particulars in reference thereto, at 211 and 213 Lippincott Street, Toronto, Canada.

Tracing Curves by Photography.

In the Bulletin of the Academie des Sciences de Belgique, M. Eric Gérard describes a new method of automatically registering observations by means of photography. Engineering says: In making a research in the variable current supplied by alternate current machines, he had got very good curves by using an extremely delicate and aperiodic galvanometer, the inertia of the moving parts also being extremely small. A beam of electric light was reflected from a very small concave mirror attached to the moving portion of the galvanometer through a lens, falling finally on to a sheet of sensitive paper, on which it cast a very minute image. After some trouble very good results were obtained in this way, but not being completely satisfied, he cast about for some other method of obtaining the same end, the arc light in particular being costly and troublesome. His new arrangement consists of a moderate-sized Ruhmkorff coil, the spark from the secondary coil of which plays between a piece of aluminum wire and the point of a carbon for an are lamp. The two electrodes are fixed at least one millimeter apart. The spark is projected on to the movable mirror aforesaid, and thence to the sensitized paper, which may be wrapped round a drum, or more conveniently simply stretched on a frame, which can be allowed to fall between guides. The period of the sparks depends solely on the elasticity of the spring of the vibrator of the primary coil, and the number of spots photographed in unit length of the curve on the sensitized paper forms a convenient time scale. By connecting the electrodes of the secondary coil to a couple of small Leyden jars, a very short and white spark is obtained, the position of which is invariable. This plan has the advantage of reducing the dimensions of the numerous spots which make up the curve photographed.

IMPROVED FURNACE FOR DESTROYING REFUSE.
The accompanying illustration represents a furnace for burning or carbonizing refuse, utilizing the same as fuel or fitting it for use as a fertilizer. It forms the subject of a patent issued to Mr. W. H. Bliss, of Newport, R. I. The furnace is constructed principally of masonry, and is preferably about 22 ft . long, 11 ft . wide, and 20 ft . high. There is a space inside the walls at each end, about 6 ft . wide and 9 ft . high, for the removal of carbonized matter when it is desired to use it as a fertilizer, brick division walls separating these spaces from the furnace proper, these walls extending to the top of the structure, and forming the sides of flues on each side, closed at the top and connected with the ash spaces. The retorts are preferably made of wrought iron, and funnel-shaped at the bottom, being tightly closed at the top by large annular covers, in each of which is formed a small cover for convenience in inserting small substances. The retorts are held in chambers communicating with the furnace through inclined flues, so arranged that the heat of the furnace first strikes against a deflecting wall of firebrick, separated from the cone by an air chamber, thence circulates around the cones of the retorts below a horizontal plate, as shown by the arrows, and then around the main body of the retort above such plate, from which there is a passage to the chimney flue. Below the lower ends of the retorts are inclined chutes, each provided with two valves, operated by means of rods reaching to the outside of the furnace, whereby the contents of the retort can be discharged into the furnace, or into one of the chambers beneath the re torts, to be conveyed away for use as a fertilizer. Pipes connect the interior of the retorts with the flues built into the walls, for conveying away the steam and gases generated in the process and discharging them under the grate bars. The space above the furnace is adapted to receive a steam boiler, that the refuse treated may be thus utilized as fuel in generating steam for power.
For further information relative to this invention, address Mr. Edward Newton, administrator of the es tate of W. H. Bliss, deceased, P. O. Box 703, Newport, R.I.

Exhibitors to the French Exposition.
Manufacturers and others intending to exhibit at the Paris exposition next summer, and wishing some one to represent them and attend to receiving and entering their goods, will find a capable representative in Mr. Wm. Herrick, an American gentleman who has resided with his family in Paris a number of years. Mr. Herrick is favorably known in the American colony and to American travelers accustomed to visiting Paris His office is at 32 Rue de Paradis, where letters may be addressed and information as to entering exhibits obtained.

AN IMPROVED PILLOW BOLSTER.

The accompanying illustration represents a combination of pillows, or what may be used as pillows and bolster, in one pillow slip, which has been patented by r. William T. Doremus, of No. 150 West Twenty-third Street, New York City. Each roll is made an inde pendent pillow covered by its own ticking, while the slip or removable cover is made up of longitudinal compartments adapted to separately receive and hold in parallel relation with each other the independent rolls or pillows, the slip being left open, or made to open, at either or both ends. In use it is designed that the top roll of the pillow bolster should always be in contact with the neck, and in asthma or lung

DOREMUS' PILLOW AND SLIP.
troubles, etc., a roll of feathers may support the neek and head, while one or more of the other rolls may be filled with balsam or bops, without incurring any of the discomforts usually attendant upon the use of the ordinary balsam or hop pillow. This combination also tends to facilitate one's getting into a "comfortable position for sleep" with ease and comfort-a matter which is often a subject of considerable vexation and difficulty to those troubled with insomnia.

AN IMPROVED FOLDING CAR STEP.

Extensible car steps, which may be held folded to the permanent steps while the car is moving, and be almost instantly lowered or extended when the car stops, to promote the convenient-exit or entrance of passengers, are illustrated herewith, and form the subject of a patent recently issued to Mr. Henry A. Merritt, of No. 49 Third Street, Brooklyn, N. Y. The extensible step is hung at each end to the permanent steps by two links pivoted at their upper ends to the permanent stringer and at their lower ends to the step, a transverse shaft being journaled on the permanent steps and having crank arms connected by bars with the suspension links of the extensible step, whereby the latter may be folded up or extended. These crank arms have wrist pins, with which the opposite ends of a transverse operating bar are pivotally connected, one of the wrist pins being engaged by the lower end of a lever fulcrumed to the car platform, and projecting upward where it may be conveniently reached and operated for extending or folding up the steps. To the wrist of the inner crank arm of each shaft is attached one end of a spiral spring, its other end being connected to a rod fixed to the stringer of the permanent steps, these springs holding the steps in either position to which they may be adjusted, independently of the locking tendency of the bars and crank arms.

MERRITT'S EXTENSIBLE CAR STEP.

Fig 2-plan of the champ dèimars 'palace.
THE PARIS EXHIBITION 1889.
[For description see page 68.]

admission of Air to Rooms.

Air should be introduced and removed at those parts of the room where it would not cause a sensible draught. Air flowing against the body at, or even somewhat above, the temperature of the air of a room will cause an inconvenient draught, from the fact that, as it removes the moisture of the body, it causes evaporation or a sensation of cold. Air should never, as a rule, be introduced at or close to the floor level. The openings would be liable to be fouled with sweepings and dirt. The air, unless very much above the temperature of the air of the room, would produce a sensation of cold to the feet. It may be regarded as an axiom in ventilating and warming that the feet should be kept warm and the head be kept cool.

The orifices at which air is admitted should be above the level of the heads of persons occupying the room. The current of inflowing air should be directed toward the ceiling, and should either be as much subdivided as possible by means of numerous orifices, or be admitted through conical openings, with the smaller openings toward the outer air and the larger openings toward the room, by which means the air of the entering current is very rapidly dispersed. Air admitted near the ceiling very soon ceases to exist as a distinct current, and will be found at a very short distance from the inlet to have mingled with the general mass of the air, and to have attained the temperature of the room, partly owing to the larger mass of air in the room with which the inflowing current mingles, partly to the action of gravity in cases where the inflowing air is colder than the air in the room.-D. Galton, in the Architect, London.

Foreign Trade Marks-a Dilemma.

The Californian Fig Sirup Company, of Reno, Nevada, U. S., having registered the trade mark "Sirup of Figs" in the United States in 1885, demanded in January of this year to have the same mark registered in this country. In the Act of 1883 (Section 103) it is provided that, if her Majesty should be pleased to make any arrangement with the government of any foreign State for mutual protection of inventions, designs, and trade marks, then any person who has applied for protection for any invention, design, or trade mark, in any such State, should be entitled to a patent for his invention, or to registration of his design or trade mark (as the case may be), under this Act, in priority to other applicants; but in the case of a design or a trade mark, he must make his application within four months of his application in the foreign State. The same section, further on, provides that any trade mark the registration of which has been duly applied for in the country of origin may be registered under this Act. In March, 1884, her Majesty did please to accede to a convention to which France, Italy, Spain, and Belgium had previously agreed. The United States acceded in 1887. Article VI. of the convention thus acceded to provides that " every trade mark duly registered in the country of origin shall be admitted for registration, and protected in the form originally registered in all the other countries of the union." Under that article the California company claimed the registration of their trade mark "Sirup of Figs" in this country. The comptroller demurred, and argued that he was only bound by the Act of Parliament, and in that the limit of four months was clearly named, and had not been complied with by the applicants. They replied that in the convention such a limit was not mentioned, and they appealed to the board of trade, who referred the case to the court. The point at issue was evidently whether the convention should override the statute, or whether the statute ruled the convention. If the former, then we are bound to register every foreigner's trade mark here if he has got it on the register of one of the countries in the union. If the latter, we are in a degree breaking faith with the co-signers of the convention. Mr. Justice Stirling has ruled against the applicants, but he evidently perceived the dilemma, and said that her Majesty's government would no doubt consider what steps ought to be taken in the way of harmonizing the conflicting claims.-The Chemist and Druggist (London).

THE ELECTRIC BLOWPIPE.

by samuel sheldon, ph.d., prof. harvard university

The application of dynamo-electric currents for the welding of large pieces of metal, in the mechanic arts, has been practically demonstrated as a success. But its employment has been, of necessity, limited to large workshops, where the amount of work of this character would warrant the purchase of a dynamo. Further more, the danger attending the use of powerful currents has deterred many from making use of them, because they have had in their employ mechanics of only ordinary attainments, with no especial knowledge of electricity.
Besides the Thomson-Houston system, which employs a current of very great strength but small elec-tro-motive force, and where the pieces to be welded are brought into contact, two general methods employing
the electric arc have been used. The first consists in
making an electrode of each of the pieces to be welded, a small space being left where the welding is to take place. If a strong current be sent through, it forms an arc of great heat at this space and the metals are melted, and, running together, form a compact whole. The second consists in connecting both of the parts to be welded to one end of the circuit, while the other end is connected to a movable point, which is brought into close proximity to the joint, and, the arc being formed, gives th same result as before.
For many pieces of work these methods are not prac ticable. For instance, of tentimes when two pieces are brought into their proper relative positions, if a current be sent through after the first method, ares will be form ed at several places, and junctures will be made in places not desired. Again, in the employment of the second method, the use of two hands is often essential in the manipulation of the work, in which case a second per son is necessary to apply the second contact. It is well known that two persons cannot co-ordinate their movements in the efficient manner in which one can those of his two hands, and the result is often an inferior grade of workmanship.
Now, the peculiar behavior of the electric arc, when placed in a strong magnetic field, affords at once a sim ple and efficient means for welding. A dynamic attrac tion or repulsion occurs between the rectilinear current of the arc and the amperean currents of the field, and this results in the drawing or driving out of the arc int a point, which is very similar to the point of flame pro jected from a blow pipe. The form may be seen from the following sketch

the electric blowpipe.

The heat at the point of the arc is intense, and suf fices to melt any of the metals. A piece of No. 14 cop per wire held at the apex melts instantly.
This extreme heat in such a convenient form can be the means of bringing electro welding within thereach of all shops where arc lamps are employed for illumination. By a mere nominal alteration the lamp may be made to perform the double function of illumination and welding. To attain this end, a straight electromagnet wound with coarse wire is only necessary. This is placed with one end toward thearc, and may be fixed in one position (to be determined by experiment, and depending upon the direction of the desired point of the arc), or made movable in a horizontal plane on a level with the arc. The two terminals of the wag net coil are inserted anywhere in the main circuit, or, if found necessary, may be shunted from the same. The connections, once made, can remain undisturbed, and, without influencing the main line, the lamp performs its two functions.
In the employment of the arc for electro welding, the operator must, of course, wear colored glasses for the protection of the eyes. Care must be used in the selection of these, for some of the coloring matter used (especially in blue and red glasses) absorbs the lightgiven out at the apex of the arc, and this would be detrimental to fine work.
The electric arc, when in a strong magnetic field, exhibits another peculiarity. It is known that if a circuit, traversed by a strong current, be broken under ordinary circumstances, a moderate spark will ensue, accompanied by a snap similar to that given by a toy cap when exploded. If, however, the break be made
in a strong magnetic field, an extremely large spark follows, accompanied by a peculiarly sibilant report, as intense as that of a pistol. The effect is very startling when unexpectedly made.
If a strong field be brought to bear upon the interrupter of the primary circuit of a Ruhmkorff coil, the spark emitted by the simple secondary coil equals in magnitude and length that which would be produced
under ordinary circumstances were the secondary in under ordinary circumstances were the secondary in means may often be employed to advantage in work with a Ruhmkorff, when a long spark is desirable and, at the same time, any electrostatic residue, owing to the condensers, is to be avoided.

HE PARIS EXHIBITION

In June, 1883, a few French members of Parliament among whom were MM. Herve-Mangon, Liouville, and Million, urged M. Herisson, minister of commerce, to consider the desirability of holding a national exhibi tion in Paris in 1885. Public discussions in the press and elsewhere followed, with the result that it was considered best to hold a " universal" exhibition in Paris in 1889, the centenary of the French revolution in 1779. M. Jules Ferry, who was then president of the council, considered that such an exhibition would be not alone good in itself, but tend to keep peace in Europe. On November 8, 1884, M. Jules Grevy, president of the republic, signed, upon the recommendation of M Rouvier, minister of commerce, a decree that a univer sal exhibition should be opened in Paris on May 5, 1889, and should be closed on the 31st of October, in the same year. A deliberative commission was at the same time appointed to consider the best method of carrying out the project, and it recommended that other nations should be invited to take part in the exhibition, on the economical ground that it celebrated the French centennial of industrial freedom. Later on, under the Freycinet ministry, M. Lockroy, minister of commerce and industry, asked credits from the chambers for the purpose. The government resolved to leave the inat ter to private initiation, and that the whole cost of the enterprise should not fall upon the state, as in 1878. It pronounced, therefore, in favor of a system of organization by the state in alliance with a guarantee society as in 1867 , which had been found to work well. This society guaranteed the state eighteen million francs receipts, and gave certain guarantees in the event of the expenses exceeding the amount calculated. The society acted by means of a board of control and finances, composed of eight municipal councilors, seventeen senators, deputies, and agents of the state, and eighteen subscribers to the guarantee fund, each commissioner representing one million francs. This commission en joys, with the state and municipal council, the right of being consulted by the minister of commerce on all questions relating to the financial aspects of the exhibition. In short, the state has control of the exhibi tion, the city of Paris has a voice in the control, and the guarantee society does not lose sight of its capital. The state will be reimbursed to a large extent by the great circulation of money and extra surplus from its indirect imposts. The city of Paris will be largely reimbursed by increased receipts in octroi duties, and the guarantee society is safeguarded by the receipts of the exhibition. A law, dated July 6, 1886, sanctioned this combination, and a few days afterward, on the 28 th of July, a decree regulated the organization of the services. M. Edward Lockroy, minister of commerce and industry, received the title of commissioner general of the exhibition ; M. Alphand, that of director general of the works; M. Georges Berger, that of director-general of the exploitation ; and M. Grison director-general of the finances. M. Bartet was ap pointed engineer-in-chief, MM. Contamin, J. Charton and Perron have control of the metallic constructions, MM. Bouvard, Duturt, and Fornige are the architects of the exhibition, and MM. Laforcade and Lion have charge of the gardens and plantations. A ministeria order, dated August 26, 1886, appointed a consultative committee of three hundred persons, under the title of the grand council of the universal exhibition of 1889, and this was subdivided into twenty-two consulting committees to watch over various departments of the works. Foreign committees, established at the request of the Freuch government, were each invited to be represented by a delegate charged to deal with ques tions interesting to the nation he represented. The minister and the commissioner-general do not corre spond directly with foreign exhibitors.
The ground plan of the whole exhibition, published herewith, will make clear the general arrangement. The portions devoted to exhibits from Great Britain are represented by the darkest areas. The exhibition is divided into three great parts. One part, bounded on the north by the Trocadero, is on the north bank of the Seine, and devoted chiefly to exhibits relating to horti culture and arboriculture. It is connected with the chief part of the exhibition in the Champ de Mars by the Pont de Jena, and the main thoroughfare passes under the center of the Eiffel Tower-the positions of the four feet of which are represented in the map.
In that part of the exhibition which covers the Esplanade des Invalides are many scattered buildings. One of them is for miscellaneous exhibits, and some of the others for exhibits by the French naval and military authorities. Others are for exhibits from the French colonies. Places are being built in the Seine for floating exhibits of boats and ships. Some English steamlaunches are expected to be there.
At one time the plan was under consideration of connecting the Champ de Mars and the Esplanade des Invalides with a railway denoted by the dotted line, R R. Unfortunately for the public, this idea has been abandoned, and they will have to go an iminense way round by the route marked W Y. This length, however, will be traversed by a railway, which will carry ever, will be traversed by
passengers for a small fee.

Plan II. represents part of the palace of the Champ de Mars, which plan we copy from the Bulletin Officiel of the exhibition. The shaded upper part represents a portion of the great machine gallery. The galleries numbered 41 will be devoted to exhibits connected with the working of mines; 47 , to leather and skins; 45, chemical products; 43, hunting and fishing appliances ; 42, forestry appliances ; 44, agricultural products, not alimentary ; 46, bleaching and coloring: 31, linen; 39, encampment appliances; 38, arms, portable; 35, hosiery and dress accessories ; 33, silks; 34, lace and lace making; 36, dresses for the two sexes; 40, toys; 37, jewelry. Returning to the upper portion of plan II.. gallery 27 is devoted to heating appliances; 25 , bronzes and artistic castings; 26, clocks and other time-keeping instruments; 29, ornamental leather work; 28. perfumery ; 22 , wall papers ; 18, decoration and upholstery; 21 , upholstery and tapestry; 17 , these three galleries are devoted to furniture; 20 , two galleries will contain specimens of ceramic art ; 19, crystal and glass work ; 24, goldsmiths' work; 23, cutlery ; 20, mosaics. The pavilions of various Oriental nations will border this hall of miscellaneous exhibits, on that side of it nearest the Avenue de Suffren. The central portion of the lower part of the plan represents the area allotted to groups III., IV., and V., and to class 60 , group VI.
By a ministerial order of August 2, 1887, an international congress of photographers will be held in Paris in connection with the exhibition; and by a resolution dated July 16, 1888, of the minister of commerce and industry, director-general of the exhibition a committee of organization was nominated to make the necessary arrangements. That committee includes the names of some men of great celebrity, including that of M. Edmond Becquerel, the chief pioneer and discoverer in relation to photography in natural colors. No great progress has been made in this research since his experiments of half a generation back. To this day such pictures cannot be fixed, and are slowly destroyed by light. MM. Paul and Prosper Henry, of Paris, who have done such good work in stellar photography, are among the members of the committee, and its president is Dr. Janssen, director of the Astronomical Observatory at Meudon, who discovered in India how to photograph the red flames of the sun without an eclipse. M. Davanne, vice-president of the French Photographic Society, is one of the most active members of the committee. The congress is expected to be held at some period between July 15 and August to be held at some period bet ween July 15 and August
15, 1889. We are indebted to the Engineer for the fore15, 1889. We are indebted to the Engine
going and for the plans herewith given.

J. s. GUNBOAT YORETOWN.

The gunboat Yorktown is the first of a group of three, all similar in design. She is somewhat smaller than the Swatara class of vessels, but in offensive and defensive power and speed is immeasurably their superior.
She is a twin-screw, coal-protected cruiser, with poop and forecastle decks, with an open gun deck between.
Forward and aft, throughout the length of the vessel, is a three-eighths inch steel watertight deck, under which are placed the machinery, magazines, and steering gear. The principal dimensions of the ship are as follows:

Length between perpendiculars, 226 ft ; depth of Length between perpendiculars, 226 ft ; depth of
hold, 18 ft .9 in .; draught forward, 13 ft .; draught aft, 15 ft .; mean draught, 14 ft ; displacement in tons to L. W. L. (loaded water line), 1,703 tons ; area, L. W. L., $5,765 \mathrm{sq}$. ft.; sail area, $6,352 \mathrm{sq}$. ft.; indicated horse power, natural draught, 2,200 ; forced draught, 3,300 knots, butit is believed she will show even better figures than these. Her crew will consist of 160 men all told.
The Plating (outside).-Garboards, 15 pounds, or about $3 / 8$ inch ; from thence to main deck, except double strakes amidships, 14 pounds; above main deck, 10 pounds. The plating up to the watertight deck is lap jointed and single riveted at the edges. Above the
watertight deck, amidships, the plating is flush jointed watertight deck, amidships, the plating is flush jointed riveted at the butts. In the wake of the torpedo ports and the machine guns the plating is 40 pounds, or 1 inch thick, as a protection from the fire of an enemy's machine guns.
A conning tower, oval in shape, is built on the forecastle deck, athwartship, $71 / 2 \times 4 \mathrm{ft}$. fore and aft, 5 ft . $41 / 2 \mathrm{in}$. above the deck, with a cover with a vertical travel of 3 inches. The tower is fitted with complete steering apparatus, speaking tubes, and telegraphs to the engine room. A handsome wood pilot house is fitted the engine room. A handsome wood pilot house is fitted
forward of the conning tower, with plate glass winforward of the conning tower, with plate glass win-
dows, steam steering wheel, telegraphs, etc. This pilot house is to be used in time of peace when cruising ; but in an action, all manipulation of the ship will be from within the conning tower.
Her rig is that of a three-masted, fore and aft schooner. In coal endurance, the normal supply is 200 tons, but the bunker capacity is for 400 tons. This coal is disposed in the wake of the machinery and boiler, so as to give additional protection to these most invaluable adjuncts of the ship.
endurance of the yorktown.

Speed.	Indicated horsepower.	Coal.		Distanceper day	Coal supply of ${ }_{\text {tons. }} 393$		$\begin{gathered} \text { cool } \\ \text { por } \\ \text { por } \\ \text { por } \end{gathered}$
		(Per	${ }_{\text {Per }}^{\text {day. }}$		($\begin{gathered}\text { Distance } \\ \text { can steam }\end{gathered}$	Days.	
		Tons.	Tons.	Knots.	Knots.		
	2,300	2:60	${ }_{42}^{61} 7$	${ }_{\substack{384 \\ 360}}$	${ }_{\substack{2,419 \\ 3,366}}$	${ }_{9}^{6 \cdot 3}$	1.75
	2,000	- 1.38	${ }_{\text {che }}^{31.92}$	${ }_{312}^{336}$	${ }_{\substack{4,136 \\ 4,773}}$		${ }_{1}^{1.50}$
	${ }^{1,2600}$	${ }_{0} 0.82$	- ${ }^{19} 1$	${ }_{288}$	${ }^{4.750}$	${ }_{20}{ }^{10} 5$	${ }_{1}^{1.50}$
	-	- $\begin{aligned} & 0.46 \\ & 0.26 \\ & 0.17\end{aligned}$	- $\begin{gathered}11.04 \\ 6.24 \\ 4\end{gathered}$	240 192 14	(8,54.	35.5 62.9 96	- 1.60
	200	$0 \cdot 17$	4.08	144	13,870	${ }^{96} 3$	

The motive power is furnished by two triple-expan sion engines, placed in separate watertight compart ments, and develop with natural draught to 2,200 H.P. and forced draught to $3,300 \mathrm{H}$. P. The cylinders are 22,31 , and 50 in . in diameter, with 30 in . stroke. The pumps of all kinds will be driven by auxiliary engines. The two propellers are each three-bladed, and are $101 / 2$ feet each in diameter. There are four boilers, and are
of the cylindrical horizontal pattern ; each 9 ft .6 in . diameter and 17 ft .6 in . long; with a grate surface of 220 square feet.
There are two sets of dynamos to furnish a system of ncandescent electric lighting throughout the ship. The search lights are of 25,000 candle power.
Armament.-The main battery is composed of six in. breech-loading rifles, two on the forecastle and two on the poop, with the line of fire about 18 feet above the water. One is mounted on each side in the waist of a sponson, at a height of 10 feet from the water. The forward guns concentrate at 300 feet forward the stem, and the after two at 300 feet abaft the vessel, while three guns on one side can be concentrated at a point 100 feet from the side of the vessel. The secondary battery consists of eight rapid-fire guns and revolving cannon on the rail and tripod mounts, The Yorktown has eight torpedo guns or launching tubes, fixed ones, in the stem and stern, and three training tubes on each side. Automobile torpedoes will be fired from these tubes, and there is a complete outfit of boat, spar torpedo, gear, and charges.
The quarters for the officers are under the poop deck at the stern of the vessel, and are admirably lighted and ventilated. The crew's quarters are situated on the forward part of the berth deck, and are divided ath wartship by steel watertight bulkheads, fitted with the necessary watertight communicating door. The dispensary and mess lockers are also located here. Great space and accommodation are also provided for the crew under the forecastle deck. The water closets for both officers and men are here located, as are the crew's wash rooms and galley inclosure.
Two 47 mm. Hotchkiss guns are located here, in the bow, and a large space left for the manipulation of torpedoes on each side.
The Yorktown was built at the ${ }^{\circ}$ yards of the Wm . Cramp \& Sons' ship and engine building works, Philadelphia, Pa., and is now waiting for the government to give her the official trial before she can be accepted. This trial will probably be made within a few days, and it is anticipated that she will come yp to the dequired standard, and will be put in commission at an early date. With the threatened complications in the Samoa affair, this addition to the new navy will be gladly welcomed.

Improved Polariscope.

Some improved polarizing apparatus for microscopes were exhibited and described by Dr. S. P. Thompson, at a recent meeting of the Physical Society, London. For polarizer, he uses a special prism, and for analyzer a flat-ended one of his own design. The former prism is formed from a rectangular block of spar, two faces of which are perpendicular to the optic axis; two cuts parallel to the axis are made from the middle of one
side to the ends of the opposite, and the cut faces are side to the ends of the opposite, and the cut faces are polished and cemented by Canada balsam. A short prism with wide angle is thus obtained which can be readily fitted to the substage of the microscope. The analyzer, which consists of two wedges of spar, is mounted in a tube which fits on the eyepiece, and by
recognizing that the upper end need not be larger than the pupil of the eye, the author has been able to considerably reduce the length of the prism, and still keep the bottom end large enough to collect all the rays passing through the eyepiece.
Several ingenious methods of cutting spar so as to produce prisms with minimum waste were described and illustrated by models, and a "Nicol" made by the inventor at the age of seventy-nine was exhibited.
Mr. Lant Carpenter asked the author why he condemned analyzers placed directly behind the objective; for in his experience this arrangement gave the most satisfactory results.
In reply, Dr. Thompson said his experience was decidedly different from that of Mr. Lant Carpenter, and mentioned that Zeiss had abandoned the common arrangement and now introduced his analyzers between
the two lenses of his Huyghenian eyepieces.

Qorrespondence.

Query 22 of December $15,1888$.
To the Editor of the Scientific American :
Is there not another error in answer 22 of your issue of December 15, 1888?
T. B. A., in your issue of January 12, points out an error, which you state is typographical. This is evident by the solution of the equation $(500-x)+0.08 x$ $=200$; butI contend that the value of $x, \$ 326.09$, in $=200 ;$ but 1 contend that the value of $x, \$ 326.09$, in
this equation, and not $\$ 340$, as you state, is the answer. As I understand the problem, the amount due- $\$ 500$ \& was to be a cash payment at the time this transaction took place between A and B, but A being unable to meet his obligation, B agrees to extend the time for the payment of a balance, provided A will pay him part of the principal, and the interest in advance on the unpaid part.
Now, by these terms, I cannot understand how interest can be charged on the cash payment $-\$ 500-x$ and therefore the amount due B at the end of twelve months is simply the unpaid balance, $\$ 326.09$.
Roxbury, Pa.
[There is much probability in your statement. The only value attaching to the problem is as a question of algebra. Its wording is such that it is not easy to definitely solve it.-ED.]

Whence the Corona? f the Scientific American:

To the Editor of the Scientific A merican:
The solar eclipse of New Year's day has again brough up the question of the nature of the corona. Of the attempted explanations of this phenomenon, the one ascribing it to a diffraction of the sun's light on the edge of the moon seems to have found most favor, though it is not very clear how light thus diff racted can become visible as a halo without falling upon gaseous matter around the moon.
When the igneous mass out of which our satellite evolved was cast off from that of the earth to seek its own orbit, it is hardly to be supposed that it went without its due portion of those elements which, so far as they remained in a gaseous state, would eventually form an atmosphere. But astronomers say there is no evidence of a lunar atmosphere.
Many years ago the German philosopher Schopenhauer argued, from primary premises, that the moon once contained water like the earth and, since it lost its own heat, became covered with a crust of ice which he thought accounted for the brilliancy of its reflected light. Recent speculations on the moon's constitution have led to the same rational view, so that our satellite may be said to be getting credited at least with the possession of crystallized water.
Now, the congealment of the moon's water implies the disappearance of aqueous vapors, and an atmosphere deprived of such vapors might be expected to escape detection by telescopic search, because the remaining gases, nitrogen and oxygen, would be invisible. But it may be reasonably presumed that these gases would sufficiently reflect the sun's light to be rendered luminous under the favorable conditions of an occulta tion, and hence likely the corona-revealing a lunar atmosphere.
A. Partz.

West Philadelphia, January 16, 1889.

A Providential Escape.

A miraculous escape is recorded as having taken place at the Wright Steam Engine Works, at Newburg, N. Y., a few days ago. A pulley weighing nearly eleven tons was being adjusted in a lathe, when suddenly the chain by which it was suspended parted, allowing the wheel to fall into the pit below, a distance of eight feet, where it was broken into eight pieces. At the time the chain parted, one of the turners was standing on the hub of the wheel and was precipitated into the pit below. Those who witnessed the accident rushed to the spot, expecting to find him crushed beneath this enormous mass of iron, but he was discovered alive and sound, although the pit was only five feet wide. Of course the shock was severe, but he was entirely uninjured, save for a few scratches received from flying fragments. With a little help he was able to climb out of the pit, when he was warmly received and congratulated by his friends and co-workers.

The Book Camera.

Kruegener's book camera is a veritable detective. One might be meekly walking along the road, or mixing with the devout going to or coming from church (on a week day, of course), with this innocent-looking. yet really formidable, apparatus in his hand or underhis arm, and no one would suspect its nature, for to a casual observer it is a book and nothing more. Yet does it really contain, stored away in its interior, no fewer than two dozen small plates, $15 / 8$ inches square, each of which can be brought in rotation to the focusing plane, exposed, deposed into a separate receptacle, and another plate made to take its place, and all this by the simple act of pulling out a small handle, pushing it in again, and pulling a string.-Br. Jour. Photo.

REMARKABLE EXPLOSION OF A LOCOMOTIVE. To the Editor of the Scientific American:
Thinking the readers of the Scientific American might be interested in a rather remarkable boiler explosion which happened to locomotive No. 52 on the C., W. \& B. R.R., on the morning of the 24th of December, 1888, I inclose you a photograph of the engine, which I took the day after the explosion.
No. 52 is one of the old Rogers engines, and had been No. 52 is one of the old Rogers engines, and had been

The two men in the picture are the engineer and fireman.
Hoping thesefacts may interest you, I remain, as ever, an interested reader of your valuable paper, which I have taken for several years. Chas. P. Gilmore. Chillicothe, 0 .

A CONTINENTAL VILLA.

We reproduce, from an early number of our ARCHI-

The kitchen and store rooms are in the basement, and on the first floor are the living and drawing rooms, dining room, etc. The upper story contains only sleeping rooms. The owner gave directions for the arrangements of the plans, according to which seven rooms of the first floor were to be connected, in consequence of which the entrance and the vestibule had to be included in one room. The interior is finished in stucco, and ed in one room. The interior is finished in stucco, and ed with wooden panels and wooden ceilings. The ceil-

EXPLODED LOCOMOTIVE No. 52, CIN., W. \& BALT. R.R.-[FROM a photograph by chas. p. gilmore.]
explosion, which happened about one mile west of Blan-
chester, Ohio, she was pulling a passenger train at a speed of over thirty miles an hour, and, strange to say, she did not leave the track, although the explosion tore the barrel of the boiler completely off from the smoke arch to the wagon top. It started on the left side and tore over the top to the right, the sheet there blocking the driving wheels so they could not turn, and destroying the air brakes, so that the engineer, Ed. Rother, and fireman, Oscar Hodson (neither of whom was hurt in the least, although both were covered with soot and dirt), had to climb back over the tank and brake the train by hand. The explosion was heard for five miles, and the shock was so great that it jarred the lids off the stove in a house near the track where it happened. A piece of the bell was found over a quarter of a mile from where the explosion happened.

American, the illustration of a simple and unique de- ings of the other rooms are plastered and richly fressign of a dwelling house or villa in the classical style of coed. All the furniture and decorations were made architecture. The design is very simple, and unlike from plans drawn by the architects. The cost of the most of the country houses which have been built in this country; and we would suggest that, for large towns or small cities, a house of this description would be well adapted and strikingly ornamental. It would certainly attract attention from its unusual appearance, and an architect could enlarge the house and arrange the interior to suit the taste and convenience of a large or a small family, preserving the architectural design, which is unusually attractive.
The Architektonische Rundschau, in which publica tion the engraving first appeared, stated that Puttfarcken and Janda, of Hamburg, were the architects, and that the villa was erected at Wandsbeck, Germany, in 1886.
building was about $\$ 40,000$, and of the furniture about $\$ 20,000$.

Magnetic Purification of Clay.

Electricity is being more and more used for the purification of kaolin and other porcelain clays. The clay is sifted on to a rapidly revolving horizontal plate, which is surrounded with powerful electro-magnets, which retain the particles of iron. From this the clay passes to a second plate which removes the last traces. The process is said to be comparatively cheap and very rapid, and since its introduction many clays hitherto rejected as containing too much iron have become of value for the manufacture of pottery.

simple experincents in physics.
by geo. m. hopings.
The enormous pressure developed in a hydraulic press is a subject of wonder, even to those who perfectly understand the principle involved in its operation.

Fig. 1.-DEMONSTRATION OF PASCAL'S LAW.
Men regard with interest anything that furnishes an exhibition of power, and it is difficult to avoid thinking that in the hydraulic press power is actually created in some mysterious way. However, nothing of this kind happens. A hydraulic press is simply a power converter, in which a certain pressure per square inch, acting on a small area, is able to produce the same pressure per square inch on a large area, thereby multiplying the pressure. The sum total of all the power utilized in the press is exactly equal to the sum total of all the power applied to the press, less friction.
Before proceeding with the hydraulic press it will, perhaps, be well to examine some of the principles which underlie its operation. A hollow metallic globe (Fig. 1) is provided with openings, at the top and bot-

Fig. 3.

Fig. 4.

Fig. 5.
small or large. The cup is filled with water by sub merging it with the tube in a horizontal position, with the tube uppermost, and alternately pressing in the fiexible covering and then drawing it outward. This operation soon drives out the air and fills the cup with water. The cup is placed with the pipe in a vertical position, and a board is laid over the fiexible cover and pressed to expel all of the water above the rim of the cup.
Now, by placing a twenty-five pound weight upon the board and pouring water into the tube, the weight will be lifted and sustained. This experiment shows that a great pressure may be produced by a small column of water. In this case the cup, with its fiexible cover, represents the large cylinder and piston of a hy draulic press, the tube stands for the pump cylinder the small water column in the tube for the piston, and the weight of the column for the power applied. By increasing the height of the water column, the pressure will be correspondingly increased.
Fig. 3 shows two communicating vessels of different diameter. The larger one is divided at a point, b, near its base, and reunited by means of a packed joint. When water is poured into one of these vessels, it rises to the same level in both. By removing the upper portion of the larger vessel and tying a fiexible cover over the lower part, it is found that a column of water in the smaller vessel extending to the point, a, will be exactly counterbalanced by a certain weight placed on the fiexible cover, as in Fig. 4. The weight required will be exactly that of a column of water of the diameter of the larger vessel and equal in height to the distance between the fiexible cover and the level of the smaller column, a. This may be shown by removing the weight, replacing the upper part of the larger vessel, as in Fig. 5, and filling it with water up to the level, a. The weight of water required in the larger vessel to thus lift the smaller column to the point, a, will be found to be the same as that of the weight removed.
It seems paradoxical that no variation in the size or form of the upper portion of the larger vessel can make any difference in the results, provided the same water level is maintained; but it must be remembered that the whole question is simply one of pressure per square inch. The weight will as readily balance a large column as a small one, the vertical height being the same in each case.
In Fig. 6 is illustrated a hypothetical hydraulic press, above which is given a diagram showing the relative areas upon which pressure is exerted. To the two square communicating vessels, A, B, are fitted the pistons, a, b. The piston, a, is one inch square, and consequently has an area of one square inch. The piston, b, is five inches square, and consequently has an area of twenty-five square inches. If the spaces below the pistons be filled with water, it will be found that, in conse-
tom, and upon four or more of its sides. Around these openings there are collars, over which are stretched and tied diaphragms of rather thick but elastic rubber, the upper diaphragm being omitted until the globe is filled with water. The globe being placed upon a suitable support, pressure is applied to the upper diaphragm, when it is found that the pressure is transmitted through the medium of the water not only to the diaphragm at the bottom of the globe, but in an equal degree to the diaphragms upon the sides of the globe, thus showing that the pressure is exerted by the water equally in all directions, and at right angles to the surfaces with which it is in contact. This is a simple illustration of Pascal's law.
Probably there is not a more striking example of the effects of hydrostatic pressure than that presented in Pascal's experiment, in which he burst a stout cask by inserting in it a tube about 30 feet high, and filling both the cask and tube with water. This experiment, in a modified form, is illustrated by Fig. 2. A tin cup of 6 inches diameter, and having a wired edge, is furnished with a leather or rubber cover, tied over the top of the cup so that it may have a motion of a half inch or so. In the side of the cup is inserted a tube which extends upward above the top of the cup 24 inches, and is furnished at its upper end with a funnel. The diameter of the tube is of no consequence ; the result will be the same whether it is
quence of the equal distribution of
pressure throughout the confined body of water, a weight placed on the piston, a, will balance a weight twenty-five times as great placed upon the piston, b; that, for example, a downward pressure of five pounds upon the piston, a, will, through the medium of the water, cause a pressure of five pounds to be exerted on every square inch of surface touched by the water, and that the movable piston, b, having twenty-five times the area of the piston, a, and receiving on each square inch of its surface a pressure of five pounds, will be forced upward with a pressure of one hundred and twenty-five pounds.
A press of this description would have no practical value, inasmuch as a movement of the piston, a, through the space of five inches would lift the piston, b, only one-fifth of an inch. To lift the piston, b, five inches would necessitate a piston, a, having a length of one hundred and twenty-five inches (over ten feet).
To obviate this difficulty, the pump piston of a hydraulic press is of a reasonable length, and valves are provided by means of which the short piston, by acting repeatedly, will accomplish the same results as would, in the other case, require a very long piston. In Fig. 7 is shown a very simple and easily constructed hydraulic press, which has considerable utility. It is made of pipe fittings, valves, rods, and bolts, that are all procurble almost anywhere.
To the baseboard is secured a flange, into which is screwed a short piece, A, of gas pipe. On the upper end of the pipe is screwed a coupling, into which is inserted a bushing, from which the internal thread has been redioved. In the bushing and in the pipe, A, is inserted a rod of cold rolled iron, bar of brass, or a short section of shafting, and the space in the coupling around the rod is filled with hemp packing, which may be compressed, as required from time to time,

by bolts extending through the base and through a reenforcing bar under the base. The check valves both open toward the cylinder, A, and the outer one is provided with a rubber suction pipe. Water is drawn into the pump by lifting the piston and forced into the press barrel by the descent of the piston. The proportion of the pressure attained to the power applied will be as the area of the large piston to the area of the small the area of the large piston to the area of the small
one. With pistons of respectively 2 inch and $1 / 4$ inch

Fig. 8.-SECTIONAL VIEW OF SIMPLE HYDRAULIC PRESS.

Russian Sheet Iron

The inquiries we receive from time to time respecting Russian sheet iron demonstrate that there is a demand for that article which is badly supplied, as well as a good deal of ignorance respecting the method of its production. It is generally supposed that the mode of manufacture is a dark secret, which cannot be pene-trated-indeed, quite recently, a newspaper paragraph has been in circulation in which it is asserted that Russian sheet iron is produced in a huge walled town, from which no workman is ever allowed to depart alive. This statement is an absurdity on the face of it. As a matter of fact, there is no particular secret in the matter, seeing that Dr. Percy described the process a great many years ago, and quite recently Mr. F. L. Garrison has contributed a paper on the subject to the United States Association of Charcoal Iron Workers. Mr. Garrison visited the works in the Ural district of Russia and saw the sheet iron made; consequently his paper possesses unusual value and interest to all producers and users of fine sheet iron.
The ores used are chiefly those from the Maloblagodatj mines, the chemical composition being : Metallic iron, 60 per cent ; silica, 5 per cent ; and phosphorus, 0.15 to 0.06 per cent. The ore is either made into malleable iron in various kinds of bloomaries, or is smelted into charcoal pig iron, and then puddled or dealt with in a Franche-Comté hearth. The blooms or billets are rolled into bars 6 inches wide, $1 / 4$ inch thick, and 30 inches long. The bars are first assorted, and the inferior ones rerolled. 'Those accepted are carefully heated to redness, and cross-rolled into sheets about 30 inches square, the process necessitating from eight to ten passes through the rolls. The sheets thus obtained are again twice heated to redness, and rolled in sets of three each, great care being taken that every sheet before being passed through the rolls is brushed over with a wet broom made of fir, and at the same time powdered charcoal is dexterously sprinkled between the sheets. The sheets receive ten passes through the rolls, and are then trimmed to a standard size of 25 by 56 inches. They are then further assorted, the defective ones being thrown out, each sheet is wetted with water, dusted with charcoal powder, and dried.

That done, they are made up intopackets containing 60 to 100 sheets, and bound up by the wasters. The processes of annealing and finishing are thus described by Mr. Garrison:
" The packets are placed, one at a time, with a log of wood at each of the four sides, in a nearly air-tight chamber, and carefully annealed for five or six hours. When this has been completed, the packet is removed and hammered with a trip-hammer, weighing about a ton, the area of its striking surface being about 6 by 14 inches. The face of the hammer is made of this some what unusual shape in order to secure a wavy appearance on the surface of the packet. After the packet has received ninety blows equally distributed over its surface it is reheated, and the hammering repeated in the same manner. Some time after the first hammering the packet is broken and the sheets wetted with a mop to harden the surface. After the second hammering the packet is broken, the sheets examined to ascertain if any are welded together, and completely finished cold sheets are placed alternately between those of the packet, thus making a large packet of from 140 to 200 sheets. It is supposed that the interposition of these cold sheets produces the peculiar greenish color that the finished sheets possess on cooling. This large packet is then given what is known as the finishing or polishing hammering. For this purpose the trip-hammer used has a larger face than the others, having an area about 17 by 21 inches. When the hammering has been properly done, the packet has received sixty blows equally distributed, and the sheets should have a perfectly smooth, mirror-like surface.
"The packet is now broken before cooling, each sheet cleaned with a wet fir broom to remove the remaining charcoal powder, carefully inspected, and the good sheets stood on their edges in vertical racks to cool These sheets are trimmed to regulation size (28 by 56 inches), and assorted into Nos. $1,2,3$, according to their appearance, and again assorted according to weight, which varies from 10 to 12 pounds per sheet. The qual ity varies according to color and freedow from flaws or spots. A first-class sheet must be without the slightest flaw, and have a peculiar metallic gray color, and on bending a number of times with the fingers, very little or no scale is separated, as in the case of ordinary sheet iron.'
It is the peculiar feature of Russian sheet iron to possess a beautifully polished coating of oxides-what the Germans term "glanz" -and it is in securing that has been in the same hands for a very long series of years, and the men naturally possess the accumulated years, and the men naturally possess the accumulated
skill of generations of their predecessors. It must be remembered, also, that the iron ores used are very pure, containing but small traces of phosphorus and no sul phur, and that they are smelted and the product heated exclusively with wood fuel. It is not very easy to understand the exact effect of the powdered charcoal, nor the effects of the interposition of the cold finished
sheets between those not yet cold. Mr. Garrison say that the Russian ironmasters attribute the excellence of their product to these peculiarities of treatment, and he seems convinced that there is no secret about the process. If he is right, then, it would seem to follow that there ought to be no special difficulty-given similar materials and fuel, and with the same methods of procedure-in turning out sheet iron as good as the Russian article in this or any other country. In view of the demand for Russian sheet iron, it might pay some of our sheet rollers to make the experiment at all events.-I'he Ironmonger (London).

Endurance of wood Posts in Fires.

The contents of a building, says E. M. Shaw, in the Architect, (London), have undoubtedly much to do with its safety or danger, but, in estimating the whole risk the materials of which the building is constructed mus never be put out of consideration. Every building cannot be erected with brick columns and groined arches, but there is a vast range between these and the miserable cast iron posts too commonly to be seen, many of which have been put in without having been tested for strength even at the ordinary temperature of the atmosphere, much less at that of a fire. The following illustration may be given of a fact well known to all firemen of experience, but seldom proved to de monstration for those not specially interested.
A fire occurred in a warehouse of enormous proportions, and raged with great fury for five hours, at the end of which time it was extinguished, and a very large proportion of the building and its contents saved The warehouse was constructed of brick walls, it had wooden floors supported on wooden beams, which in their turn were carried on wooden story posts about 12 inches thick, and, although serious damage was done, not one portion of the heavy wood work was destroyed. After the fire the proprietors allowed the chief of the fire brigade to remove one of the story posts, with a section of the beams and other parts surrounding it above and below.
This post had been subjected to the full action of the fire during the whole of its duration, as already mentioned, or, making full allowance for everything, including the delay of the fire attacking the particular spot on which it stood, and the time at which the cooling process commenced, certainly not less than four and a half hours. As large quantities of water had been used, and it was probable that everything had been saturated, the wood was carefully dried before a strong fire until not a trace of moisture remained in it It was then set on end in an open yard, exactly as it had stood in the warehouse, with the pedestal underneath, the cap above, and the beam across the cap, more than a ton of shavings, light wood, and heavy wood were placed round it, and after the whole heap was saturated with petroleum a light was applied to it, and, after this, large quantities of petroleum and turpentine were pumped on it. At the end of two and a half hours the post, beam, and other parts were withdrawn from the fire, and within a few minutes from the time they were withdrawn they ceased to
burn. A few feet were then sawn off horizontally, burn. A few feet were then sawn off horizontally, at that part which had suffered most from the flames, and afterward the same piece was split longitudinally with steel wedges, in order to examine its condition.
The post was of pitch pine, about the most inflammable wood known, and yet after exposure for seven hours to fires, the fury of which could not be exceeded except in blast furnaces, it contained within it a quantity of perfectly uninjured and apparently fresh wood, probably capable of supporting the whole weight which the original post was designed to carry. Imme
diately after the saw cut, and again after the cleaving with steel wedges, the center was carefully examined, and found to be just perceptibly warm to the touch, but nothing more, thus proving that the fiber, in which the strength lay, was quite uninjured.

[Photographic Times.]

Bleaching Blue Prints.

An original method of procuring a beautiful tone and detail with the ordinary blue prints is certainly an accessory to the amateur photographer.
I hardly expect to go into an explanation of the preparation of the paper-it is not necessary in this case; suffice to say that almost any solution that you may make up and spread on the paper for blue prints can be treated by this bleaching process with the same effect as the ordinary stock paper that is sold at the tationers' or photographers' stock houses.
To get the prettiest tone in the blue print it is neonger to overprint-that is, to expose the print much after a thorouch washing in running water procure a tray, say 8×10, for small (4×5 or $5 \times^{7}$) prints, and put n eight ounces of the following bleaching mixture :

Lift the blue prints from the water and place in the leaching solution carefully, so as to cover the entire
sion immediately takes on a purplish hue, which is very beautiful for certain effects. The print will then gradually fade away, changing to almost the original coloring, and if allowed to remain in the solution the blue will bleach out entirely, leaving no trace of the blue solution on the paper.
The operator must use his own judgment as to the proper time to stop the bleaching, and he can readily judge that by watching the print fading away, and remove it immediately when he has procured the proper tint.
I would advise overprinting for the reason that the half tones and the beautiful detail so often found in he shadows of a silver print are not to be had on an ordinary blue print unless it is overprinted. This gives the operator an opportunity to judge, by actual observation during the bleaching process, the proper time to remove the print. Immediately after taking it out of the bleaching solution, place the print back into the running water and wash for a short time, so as to renove any trace of the ammonia.
If this solution bleaches your prints too quick, add a little more water, or if it acts too slow, add a few drops of ammonia.
I would advise the use of the weak solution, as it gives one an opportunity to handle the prints better, and it, seems to have a better effect on the prints.
In special cases, where you wish to remove a blue spot or blemish of any kind, take a small brush and spot or blemish of any kind, take a small brush and
paint over the blemish with a mixture of ammonia paint over the blemish with a mixture of ammonia
and water. High lights can be readily brought out in this manner, which, if properly handled, has a very desirable effect.
For the use of photo-engravers a very cheap and desirable method to obtain correct drawings is as folows:
After the blue print has been washed and toned down to the proper coloring, take a drawing pen or
brush and with indelible drawing ink draw the necesbrush and with indelible drawing ink draw the neces-
sary lines for the engraving on the print, and after the ink is well dried, place the print in the bleaching solution and allow it to remain until the blue tint is entirely removed.
This will give you a pure white paper and clean black lines. The bleaching solution will have no black lines. The bleachi
effect on the indelible ink.
Oxalic acid or cyanide of potassium in solution will bleach blue prints, but usually leaves a yellow tint on the white parts, which is undesirable, let alone the danger of handling or using these poisonous chemicals. -John E. McCrickart.

Electric Railways and Motors.

The electric street railway in the city of Boston, being built under the Bentley-Knight and Sprague patents, is nearly completed. It will be ready for oper ation soon, in time to test the feasibility of those sys tems amid the ice and snow of the Boston climate, which is particularly bad for subways, owing to the rapid variations in temperature, which give rise to large quantities of slush and sleet-the two evils against which electric railways will have to contend. If this which electric railways will have to contend. If this
road operates successfully in Boston this winter, the feasibility of the devices with which it is fitted will be well established.
The electric street railway to be built in Fulton Street, New York City, is progressing slowly. The street is broken, and the details of construction are lying around in great confusion. The delay is probably caused by the proverbial wire pulling with which ably caused by the proverbial wire pu
New Yorkers are so well acquainted.
New Yorkers are so well acquainted.
We notice an increase in the demand for electric motors to be used in driving isolated machinery. Among the recent orders is another for driving transfer tables. This makes the third electric application of this nature now in successful operation.
There is a complaint against the use of dynamos run by separate engines in the front car of passenger trains for the purpose of lighting the cars with electric light. It is stated that the vibrations of such dynamos and engines shake the cars considerably, and by some it is further stated that the pulsations can be perceived at the rear of the train. There is a demand for a well balanced engine and dynamo connected directly together, for the purpose of lighting passenger cars, and it is wholly inexcusable that such machinery should be so badly out of balance as to shake the train. In this connection it may be well to state that so farthe systems adopted for electric lighting in our through trains have been such as to require the use of the small stationary engine during the whole day and night, in order to store sufficient current for use during the short time the lights are lighted. It does seem that our elecRailway Review.

A PINT of warm water taken on an empty stomach in the morning is the safest and surest of all remedies for habitual constipation. It dissolves the fecal matter and stimulates peristaltic action, thereby giving a normal action without pain. If the tongue is coated, sweetening

recentiy patented inventions.

Engineering.

Exíaust Nozzle.-John H. McIndoe and William Meredith, Mount Pleasant, Pa. This is a
nozzle adapted for the smoke box of a locomotive ennozzle adapted for the smoke box of a locomotive en-
gine, with sliding block for controlling the capacity and top opening, which does not, when fully adjusted
inward, lap over the opening below it to baflet the
escaping steam, but insures a free or uninterrupted discharge from the channel through the nozzle.

Railway Appliances

Dumping Car.-Ferdinand E. Cancla, New York City. This car is of the kind having one or more discharge apertures in itt floor, closed by sliding doors, the inveution covering novel features whereby the sills are kept intact, and serve to carry the door
and whereby great strength and thorough efficiency are cured.
Single Rail Railway. - Rufus H. Brown, Peabody, Mass. This invention provides means and mechanism whereby the car is not only supported in upright position, but is allowed a certain
amount of play vertically and laterally, that it may ride amount of play vertically and laterally, that it may ride
over obstacles and inequalities, springs being arranged in different positions to effect such object.

Mechanical.

Cotton Compress.-George Taylor Hillsborough, Texas. This press has opposing sets of platen with the frame, the duplicate sets of tognles being each united to the stud of the piston by single being each united to the stud of the piston by single
links, making a simple and efficient device, securing economy in power and in construction.
Convering Belt.-Daniel Brennan, Jr., Saltersville, N. J. This belt is made of a pair of throughout, by narrow metallic bars or wires looped over and upon them, and is capable of being driven by
ordinary machine pulleys, the cross bars and attach ordinary machine pulleys, the cross bars and attach
ments being of shapes to form sides, flights, buckets, ments being of shapes to form sides, fights, buckets,
etc., upon the belt, to adapt it to work horizontally, etc., upon the belt, to adapt it to work horizontally,
vertically, or at any required angle, to convey materials vertically, or at any
Motion Converting Mechanism. John De Monnin, Corvallis, Oregon. This mechanism is specially designed for application to a steam engine,
to convert rectilinear into rotary motion, and comprises to convert rectilinear into rotary motion, and comprises engaging in opposite directions spiral grooves in a cylinder applied to a shaft, with stationary or fixed cams for shifting or switching the pivoted cam.
Bush Hammer.-Luther H. Rowell, South Thomuston, Me. This is a hammer for dressing
stone, in which two pole plates are used, with integral stone, in which two pole plates are used, with integral
shank sections, united by a sleeve, which forms a socket for the handle, the cuts being made in the form of long
blades, each in one piece, extending between and blades, each in one piece, extending between and
beyond the pole plates, the plates and cuts being held beyond the pole plates, the plat.
together by transverse bolts.

Seamless Pulp Tubes. - Horace J peculiar construction and arrangement of parts in peculiar construction and arrangement of parts in a
machine adapted to form straight sections of seamless
tubes, pipes or orther analogous articles of a uniform tubes, pipes, or other analogous articles of a uniform
diameter throughout, of paper or wood pulp.
Elevator lndicator.-Oliver C. Hay ward, New York City. Within the elevator shaft, or in casing auxiliary thereto, the several indicators are invention providing a simple and economical attach-
ment whereby the approach of the elevator from above ment whereby the approach of the elevator from a
or below will be indicated and its position shown.

Agricultural.

Plow.-Jeremiah R. White, Raymond, Miss. This plow has a reversible' scraper blade, made of oblong diamond form and cylindrical in curve, so that all the corners will touch a flat surface, and having a central bolt hole and indentations or gashes on either
side of the center, whereby the scraper can be adjasted to trim off the row between the bar of the plow and the plants.
Feed Trough.-Martin V. B. Steven son, Jesup, Iowa. The main feed receptacle has a by the horse or other animal bringing its nostrils close to the bottom of the feed trough, whereby the grain or feed is fed to the trough in limited quantities, and the feed is fed to the trough in limited quag.
animal will be compelled to feed slowly.
Harvester and Thrasher.-Lester A. Gillett, Leonardville, Kansas. The cutter bar is and lower or lock in position, according to the depth to which the grain is to be cut, the grain beng fed into the front open end of the thrashing machine by a belt, the straw, after thrashing, passing out of the rear of the casing, while the kernels are passed through a chute
into bags.
Corn Cutter.-George W. Gibson Kimbolton, Ohio. The frame of the machine has side extensions forming horizontal tables on which the cornstalks cut by knives fitted at the front edge of the
tables fall as the cutter is drawn forward, while the tables fall as the cutter is drawn forward, while th machine has an attachment by which shocks are readily
formed after enough stalks have been cut for the purpose.
Hand Planter.-Wilber S. Wikle, Union, West Va. This planter has two vertical arms, hinged at their lower ends by plates, the arms having
at their sides metal casings adapted to project downward to form a chute or mouth which is opened as the arms are bronght together and closed as they are drawn
apart, with other novel features, whereby corn and benns may be planted at the same time and fertilize simultaneonsly distributed.

Cartridge Loader. - James V Thompson, Fort Madison, Iowa. The device has a
powder and a shot magazine and a wad box, and is powder and a shot magazine and a wad box, and is
adapted to fill either a paper or metal shell, regulatiug the amount of charge as desired, while it is durable in construction and may be expeditiously and conveniently m
primer.
Attaching Efeglasses.-William H. ATTACHING EYEGLASSES.-W
Brownlow, Brockville, Ontario, Canada, and Joel S. Warner, Ogdensburg, N. Y. A plate is secured to the
under front surface of the visor or brim of a hat, and eyeglass frame and lazy tongs connected therewith, in sach way that the glasses may be easily drawn down-
ward and adjusted, or will be held out of the way, ward and" adjusted, or will be held out
against the hat brim, when moved upward.
Chalk Holder.-Fannie Chambers, New York City. Within the holder is an operating screw rod, on which is mounted a traveling nut, and a
chalk-holding clamp, to firmly hold the chalk, as it is projected out of and withdrawn into the casing by the operation of the screw rod, the device being for use with
tailor's chalk, the holder feeding the chalk down as its tailor's chalk, the ho
edge becomes worn.
Heat Radiator. - Asa C. Edwards, Westield, Mass. It consists of a heating drum having transverse rotary tubes with open ends, the apparatus
being provided with means by which the dampers of being provided with means by which the dampers of
the radiator may be automatically opened and closed and the radiator tubes be cleansed from soot.
Gate.-Joseph Albers, Wells, Oregon. Combined with a pair of pivoted gates are pivoted
opering levers and a rod connected to the pivots of the opering levers and a rod connected to the pivots of the
yates, with other novel features, whereby the gates may gates, with other novel features, whereby the gates may
be opened for the passage of teams, and closed, without the dismounting of
held in open position.
Gate.-Hiram S. Harris, Cincinnati, Ohio. This invention relates to sliding gates operated by levers actuated by persons passing, and provides
simple and positively acting devices by which the gate may be slid open or shut easily, and without derangemay of the levers, pull cords and drum.
ment of
Vehicle Shaft.-William B. Farrar, Greensborough, N. C. This shaft has a peculiar joint in its length that permits its position to be changed o increase or diminish the space between the shafts, to

dapt them to larger or smaller horses.

Hame Tug.-George W. Moliere, Ocean View, Cal. It has a hollow leather casing for the clip with shanks extending along the inside of the casing, with space for the tug and a set screw, the exended shanks and the trace, so that there is no project ing end of the trace, the latter being neatly housed.
End Gate.-Frank S. Sears, Atkinson, Ill. This is a wagon end gate, resting on a projecting strip or ledge at the rear end of the wagon body, and
connected to the body by metallic straps and hooks, that the gate can be readily opened and held in horizontal position, or swung beneath the body, or so that part only of the end gate may be opened.
Whip Socket. - Herbert Elder, Harrisburg, Pa. Combined with the whip socket are attaching plates, between which an arm is pivoted having a projection on its inner side, and a vertically sliding hook or catch, whereby a whip may be securely held
and locked, the whip being clamped against the interior and locked, the wh
Millstone Dress.-Joseph H. Brown, Social Circle, Ga. This invention provides a millstone ress with auxiliary transverse furrows to check or retard the progress of the partially ground material and prevent it from passing too rapidly from the eye out-
ward, making a combination dress for use with wheat nd corn, middlinge, and all varieties of grain, and with hich the stone can be run rapidly and will keep cool
Ash Sifter.-Edward E. Smith, New York City. The stove, below its grate and base flange, made a dele deeper than usual, to accommodate inders, which are discharged into two separate com partments at opposite sides of a partition across the bottom plate, and the invention covers novel features of construction in a sifter adapted for use in such

Sash Fastener.-John G. Erickson, Hadley, Minn. This is a sash fastener and holder, onsisting in a casing having an inclined locking bolt, to lock the sash when closed, and a vertically und out-
wardly movable friction holder for holding the sash open at any desired-height, the device being automatic
in its action, strong and durable, and having no springs.
Stefring Device, - Charles D Wooley, Walden, N. Y. This invention covers an auxiliary steering device to be readily arranged for use in case of accident to the main steering gear, the vessel
being made with a downwardly opening rudder recess, the rear part of the keel, in which is secured a vertically adjustable rudder post carrying a rudder, the conwholly within its recess or projected completely below he bottom of the vessel
Lamp Covering.-George H. Dean, th. Lou1s, Mo. This covering is for inclosing the glass globes of incandescent lamps while out of use, and con-
sists in a case formed of two similar hollow halves, a hinge connecting the lower ends of the halves with a spring bearing on the halves at their hinged ends and holding them normally closed.
Head Protector. - George H. Chapell, William Brown, and John Brown, Brownton,
Minn. This protector consists of a ring with sliding ribs, supports, shoulder pieces, web and covering, adapted to be worn upon the shoulders and around and over the head, to prote
in inclement weather.

FIRE Escape. - John D. Rullmann, San Antonio, Texas. This escape consists of an ex
tensible tower having a series of platforms, a series of lifting toggle levers arranged in pairs as lazy tongs at the four corners, with a series of bracing toggle levers arranged to work reversely to the lifting toggles, the construction being also adapted for use as
tion tower or for other analogous purpose.

Horse Boot.-Thomas B. Mason, Trenon, N. J. This boot is preferably made of a divided soft rubber ring, to ke fastened around the horse's leg with a hasp, the inner edge of the ring having flanges enameled leather or analogous material, making a boo which will not absorb moisture, will retain its form, and may be readily put on and taken off.
Dress Steel.-Mary E. Whalen, New York City. This steel has a bow having metallic strap secured to it and forming a bow with double ends, that onay be maintained without strain on the dress, being drawn too tightly, while retaining the fullness of

Truss.-James A. Tigner, Rome, Ga
This invention relates to trusses having a vertica spring carrying the abdominal and hernial pads, and a
transverse spring to the ends of which the strap or band spring carrying the abde ends of which the strap or band is secured, the
of the truss.
Gate.-Harvey C. Riley, Perryville Mo. This is a swinging gate with novel mechanism for operating it, so constructed and arranged that the gate may be readily opened by a person in a vehicle ap-
proaching the gate in either direction, and closed after proaching the gate in either direction, and closed after
the vehicle has passed through, without alighting from the vehicle
the vehicle.

SCIENTIFIC AMERICAN

bUILDING EDITION.
JANUARY NUMEER.-(No. 39.)

TABLE OF CONTENTS.

1. Elegant plate, in colors, showing perspective view of a one story Southern house, costing two thou-
sand two hundred dollars. Floor plans, etc. Plate, in colors, showing a block of economic bric dwelli
2. The Washington Building, New York City. Ful page engraving.
Design for the new post office and revenue office, Sacramento, Cal.
3. The new government building at Binghamton, N. Y Plans and elevations
dred dollar cottage.
The Tacoma Building, Chicago. Half page engraving.
A seaside summer houss. Cost, about flve thousand dollars. Plans and perspective.
4. Church of St. Paul, Luton. Half page engraving.
5. A dwelling near Newark, N. J., recently erected a Plans and perspective.
6. View of the main entrance to Melrose Park, nea New York.
7. A house for five thousand five hundred dollars lately erected at
8. A residence recently erected at East Orange, N J a cost of five thousand four hundred dollars Perspective and floor plans.
9. A Queen Anne cottage at Flatbush, Long Island Cost,
tive.
10. A cottag lately built at Flatbush, near Brokly N. Y. Cost, six thousand dollars. Floor plan nd perspective.
11. Design for an English cottage

Construction of mills. Section of
construction of two floors and roof.
18. Engravings and plans of some economical houses, ranging in co
sand dollars.
19. Miscellaneous Contents: Construction and finis of house flues-Iron roofs.-Restricting heights. -Traction over different pavements. - Dry ro
in timber. - The ancient cataract of the Hud on.- Wall plastering.- Mineral wool as a fill ing.-A new form of drain pipe, with sketch.Natural gas lighting.-Lane patent door hanger. Automatic temperature regulators, illustrated. -
The Prindle metallic wire packed unions, illus The Prindle metallic wire packed unions, illus-trated.-Architectural wood turning, illustrated.-
Filling the hollow spaces in walls and floors of Filling the hollow spaces in w
buildings.-Terra cotta lumber.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practitwo hundred ordinary book pages; forming, practi-
cally, a large and splendid Magazine of ArchiteccURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largbst Circulation any Architectural publication in the world. Sold by MUNN \& CO., PUB́LIBHERs,

361 Broadway, New York.
ßusiness and Personal.

The charge for Insertion under thes head is one Dollar

 a line jor each insertion; about eight words to a line. Advertisements must be received at publication officeas early as Thursday morning to appear in next issue.

Screw machines, milling machines, and drill presses.
Screw machines, milling machines, and drill
E. E. Garvin \& Co., $139-143$ Center St., New York.
All books, app., etc., cheap. School of Electricity, N.Y.
Dies, moulds, patterns, models, engraving, etc., to
order. Chas, A. Bailey, designer, Middletown, Conn.
Pratt \& Letchworth, Buffalo, N. Y.,
solicit correspondence relative to manufacturing specings. For the latest improved diamond prospecting drills, For the best Hoisting Engine for all kinds of work, ddress J. S. Mundy, Newark, N. J.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Perforated metals of all kinds for all purposes. The Bert Aitchison Perforated Metal The Holly Manufacturing Co., of Lockport, N. Y., will send their pamphlet, describing water works maSteam Hammers, Improved Hydraulic Jacks, and T'ube xpanders. R. Dudgeon, 24 Columbia St., New York.
Friction Clutch Pulleys. The D. Frisbie Co., N.Y. city. "How to Keep Boilers Clean." Send your address Hiss, 120 Liberty St.,

The best Coffee roasters, coolers, stoners, separators, polishers, scourers, glossing apparatus, milling and
peaberry machines: also rice and macaroni machinery, peaberry machines: also rice and macaroni machinery,
re built by The Hungerford Co., 69 Cortlandt St., N. Y. Pays Well on Small Investment.-Stereopticons, Magic Lanterns, and Views illustrating every subject for and home amusements. 152 page illustrated catalogue Late. Mcallister, Mnfg. Optician, 49 Nassau St., N. Y. Lathes for cutting irregular forms. Ha
thes. I. E. Merritt Co., Lockport, N. Y.
For best quality, order your steel castings from the unfalo steel Foundry, Buffalo, N. Y.
Split Pulleys at low prices, and of same strength and Works, Double boring machines. Double spindle shaping machines. Rollstone Machine Co., Fitchburg. Mass. Duplex St
alo, N. Y.
Send for new and complete catalogue of Scientific New York. Free on application
Nen

HINTS TO CORRESPONDENTS.
Vames and Address must accompany all letters,
or no attention will be paid thereto. This is for our
information, and not for publication. References to former articles or answers should
give date of paper and page or number of question. nquiries not answered in reasonable time should
be repeated; correspondents will bear in mind that some answers require not a little research, and,
though we endeavor to reply to all, either by letter
or in this department, each must take his turn. cecial Wiliten IInformation on matters of
personal rather than general interest
zannot be personal rather than general
expected without remuneration. Scientille American Supplements referrid
to may be had at the office. Price 10 cents each. Books referred to promptly supplied on receipt of

pric

(242) F. V. H. asks : 1. I have a large picture frame to gild; what shade of gold leaf is usedlight, medium, or deep? A. It is all a matter of taste.
The deep color perhaps is most used. 2. How can I The deep color perhaps is most used. 2. How can I
make a good sizing, so that the leaf will adhere to the make a good sizing, so that the leaf will adhere to the
frame evenly? A. Buy burnish-gold size ready mixed, frame evenly? A. Buy burnish-gold size ready mixed,
and apply six or eight coats to the frame; polish the and apply six or eight coats to the fry, with a woolen cloth; give the parts to be polished another coat of size. The frame is moistened and the gold leaf is laid on. 3 . I want to get a high polish on the smooth parts of the frame; how is it done? A. The bright parts are bur
sished when the frame is at a particular stage of dry ess; flint or agate burnishers are employed, of differen hapes. 4. I suppose it (the frame) will need varnishing after the gilding is done. What varnish is used? A. Use white hard spirit varnish, such as gum sandarac
or yellow gold lacquer. The whole process of gilding a frame requires much skill, and we advise you to consult Spons' Workshop Receipts, first series, for an elaborate description of it. We can send the book free by mail for $\$ 2.00$.
(243) J. C. W. asks : Does Germany own her domain? If so, how did she gain possession of them-by purchase? And how do the rates of trans portation compare with the rates charged here in America, and is the revenue therefrom in excess of th expenditure? If Germany owns the railroad and telegraph, what influence, if any, does it make in politics nd are the masses of the people benefited, apparently, are they managed-by a government bureau? A. The railroads in Germany are comprised in three classes, iz., owned and controlled by the several state govern ments, 32,174 kilometers; private companies with roads under state control, 674 kilometers; private companies
controlling their own roaüs, 4,286 kilometers. The controlling their own roaủs, 4,286 kilometers. The
tate governments built some of the railroads, and pur stat governments buipt some of the railroads, and pur
chased others from private companies. The revenue
derived from the railroads is in excess of the expendi-
tures, with the exception of a few secondary lines the German the exceptios of a few secondary lines, The German telegraph lines are owned and controlled
by the imperial government. Politics have no signifcance whatever in railroad or telegraph matters. The service is excellent, and the people are no doubt benefited by the unity of state management, the rates fited les the un it the United States. The man
being less thin
is under an imperial bureau located in Berlin.
(244) J. M. asks : 1. What kind of batery and how many cells would it take to light an ordi nary house of six rooms? A. Use a secondary battery
if you have any way of charging it. Thirty cells would suffice. 2. What power lamps would it take, and the probable cost per hour of this system of light-
ing? A. Twelve to twenty lamps would be required, and each lamp would cost about one-fifth cent per hour 3. Would it be advisable to make the simple electric
motor described in your issue of March last to drive the eight light dynamo? A. No. Drive the dynamo by
(245) C. T. I. asks : 1. Will inclosed wire answer for winding armature core (or ring) of electric
motor, in March 17, 1888? Would it hurt to anneal it, as it is very stiff? A. Yes. Anneal it before making into ring. 2. Would wood soaked in hot paraffine do for disk in place of fiber? A. Yes. 3. Could I use five or
six pieces of sheet zinc (riveted together) to produce the required thickness ($/ 4 \mathrm{inch}$) of battery plates? You will have much difficulty in amalgamating the zincs without their breaking. We advise you to use
solid plates. 4. Would four cells with 4 zincs and 4 carbons have the same power as eight cells of 2 zinc and 2 carbons? I want the battery as compact as pos-
sible, to be used on a tricycle. A. The larger number of cells give higher electromotive force, but also higher re sistance. You can use either arrangement.
(246) J. M. R. asks how to clean zinc lining to refrigerators, stove zincs, etc., also how to
clean silver, filigree jewelry, etc. A. Clean zinc with sapolio, or with ground pumice, soap and water. Clean
silver fligree work by boiling in dilute sulphuric acid. (247) R. A. B. asks how to make paint stick to bright metal tin roofs. A. Sandpaper the metal It is better to put the paint directly on the
metallic (iron oxide) paint with boiled oil.
(248) C. W. asks: Will you inform me how Pond's extract hammamelis is prepared? A. It is
said to be made by distilling the bark with 6 per cent
alcohol. Any certain knowledge of the virtues of witch alcohol. Any certain knowledge of the virtu
hazel is disclaimed by the pharmacopoia.
(249) R. V. J. writes : 1. Please give the weight of water gas. A. Itsspecificgravity varies from
$0 \cdot 500$ up to $0.650 ; 100$ cubic inches will weigh from 15 to 0.500 up to $0.650 ; 100$ cubic inches will weigh from 15 to
20 grains. 2. Also the best and cheapest way to make hydrogen when but 6,000 to 8,000 cubic feet is required.
Also how large a pipe will be required for 5,000 cubic Also how large a pipe will be required for 5,000 cubic
feet of coal gas to pass through in one hour under ordifeet of coal gas to pass through in one hour under ordi-
nary pressure from our city works. A. Probably from iron scrap and sulphuric acid. You might do it more cheaply by passing steam over red hot iron borings, but operation. It depends on the lenguh of pipe.
(250) H. D. L. writes: Is December 21 the shortest day in the year, or are there two or more days of the same length as the 21 1st? A. One day is
always the shortest. Sometimes it is the 20 th, some times the 21 st, and sometimes the 22 d .
(251) A. B. H. writes : What is cologne spirits? I want the information as a matter of informa-
tion. It is used, I understand, principally in the adul-
teration of whiskies and brandies. I have looked in some of the encyclopedias, and cannot find it. I have taken your journal for a dozen years or more, and as a
last resort concluded to trouble you. I would like the information in detail briefly put, so that in lectures on temperance I know what I am talking about. A. Ap-
pleton's Encyclopedia says (vol. vi., p. 144): "About pleton's Encyclopedia says (vol. vi., p. 144): "About
three-fifths of the products of distillation in the United States are what are termed highwines or whisky, con-
taining about 75 per cent of alcohol. This as it comes from the still contains a good deal of fusel oil. Some of it is made into cheap whisky, and the remainder is
rectifed and redistilled into French spirit. When the rectififed and redistilled into French spirit. When the
percentage of alcohol is high, it forms cologne spirit." Cologne spirit contains 93.075 to $94 \cdot 075$ per cent by-
(252) H. P. asks : What sized dynamo (candle power or volt) is considered dangerous on coming in contact with the wires? A. This is a disputed
point. An alternating current of $200-500$ volts, with 300 alternations per second, is considered very dangerous. The best rule is to avoid touching electric wires.
(253) M. S. asks : 1. Some time ago we made an electrophorus by casting ordinary sealing wax in a metallic mould about an inch deep. As upper plate
we used a circular disk of zinc attached to an insulating we used a circular disk of zinc attached to an insulating
handle. On rubbing the sealing wax with a cat skin we failed to electrify it; none of the experiments given in
connection with the instrument could be performed Could you tell us our mistake? Is it perhaps the sealing waxa IA. Your electrophorus may have had too ing wax. If your sealing wax refused absolutely to become electrified, it was of poor quality. Such material never gives satisfaction. 2. Could you recommend to
us any reliable work on electroplating telling how to prepare the silver bath for electroplating? A. For full information on electroplating, baths, etc., we refer you
to our Supplement, Nos. 157,158, 159. 3. How many to our Supplement, Nos. 157,158, 159. 3. How many
Bunsen cells would be required to run a bath containBunsen cells would be required to run a bath contain Two one-quart cells in good order will suffice. 4. Is it necessary that the zincs and carbons of the bichromate
battery be in soparate cells? Conld they not be put into one trongh as well and produce the same current?
If so, what would be the maximum number for a trough If so, what would be the maximum number for a trough
$21 / 2$ feet long, 1 foot high, 1 foot wide? A. Distinct effects are produced by separate couples in series or by one couple of large area of plates. The subject belongs to elementary electricity, and is treated in manuals of
physics under Ohm's law. We recommend Niandets physics under Ohm's law. We recommend Niandet's
Electric Batteries, which we send;you by mail for $\$ 2.50$.
(254) W. R. K. asks: 1. Why a telehone will not operate long distances as well as the
telegraph? A. The pulsations succeed each other with ach rapidity that a long line becomes too sluggish in charging and discharging itself to act well. 2. Is there it a good conductor of electricity? A. Solutions of chemical salts, such as sulphate of zinc, make paper
conduct electricity, but not well. 3. Is there a first-class conduct electricity, but not well. 3. Is there a first-class practical work on electricity brought down to the pres-
ent time? Where can it be obtained, and the price? A. There are a large number of such works. Consult our book catalogue. We recommend Ayrton's "Practica!
Electricity," which we cansend free by mail for $\$ 2.50$. Electricity," which we can.send free by
or Atkinson's " Electric Lighting," \$1.50.
(255) S. O. N. writes : Could a man who handy with hammer and saw and who has a little hemical knowledge and less money do some electrotyp-
ing? A. Electrotyping is done by electroplating prong? A. Electrotyping is done by electroplating pro
cesses described in our Supplement No. 310 and others. The impression of the type is taken in wax, coated with plumbago, and copper is deposited on it. Af
the thin sheet is " backed up" with type metal.
(256) J. M. C. asks the size in feet and nches of the Ark and Great Eastern. I see by a Western paper that the carrying capacity of know the reason why. A. Size of the Great Eastern,
$692^{\prime} \times 83^{\prime} \times 60^{\prime}$ hold $-18,914$ tons. Ark, $450^{\prime} \times 75^{\prime} \times 45^{\prime}$ high It may be estimated that the Ark had probably nearly
(257) R. I. F. writes : I am oxidizing sil ver by the use of a hot solution of sulphuret of potash, but cannot get the color dark enough. A. Immerse the ith the sulphuret of potash.
(258) D. \& A. write : We wish to know riding in an electric street car willinjure a watch. A. (250) W B
(259) W. B. R. asks how coal tar and ented after having been melted by heat, can be pre pentine, naphtha, or some oil (linseed, fish oil, etc.)
(260) J. E. K. asks : What is meant by the ruling or reigning planet, as given in some of the almanacs? A. It is the brightest planet of the evening
sky, and may refer to Venus, Mars, Jupiter, or Saturn when we see them in their positions of greatest bril-
(261) E. E. S. writes : 1. Will 35 feet or 30 ohms No. 36 copper wire (silk-covered) answer for 142? A. Yes. 2. How much wire will it require to wind magnets for first call bells (telephone) described in Supplement, No. 162, and will No. 32 cotton-covered phones as No. 1). A. Wind the bobbins to the size hown with No. 32 cotton-covered wire. 3. What is they constructed? A. One employing a single carbon electrode against a metallic point, or a pair of carbon
electrodes against each other. See Supplement, No 250. 4. Should the spools on a pair of Bell telephone both be on the north or positive pole of the magnet, of
one positive and one negative? A. It is immaterial.
(262) T. T. H. asks if there is any way in which the presence of coal ase can be detected in a
house aside from the smell and taste. A. Chloride of hoase aside from the smell and taste. A. Chloride of
palladium paper has been suggested. How to use it is escribed in Scientific American, June 11, 1887, page
376. 2. Whether furnaces are 376. 2. Whether furnaces are considered as healthful
without water as with? A. Not generally; water is con dered an improvement.
(263) C. R. H. writes : Will you give the formula for making mucilage, such as
tionary stores at five cents per bottle ?
A. Dextrine.

Acetic ac
Water...
Alcohol.
(264) H. B. writes : I have a telegraph nstrument, and the coils are wound for a much greater
current than I am able to produce. Can I wind the and how many feet will it take? A. There is no par ticular art about winding your coils. If you use No 30 wire, you can allow ten feet to the ohm and have a
close approximation to the true resistance. One hanlose approximation to the true resistance. One
dred and fifty to two hundred feet will give the desired resistance; 1,000 feet No. 30 pure copper wire at 75° Fah.
(265) J. H. W. says: I have some 9×9 No. 20 sheet iron that I wish to thoroughly tin; will you please give me the best method through the ScIENTIFIO
American for cleaning and tinning the iron? A. Pickle he sheets in a bath of muriatic acid 1 part, water parts, until the scale is removed. and dip in hot water.
Then scour the sheets with a brush and sand, dry, and dip in a solution of muriate of zinc and ammonia, made per cent of sal-ammoniac. Dip only for a few moments dry, and dip in the tin bath, holding the corner of the plate with a small tongs. The tin bath should have the
surface kept clean by sprinkling with powdered sal-ammoniac and skimming the dross.
(266) B. J. K. writes: Can you give a way to make an electrical call bell? I would like to put it from one room to another, and desire to make it
myself instead of buying it. A. For magneto call bell we refer you to our Sorplement, No. 162, which w can send you by mail for 10 cents; for general informa
tion, to Bell Hanger's Hand Book, which we can ou by mail for \$1.
(267) A. E. M. asks for calculation for stay of boiler, and also for finding the horse power of
engine. A. The United States bolier inspectors allow 6,000 pounds per square inch strain upon a stay. The lated for each one. For non-expanding engine, multi-
in pounds by length of stroke in feet and strokes per
minute; divide result by 33,000 ; this minute; divide result by 33,000 ; this gives indicated horse
power. If engine has a cut-off, the averagesteam pressure must be used as a factor.
(268) E. E. V. writes : How may I construct several cells to produce power enough to run two 16 candle power incandescent lamps? How may I make
them the simplest way possible, and how many cells them the simplest way possible, and how many cells
will I have to use? A. Many batteries are described in will thave to use A. Many batteries are described in
our Surplement, Nos. 157, 158, and 159, and in other our Supplement, Nos. 157, 158, and 159, and in other lowing three or four cells for each lamp.
(269) F. W. K. asks how to manufacture bronze printing ink, an ink which shall retain Use bronze powder for printing; print with size a dust on the powder. No way of really dissolving it
(2;0) L. R. F. asks if there are any minerals or oxides that will change the color of Portland cement. We use oxide of iron for obtaining red color. Can we produce other colors? A. Ochers will give you
other shades, and ultramarine will give blue. The mixture of colors will produce intermediate colors, subject however, to a restriction in effect on account of the
color of the cement itself. The ultramarine will not be very permanent; if not too expensive,some special make
of blue smalt might be available. Oxide of manganese or graphite could be used for black.
(271) J. H. M. asks (1) what difference there is between bisulphite and crystal bisulphite of
soda. A. Properly speaking there is no difference. 2 Would it do any harm to a gold solution to use a tank lined with common coal tar? A. No. 3. How to throw the gold down in a metallic state from an old plating solution and purify it with
rous sulphate (green vitriol).
(272) L. O. B. writes: I have read great many pieces on the new phonograph, but there is one question I cannot find an answer to, and would
like to have you tell me. Will the new phonograph chronicle anything said in a room, whether the person has mouth to mouthpiece or not? Could one be in a court room and chronicle all said by witnesses, or in a
hall where a singer or speaker was and receive song or hall where a singer or speaker was and receive song or
speech? A. The phonograph does not record sounds (273) J. H. P.-For Paas or Easter egg dyes, use ani
shells crack.
(274) A. L. L. writes: 1. I wish to make an inexpensive solution, that shall be so clear as to
resemble ordinary water, and upon dropping into it a resemble ordinary water, and upon dropping into it a
small lump or crystal of some chemical, will (within small lump or crystal of some chemical, will (within
the space of eight or ten seconds) change the solution to a jet black, one resembling ink. I wish it to work quickly and the substance dropped in to be small enough to be concealed between the fingers, as it is to be dropped in secretly. About a quart of the solution
to be used at a time. A. Use aniline black in water Your trouble will be in the slow mixing of the finid; you should be able to stir it. It will also tend to blacken your hand. 2 . I wish to insert into the top of a table, inches square. The top of the table, including the plate, is then to be covered with cloth glued or cemented on, same as a desk top. 1 am advised to use a zinc plate, but wish to use a brass one. Will the cloth adhere to a brass plate as well as to zinc? What is the best glue or cement to use for the purpose? A. Brass
will answer perfectly. Use a solution of gum tragaanth. For marbles apply to toy stores.
(275) W. F. G. says: 1. I wish to make some small iron castings, but have no cupola. Can you melt 4 to 6 lb . of cast iron in a black lead crucible in a forge fire. Put some bricks around to deepen the fire. 2. Can you give me a receipt for a cement that will fasten
hard rubber to iron? A. Dissolve pulverized shellac in ten times its weight of strong ammonia, in a closed a jelly. Smear the parts and press together. 3. What 1s a good japan for the iron? A. Yon can purchase airdrying or baking japans through the varnish trade.
Also see Scientifio American Stpplement, No. 316, Also see Scientific An
Japans and Japanning.
(276) G. S. B. asks the kind of a reector he would require for a four inch double conenser, how large it must be, and how much it must concave. A. A silveredcopper refiector, 4 in. diameter.
Radius of the concave surface to be the same as the disRadius of the concave surface to be the same as the dis-
tance of the light from the first condensing lens, and placed back fom thelighta distance equal to its radius (27\% J. E. W. asks how to make glue ter proof? A. Dissolve of gum sandarac and mastic ach $5 \neq$ drachms in one-half pint alcohol, and add $5 \neq 1$ rachms turpentine. Place the solution in a glue boiler o a strong hot solution of glue and isinglass; strain, while hot, through a cloth. Or to plain glue solution add bichromate of potash; on exposure to light it
(278) A. J. B. asks : 1. How to obtain a black cold dye for goatskins with the hair on? A. Rub silver in 1 pint soft water, and hang in sun to dry Afterward apply, in same way, a solution of 1 oz . sulward of potash in 1 pint of water. Dry in sun; afterrying. To intensify, apply a solution of pyrogallic cid before rinsing. 2. Also how to make sensitized paper for photographs, brown or black preferred, which
can be fixed by immersing in cold water? A. No such cess is known.
(279) I. G. a.sks: What cheap substance will prevent from freezing a cologne made with oil of verbena without destroying the odor and color? Rock
salt and alcohol do not answer the purpose? A. GlyCerine: a sufficient quantity, however, may impair the proper substance.
(280) L. B. asks : With six or seven volts E. M. F., how many amperes of current will be required
from a battery in order to run a two candle power incandescent lamp? A. $41 / 2$ to $5 \not / 2$ volts with $1 \cdot 20$ amperes will light a 2 C. P. lamp. 7 volts with 1.50 amperes will ight a 3 C. P. lam
(281) R. M., Jr., says : I read with inbuilt across the Rocky Mountains in the State of Colorado. I am a young man 21 years of age: What get outdoor work in the region where this road is being built? I have no trade; worked two years as braat tronble fievated railroad, resigned on aci grocery business in New York City. A. Colorado is a new and fiourishing State. Its interior position makes the climate dry and healthy. Your chances in finding employment
to suit your taste are problematical.
(282) G. K. writes : Can you inform me how to clean the stencil paper (after printing) of the
cyclostyle patent? I wish to remove the surplus ink rom the letters; have used blotters; they do not seem to answer fully the purpose of removal; cannot get a
clear copy after being laid aside for some days. A: Try ponging off with benzine or kerosene oil.
(283) W. H. T. asks how brass wire spiral springs are so made that the spirals close to-
gether when the tension is removed? And how brass is empered? A. Flat or volute springs are wound in a allow the spring to be taken out. Helical springs are wound on a mandrel, and at the moment of winding all the coils touch. Brass cannot be tempered; shee and wire spring brass is a special composition, which is
rolled or drawn very hard, and is then called spring rass in the hardware trade.
(284) E. D. S. asks : 1. For the composition used for cleaning carpets on the fioor; it looks a
good deal like soft soap. A. Use 1 pint oxgall to a paifful of water; after washing apply cold water to rinse out the oxgail, and finally sponge as dry as possibie. 2 .
Composition for cleaning wall paper on the wall. This Composition for cleaning wall paper on the wall. This
composition is used in bread crumbs. A. For wall
aper use plain bread crumbs.
(285) W. F. asks: 1. Please tell me, hrough your paper, if there is a way of blue printing so that we may have a white ground and blue lines,
instead of the opposite? A. Yes; See Scientific AMERICAN SUPPLEMENT, 584, p. 9320 , for description of American Supplement, 584, p. 9320, for description of
Pellet's process. 2. If a current of electricity is passing over a naked copper wire, is there a way known to pro pel a trolly along wire, without a motor being attached to trolly to drag or propel same? A. Consult our Sup PLEment, Nos. 417 and 420, for description of telpher age a system of electrical cab
ncludes a self-propelled trolly.
(286) E. H. asks : Does drawing stee wire crystallize it? A. No. It laminates and strengthens steel wire to draw it to smaller sizes. When pro-
perly done, the tests show increased tensile strength perly done, th
(287) - writes: What will it cost, and what size of an electrical machine will it take, to turn
a wheel 9 in. in diameter, having paddles 3 in. wide and 4 in. high, when partly submerged in water? A. Use simple electric motor described in
(288) Subscriber writes: W
ive me the formula for making blue bll you please ink that writes blue and turns black? A. For inks, consult our Supplement, No. 157, also Techno-chemi-
cal Hand Book. We can send the latter free by mail (289) W. R. asks: Which would you ommend for an electric light, say to be worked fiv hours every day-a secondary battery of 20 small
couples or 30 Grove batteries, platina, 3 in by 1 in .9 A The secondary battery. The Grove battery will be very
(290) N. B. C.-The samples sent are
(291) A. L. C. asks: 1. For the correct pronunciation of the word ampere? A. Pronounce $i t$
with stress on the second syllable, thus: "ampeer." 2 with stress on the second syllable, thus: "ampeer." 2 The meaning of ampere hours? A. See answer to
query 236. 3. In the 8 light dynamo, I have broken of one of the armature wires; is there any way of remedying this except by rewinding? A. Wrap a thin piece of brass or copper foil around the ends, fiow with solder,
and wrap with shellacked tape. 4. How much will it and wrap with shellacked tape. 4. How much will it cost to build the simple electric motor? A. From $\$ 3$
to $\$ 25$. The first figure covers materials only. The er covers time and material.
(292) J. D. E. asks: How much harm if any, is done to the springs of drays by letting their
customary loads remain on them overnight, or for 48 hours? It doesn't seem to me that more harm will arise than comes to them from jolting over the rough pavements. A. All springs weaken and finally give out from use. Anything that lessens their use o
strain adds to their life. A load left on a wagon ove night occasionally would not be perceptible in its wear (293) W. H. H. asks: How to make somewhat, for various purposes, from two to three ounces of tin to a pound of copper ; to which is added
a small portion of phosphide of copper or phosphide of a small portion of phosphide of copper or phosphide of tin as a flux-the exact proportions for special alloys
being held as trade secrets by parties manufacturing these alloys.
(294) H. H. H. says : I wish to heat a store with steam, room $22 \times 115 \times 14 \mathrm{ft}$. 2 in. By run siderable pipe, that will condense a quantity of steam If I carry the steam directly from the boiler to a coil of pipes (bronzed) suspended from the ceiling directly over the counters, of sufficient height so they can be
used for the display of goods, can I get heat on used for the display of goods, can I get heat. on th
floors? It has been suggested to me that the lower part
of the room will not be heated unless I have the coils or
radiators on the floor. How many feet of inch pipe radiators on the floor. How many feet of inch pipe
will be required to heat the room? A. The overhead system of. heating by steam is largely used in factories, and occasionally in closed rooms. In factories where the belting produces circulation, it is very desirable.
We do not advise the use of this system for heating We do not advise the use of this system for heating a
store, where the constant opening of doors will precipitate cold air upon the fioor. Coils in stacks or along vacant spaces or counter fronts, or radiators, are more vacant spaces or counter fronts, or radiators, are more
suitable for stores. It will require 900 feet of 1 in . pipe or its equivalent in radiator surface to heat your store.
(295) C. J. H. writes : I saw a receipt in the Scientific American about a year ago for mive me the reference? A. See Scientific American, June 18, 1887, p. 392. The potatoes are washed in dilute sulphuric acid, then boiled in same until solid and dense. They are then washed free from acid and ried.
(296)
(296) R. J. L. asks: 1. Will carbons used in lighting street lamps answer instead of carbon plates in plunging battery, Scientific American SuppleOctober $2 \%, 1888$, p. 264. 2. How can I attach wires,
handles, etc., to a galvanic battery? A. Use binding crews or wires cast in metal tops.
(297) O. S. asks how to make a good violin bow resin? A. A leading authority gives the folowing. Put a a pipkin, ade a little water to it, and boil for two or three
hours over a slow fire. As it rises pour in small quantities of cold water to keep it from overflowing, and allow a drop now and again to cool on a plate; when it rubs clear between the fingers without sticking, it is
sufficiently boiled; when thus boiled, pour it into cold sumfiently boiled; when thus boiled, pour it into cold
water; work it well with the hands to press out the water, and break it into pieces when cold; expose to the sun and air until all the moisture is evaporated and the
resin is quite transparent. Many violinists adopt a esin is quite transparent. Many vioinists adopt parent by boiling it in vinegar, and while it is warm pouring it into paper moulds, after which it is exposed some time to the sun and air.
(298) P. N. asks: 1. Is there anything burning, and making them sore without the from burning, and making them sore, without the use of
gloves? A. Use oil or tallow. 2. The best remedy to use when they get that way? A. Use oil as a remedy
3. Is not cement supposed to set in water? A. Hy draulic cement sets in water. 4. What is the time to allow cement to get properly set? A. From a few
hours to several days. 5. Is there anything that can be hours to several days. 5. Is there anything that can be
mixed with oil to take the stickiness from it and make it thinner, such as castor or olive oil? A. Turpentine or benzine; for castor oil, you may use alcohol. 6 What is the reason that they always put the smal ness in getting around, or does it run easier? A. To facilitate turning the wagon.
(299) H. B. asks : Please tell me how to make a Bunsen battery, and how long the acid can be
ased before changing? A. See our Suppiembnt, Nos. 157, 158, and 159, for descriptions, with illustrations, of all leading forms of batteries. A solution in a Bunsen battery will last from four hours to
cording to the demand made upon it.
(300) F. W. writes : I desire to get some information on the manufacture of wood alcohol. Will
you please advise me where I can get it? A. Spons you please advise me where I can get it? A. Spons'
Encyclopedia of Industrial Arts, Part I., treats of wood Encyclopedia of Industrial Arts, Parts.
(301) J. O. B. asks: 1. What is the greatest power yet obtained in experimentation with a
dry electric battery? A. Results comparable with those from good gravity batteries have been obtained with dry batteries. 2. What are the electric generating sub-
stances employed? A. Sulphuric acid or caustic soda stances employed? A. Sulphuric acid or caustic soda
may be used as exciting agents, with zinc as the positive plate. 3. What is the commercial value of aluminum steel, containing 1.75 per cent of aluminum? A. No rule, is blue clay rich in aluminum? A. Blue clay may or may not contain a large
minum. There is no general rule.
(302) H. N. B. asks: 1. What are the formulæ for commercial cream tartar? A. Hydro-po-
tassium tartrate, $\mathrm{KH} . \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$. 2. Salt of tartar. A. Purified pearlash or potassium carbonate, $\left(\mathrm{K}_{2} \mathrm{Co}_{3}\right)$ $3 \mathrm{H}_{2} \mathrm{O}$.
(303) A. L. asks : Can paraffin be mad ransparent without making it liquid? A. No.
(304) For waterproofing processes, we ${ }^{410}$ (305) R. M. asks : What proportions bromide of ammonium and cadmium are employed in formula for collodio-bromide emulsion in query 22 ,
November 24 , 1888, issue of the ScIENTIFIC AMERICAN A. The double salts spoken of are not commonly fonnd in this country. Use instead bromide of cadmium 44 grains, bromide of ammonium 12 grains. After drying and washing the emulsion, it is redissolved in equal parts of alcohol and ether,in the proportion of 24 grain
to the ounce of these mixed solvents. See SUPPL to the ounce of these mixed solvents. See Supple
MENT No. 572 for full particulars on collodion emulsions for window transparencies. No preservative is required for washed emulsions. Camphor is used as
preservative for starch pastes. For enameling add 4 parts castor oil to 100 parts plain collodion. To recover gold from toning baths add to each gallon of toning solation a solution containing thirty grains of protosulphate of iron. Put the gold solution into a barrel or, better still, a special shaped vessel having the bottom
pointed like a wedge, with a faucet a third of the dis pointed like a wedge, with a faucet a third of the dis
tance up from the bottom. Let the solution stand for twelve hours. The gold will settle to the bottom, then decant off by a siphon the supernatant liquor, leaving the residue of metallic gold, together with waste liquor in the bottom, at a depth of three or four inches. This
latter material is then removed and thrown on a filter of bibulous paper, washed by pouring hot water over it,
and, when dry, the gold is converted into chloride of
gold. The hot water should constantly be poured on it
Enquiries to be Answered.
antil the wash water no longer produces a precipitate
with a solution of barium chloride, proving that the gold is free from the excess of sulphate of iron. The washed precipitate of gold is now dissolved in aqua regia, and the solution evaporated nearly to dryness, the
latter operation being carried on slowly on a water bath to prevent spurting. The yellow chloride of gold thus prepared should be preserved in a well stoppered bottle or in a sealed tube, as the salt is very deliquescent.
(306) W. B. asks for the composition of he small pellets used in the toy called Pharoah's ser pents. A. Sulphocyanide of mercury is the Dasis of
the ordinary preparation. We refer yon to our Suprte MENT, No. 259, ior description and illustration. As the vapors from the burning sulphocyanide of mercury are njurious, the following 1 r recommended as a substitut
Bicnromate of potash.... 2 parts.

Nitrate of potash

White sugar.
Pulverize each ingredient separately and mix inti mately, and slightly moisten. Press into small paper This preparation is poisonous, but emits no injurions pors.
(307) E. M. O. writes : 1. I have a short elegraph line which works hy a battery of four
Daniell cells. It has worked very well fortwo weeks, Daniell cells. It has worked very well for two weeks,
but lately, when I close the circuit, the current seems to row weaker and weaker, till will tell me what is the matter? A. Your battery has run down. It probably needs more blue vitriol, possibly some of the solution should be removed and re-
placed by water. The zincs also may need scraping. placed by water. The zincs also may need scraping.
2. What is the most simple storage battery to make and 2. What is the most simple storage battery to make and
how many does it take to run an Edison eight candle ow many does it take to run an Edison eight candle power miniature incandescent lamp ? A. 17 or 18 cells.
You will find many forms described in our SuppLeYou will find many forms described in our Supla olicy to buy them.
(308) S. C. T. asks (1) how to melt or dis solve rubber to use similar to varnish or paint, or pro-
cess of using it preparatory to making balls of the clear cess of using it preparatory to making balls of the clear
article. Foot balls or syringe bulbs. A. India rubber article. Foot balls or syringe bulbs. A. India rubber
cannot be practically treated as you describe. We refer you to our SUPPlement, Nos. 249, 251, and 252, for description of the treatment and manufacture of this product. 2. Can old rubber be worked over? A. Old rubber can be mixed with new and thus made over, bat the result is always inferior.
(309) J. F. D. says : I am at work on a grape basket. My difficulty lies in the breaking of the
veneer. Can you give me a receipt for the bending of the veneer, by using chemicals or soaking otherwise han by steaming, as it takes them so long to dry after being formed into the basket. I mean something to
make the veneer fiexible, so it can be bent up in any make the veneer fiexible, so it can be bent up in any
shape without breaking. A. There is nothing but steaming that is practicable for bending basket veneers. hey should be bent hot, when they will be dry enough the drying in a reasonable time. Steam or boiling water only is used by
wise cold water.
(310) C. McE. asks : Can an oil stove be constructed so that the smoke, odor, etc., can ther stove§ A. Yes; there is no reason for mingling the gases of combustion with the air we breathe,
when there is a chimney opening convenient.
(311) Mil waukee asks if anything will prevent the constant cracking and breaking of the
hades and globes around gas jets. No matter how carefully shielded from draughts, they still continue to crack and break. A. The opening at the top of the shade is too small or the gas jet is too large. Ther
(312) W. S. asks : 1. What horse power can I get from 150 inches of water, velocity 257 feet per minute, on 15 feet overshot wheel? A. The whol which you may realize, with a good overshot wheel, horse power. 2. Is the pressure on inclined water pipe
computed by its perpendicular only? A. The value of computed by its perpendicular only? A.
the pressure is due to the vertical height.
13) J. L. C. asks for a receipt for making shampoo for cleaning the scalp, also from
dandruff, not to in any way damage the hair or scalp? andruff, not to in any way damage the hair or scalp? , carbonate of ammonium 5, salt of tartar 10; after hampooing wash with cold water.
(314) E. R. asks for a receipt for a good tencil ink for marking boxes, barrels, etc., through a stencil. Also a paint for marking with brush, not using
stencil. A. For a fine preparation use shellac 2 ounces, borax 2 ounces, water 25 ounces, gum arabic 2 ounces.
Color with fine lampblack, to desired consistency. You may use turpentine and lampblack with a little linseed oil, or even glue and water with lampblack. Thin for (315) B. O. H.-The removal of superflu oushair by electrolysis is treated of in our Supple-
MENT, Nos. 176 and 353 , which we can send you by mail for ten cents. A really simple way of removing
(316) G. R. writes : I would like to know ow to construct a plnnging bichromate battery, and a field magnet. A. For directions relative to construction we refer you to the Scientific American, Augus
00.1887 . From 100 to 150 such cells will represent horse prom 100 to 150 such cells will represent oue large power, for one man power use 10 to 20 . The
arger is to be preferred. For field magnet constraction see our Supplement, Nos. 160, 600, and 641,
which we can send you for 10 cents hich we can send you for 10 cents each.
(317) O. F. S. writes: 1. Will you in orm me how loug an ordinary incandescent lamp car by access of air. 2. And if there is any liquid that will be attracted by a permanent magnet? A. No.

The following enquiries have been sent in by some of our subscribers, and doubtless others of our reader will take pleasure in answering the
the enquiry should head the reply
(318) E. E. P. asks how a preparation called plastic is made. It is used in decorative and resco painting. It is applied with a brush by one man, who goes ahead and is followed by another, who stip ples it with something like a broom scrub brush. And
this preparation pulls out and becomes rough like a this preparation pulls out and becomes rough like a
scratch coat of plaster. Designs are then scratched on to suit taste
(319) W. E. asks: When will occur the next total eclil
New York?
(320) S. L. F. asks: Will you kindly Give me a rule for working out the following problem
What is the areal strain on $7 / 8$ inch staybolts placed 6 What is the areal strain on $7 / 8$ inch staybolts placed
inches apart, with one hundred pounds pressure o
(321) S. H. P. says : I should like to as ertain, if possible, the diameter, area, and number of blades of a propeller, and power required, to drive a
vessel having a resistance of 3,000 pounds through the vessel having a resistance of 3,000 po
water at the rate of 7 knots per hour.

Replies to Enquiries.
The following replies relate to enquiries recently pub lished in Sci
(72) K. C.-Petrifying Springs.-There are such reported springs in the Yellowstone Park, and
other parts of the United States. They are not petrify -1 ther parts of the United States. They are not petrify-
ing waters, but rather incrustating waters. An object placed in the water will soon be covered with a coating of carbonate of lime. This is an entirely different operation from petrifaction, which is a chemical interchange of elements, by which the wood becomes sili-
cified entirely, though retaining its wood identity. We cified entirely, though retaining its wood identity. We
do not know that there is such petrifaction now taking place. It is now only known as the fossil remains of
(76) F. R.-The relief valve is known, and can be obtained through the pipe trade, as a back pessure valve. 2. In plping drying kilns, the coils should be so arranged as to allow more than the full back pressure. 3. Bridge wall should be from 7 to 10 inches from the boiler and may be straight or curved Both for
gineers.
(79) K. \& W.-Running Engine.-You ail to state the number of revolutions required, or the
condition of the cut-off: 50 to 55 pounds boiler pressur should enable you to give the piston a mean pressur of 40 pounds per square inch, which, with a speed of 75 revolutions per minute, will make 30 horse power. The pipe should be placed in a box at least 10 inches squar
inside, and filed with sawdust if better material is no inside, and filed with sawdust if better material is no
(80) G. A. S.-Smoke Stack Protec ion.-Your smoke stack will be safe from lightning you make a good iron or copper connection from th base to the water way in the ground. This may ing a drive well pipe where you can be sure that you havea water connection. If you have a well, it will a
(85) A. 5. C.-Damp Walls.-Paint the outside of oour rough-cast walls with raw linseed oil. Is has become set or dry, paint again with any
e color, mixed with boiled linseed oil. The ss inside may also arise from the faulty method of plastering upon the wall, instead of furring and lathing. If the dampness is at the bottom or next to the base board, it may be derived from the ground by
absorption through the brickwork. In such cases, absorption through the brickwork. In such cases,
clearing away the soil to two feet below the fioor beams and plastering with asphalt, or painting the wall with two coats coal tar, will remedy the dampness.
(126) B. L. A.-Heating Room. - You are right. Fresh air must enter to take the place of ai
ejected by ventilation. If cold, it will fall to the flo unless arrangement is made for its contact with heating
pipes in room. 2. It can if air is provided by specia inlet to supply combustion within the stove. 3. Yes;
Heat is transmitted by radiation, and also imparted by onvection or contact with conveying medium, as air
(128) O. S -Violin
(128) O. S.-Violin Bow Resin.-Select the best clear brown resin, melt it in a clean basin, to early a boill, which will clear it of
volatile oils. Pour in paper moulds
(130) P. C. W.-Old Gold Braid.-The old and soiled gold braid cannot be restored. Replace
(131) S. B.-Work of Pulleys.-The set e product of the leverage or semi-diameter of the pulley multiplied by the tension of the belt in each case; the difference in the diameter of the respective (132) W H. M. hardened and tempered in the rough with the catting
edge thick, to avoid cracking, and then ground thin. ou cannot harden your razor. Try a new one
(134) C.-Engine and Boiler.-For your 20 H. P. engin
(135) A. A.-Electro-Plating.-You will nd the sabject fully treated in a work on "Electro Deposition," by Watt, \$3.50, which we can mail
(136) C. B. S.-Thrashing Machine and Engineering.-If the tumbling rod connection is properly made and free running, you should lose less than 10
per cent of the power. 2. Study electrical works in the special line that you wish to pursue. (See our cataiogue for valuable works which we can furnish.) 3. As a pro-
fession, electrical engineering is progressive, and com-
pares very favorably with civil and other branches of
engineering engineering.
(139) A. G. D.-Cold Box in Ice House. -You must have ice packed around and above the cold
ox. The tendency of cold air from the ice is always ownward.
(140) F. W. E.-Poisonous Cookery.There is nothing made better than the porcelain lined kettles for cooking fruit. We fear that you will find
he trouble somewhere else. Systematic search may the trouble somewhere else. Systematic search may ward you with the information requested.
(141) H. B.-High Explosives.-A work on "Modern High Explosives," by Eissler, treats of
 explosives used in the United Slates. The names that
you mention are mostly foreign explosives that have ou mention are mostly foreign explosives that have
been experimented with by U. S. naval officers. See Scien experimented with by U. S. naval officers. See
Scican Supplement, No. 674, for an account of them.
Books or other publications referred to above can, in most cases, be promptly obtained through the
Scientific American office, Munn \& Co., 361 Broadway, New York.

NEW BOORS AND PUBLICATIONS.

Town and Country School Buildings. A collection of designs for schools of various sizes, graded and ungraded,
with descriptions of construction of sanitary arrangements, light, heat, and ventilation. By E. C. Gardner.
E. L. Kellogg \& Co. New York and Chicago. 1888. Price $\$ 2.50$.
In this work the whole operation of building country chools, from the preparation of the ground to the deThe book begins with a description of a log building of one room for pioneers. It then gradually develops he subject until the large brick building for graded ork is reached. Alterations, ventilation, out of door f. The designs for buildings, accompanied by their plans, are numerous and tasteful, the author departing radically from the idea that the school house must be plain and ugly. The cuts number 124 .
Gored Maps of the Northern and
Southern Hemispheres. Chicago : E. Hollenshade.

These gored maps are printed on two sides of a sheet 38×30 inches in size, one side representing the southern and the other the northern hemisphere, with their orpecive poles in the center. They are each designed olded over a spherical mould, the gores, or unprinted portions, would be found to be surplus, and the printed or pictorial portions of the surface present the precise of the earth bear to each other latitudinally and longi of the eart
tudinally.
Messrs. Styles \& Cash, the well known New York printers and stationers, get out an unusually ot the dial for marking the days as on the face on to the dial for marking the days as on the face of a
clock, there are fine surrounding views of the homes and haunts of Washington, especially appropriate fo
this centennial year of Washingtou's inauguration.

Any of the above books may be purchased through this office. Send for new book catalogue just pub lished.
Address Munn \& Co., 361 Broadway, New York.

TO INVENTORS

An experience of forty years, and the preparation of
ore than one hundred thousand applications for paents at home and abroad, enable us to understand the aws and practice on both continents, and to possess un ynopsis of the patent laws of the United States and al oreign countries may be had on application, and persons contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices, tensive facilities for conducting the business. Addres
MUNN \& CO., office SCIENTIFIC AMERICAN, 361 Broad MUNN \& CO.. ofti
way, New York.

INDEX OF INVENTIONS

For which Letters Patent of the

United States were Granted
January 15, 1889,
AND EACH BEARING THAT DATE.

[See note at end of list about copies of these patents.]

The Texum-Cheminal Recient Book:
 Chemical Technology, and their Practical Application
in the Arts and the Industries. Edited chiefy from the
German of Drs. Nincker Eisiser, Heinte. Mirzinsi,
Jacobso

 ed, containi
of matter.
Price $\$ 2.00$

 HENRY CAREY BAIRD \& CO., | ©10 Walnut St., Philadelphia, Pa., U.S. A. |
| :--- |

Thaman aritum

 Memorandum Calendar

The American Agriculturist, 751 Broadway, New York.
 ICE-HOUSE AND REFRIGERATOR Directions and Dimensions for construction, with one
silustration of cold house for treser ving froit from
season to seano. The arir in kept ary and pure through-
out the year at.

Barnes' Patent Foot Power Machinery,

BALL ENGINE CO. MANUFACTURERS OF
ATOMATIC CUT-OFF EMGINES
For Electric Lichting
 a close gov
indispensa
HARGREAVES' THERMO - MOTOR.

Shepard's New $\$ 60$ Screw-Cutting Foot Lathe

 HEATING CITIES BY STEAM.-AN

 10 cents each.
newsdealers.

PERFECT NEWSPAPER

 very one who wishes to preserve the paper. Address
MUNN \& CO., Publishers ScIENTIFIC AMERICAN
lice STANDARD TOOL CO.

Steel Caliper Rules, Universal Bevels, Caliiper Gauges, Improved Pitch and Center Gauges, Hardened Steel Squares,
Graduated Steel Squares Spring Calipers, Graduated Steel Squarres, Spring Calipers,
Pliers, Straight Edges, etc., etc. Write for illustrated catalogue and price list of full line.

TOXICOLOGY, PRESENT POSITION
of. A paper byJ. J. Arnold, F. F. S., showing how limit-
ed is the number of poisons hat can be detected in
minute quantities in tost mortent cases by the present

CHEMISTRY OF SUBSTANCES

 T

CONCRETE. - BY JOHN LANDIS

 The TRENTON ENGNEE

 BIBB'S Calthrate Orytam PMAR HEATERS
 Sidition
ATVEFOLD COMET. DESCRIP

 Rue's Little Giant Injector. SCREW JACES, sturtevant blowers. \&c.
 MODELS EXPERIMENTML WORK

OClark's Noiseless Rubber Truck Wheels Ruber Furniture Casters, etatatague free PNEUMATIC DYNAMITE TORPEDO

Pat an Electric Bell in yourhouse or shop.

 50\%

HARRISON CONVEYOR!
Handing Grain, Coal, Sand, Clay, Tan Bark, Cinders, Ores, Seeds, \&c. Eand
Gircularar.|
BORDEN,

ARCHIPEMTRAL BOKS. Useful, Beautiful, and Cheap.

To any person about to erect a dwelling house or sta-

 be, either in the country or city, or ans builder wishing to examine the latest and best plans for a church, schoolhouse, club house, or any other public building of high or low cost, should procure a complete set of the ARCHItects' and builders' Edition of the Scientific American.
The information these volumes contain renders the
work almost indispensable to the architect and builder, Work almost indispensable to the architect and builder,
and to persons about to build for themselves they will find the worksuggestive and most useful. They contain colored plates of the elevation, plan, and detail draw-
ings of almost every class of building, with specifca ings of almost every class
tion and approximate cost.
Four bound volumes are now ready and may be ob-
tained, by mail, direct from the publishers or from any newsdealer. Price, $\$ 2.00$ a volumbe. Stitched in paper MUNN \& CO., Publishers,

361 Broadway, New York.

FOREIGN PATENTS

THEIR COST REDUCED.

The expenses attending the procuring of patents in duced the obstacle of cost is no longer in the way of a arge proportio
tions abroad.
CANADA.-The cost of a patent in canada is even formerincludes the Provinces of Ontaric. Quebec, New Brunswick, Nova Scotia, British Columbia, and Mani-
toba. The number of our patentees who avail themselves of
the cheap and easy method now offered for obtaining patents in Canada is very large, and is steadily increas-
CNGII A NB.-The new English law, which went into tortenn Jan. 1st. 1885, enabes parties to secure patents

 him at home. and the small cost now renders it possible for almost every patentee in this country to secure a pa-
tent in Great Britaiu, where his rights are as well proected as in the United States.
OTHEL COUN'TRIES.-Patents are also obtained on very reasonable terms in France, Belgium, Germany, no ell the other Spanish Colonies), Brazil, Britisb ludia Australia, and the other British Colonies.
An experience of Forty years ias enabled the
publishers of THE ScIENTIFIC AMERICAN to estallish competent and trustworthy agencies in all the principal Coreign countries, and it has always been their aim to
havethebusiness of thetr clients promptly and properdone and their interests faithfully guarded.
of all countries, including the cost for each, and othe information usefuil to persons contemplating the pro-
curing of patents abroad. may be had on curing of pa
MUNN \& C(O., Editors and Proprietors of The Scientific American, cordially invite all persons desiring ny information reative to patents, or the registry of offices, 361 Broadway. Examination of inventions, consultation, and advice free. Inquiries by mail promptly

Address.
MUNN \& CO..
Branch Offices: No. 622 and 624 F Street, Pacitic
VOLNEY W. MASON \& CO.,
FRICTION PULLETS CLJTCHES and ELEVATORS
LIME KILN THAT SAVES 36 PER CENT.

The S cientific $A=$ merican
Publcarions for 1889.

The prices of the different publications in the United
States, Canada, and Mexico are as follows:
$\begin{gathered}\text { RATES BY MAIL. } \\ \text { The Scientific American(weekly), one year }\end{gathered} . \quad \$ 3.00$

The Scientific American, Export Edition (monthly)
one year,
5.00
The Scientific American, Architects and Builders
Edition (monthly), one vear.
The Scientific American and Ruplem.
The Scientific American and Architects and Build-
ers Edition,
$\$ r .00$
ers stition,
The Scientific American, supplement, and Archi-
tects and Builders Edition
This includes postage, Which we pay. Remit by postal
or express money order, or draft to order of
MUNN \& CO.. 361 Broadway, New Yorke

2fDertisements.

JENKINS BROS.

VALVES
ARE STAMPED LIRE CUT.
JENKINS BROS.

THE MODERN ICE YACHT, - BY

THE ARMSTRONG MFG. CO. WATER, GAS AND STEAM MITERS' TOOLS.

tocks and Dies for Pipe, Bolts, and Brass Pipe Wrenches, Pipe Vises, Pipe Cutters, etc.
Catalogues sent free on application. ICE-BOATS-THELR CONSTRUCTION

 In quality and denstit of metal aracy and nic
edequaled.
ion. Samples and prices on applica
Simond's Rolling-MachIne Co., Fitchburg, Mass THE COPYING PAD.-HOW TO MAKE and how to use ; with an engraving. Practical direction
how to prepare the elatime pad and also the aniineink
by which the copies are made; how to spply the written
bet

TUE KODAK CAMERA
 Price, $\$ 25.00$. The Eastman Dry Plate \& Film Co Rochester, N. Y. 115 Oxford St., London. THE PHONOGRAPH.-A DETAILED

THE RICHARDS OIL ENGINE

PATENTS

 PATENE

 AApampiet sent free of charea, on appication. oon-
 Bikpments, Rejectea Cases. Hints on the sale of Pa

ARCHITECTURAL DESIGNS. ELE-

ImsULATEDALALR COVERINGS

 mANGANESE STEEL AND ITS PROP
 DELAFIELD'S PAT. SAW CLAMP Merman

Scientific Book Catalogu

 RECENTLY PUBLISHED.

HYATI FILTERS

The Franklin Institute of Philadelphia has awarde pany for the adaptsbility of their system to
Purification of Water Supplies of Cities. LONG BRANCH, NEW JERSEY, NEWPORT, RHODE ISLAND, and over 20 cities and towns have adopted this
system, which is the onls successful legitimate one. We have suits against the National, Jewell, and othe HYATT PURE WATER COMPANY

SORGHUM SUGAR INDUSTRY, PRO

JACKET KETETLES,

MSBESTOS

 bRAIDED PACKING, MILL BOARD, SHEATHING, CEAENT, FIBRE AND SPECLALTIES

ROYAL MICROSCOPIC SOCIETY.-
 THE CUBHMAN KRY DRILL CHUCK

 OTTO GAS ENGINES.
 Combined. OTTO GAS ENGINE WORKS, CHICAGO, PHILADELPHIA. New York Agency,

INVENTORS and others desirin. noe ar articles manufac.
tured and introducea, address P P. 0 Box

POLAR PLANIMETER. - A PAPER

GUILD \& GABRISON
 Pgitatarg, Condensera for Pans, Enginea, Steam
Pumps, Vncuum Apparntus, eic. ETHEREAL OILS, NOTES ON.-NA-

Special Machines for Car Work, and the
Wood Working Machinery of ail kinds.

NEW YORK BELTING AND PACKING CO.

John H. Cheever, Treas. 15 PARK ROW, New York.

SYAACUSE MALLEABE EROVIWORKS

 THEAMBRCAB BLLTHPMHNCO.95 MILK ST., BOSTON, MASS

This Company owns the Letters Patent granted to Alexander Graham Bell, March th, 1876, No. 174,465, and January 30th, 877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such nlawful use, and all the consequences thereof, and liable to suit therefor.

ERIE ENGINE WORKS WAL NT STMEE ERIE PA

 JAMES B. EADS.-AN ACCOUNT OF fice and from ali newsdealers.

Šinntific Amprican

The Most Popalar Scientific Paper in the World.

 Only 83.00 a Year, including Postage. Weekly.This widely circulated and splendidly illustrated en pages of useful information and a large number of original engravings of new inventions and discoveries, epresenting Engineering Works, Steam Machinery, Chemistry, Electricity, Telegraphy, Photography, ecture, Agriculture, Horticulture, Natural History, etc. Complete List of Patents each week.
The scien. Tric Amintican will be sent for one vear- 52 numberspostage prepaid, to any subscriber in the United States
or Canada, on receipt of thiee dollars by the pubCanada, on receipt of three dollings by the
lishers; six months, $\$ 1.50$; three months, $\$ 1.00$. Clubs.- Special rates for several names, and to Post Masters. Write for particulars.
The safest way to remit is by Postal Order. Draft, or envel securely sealed, and correctly addressed eidom goes, sestray, but is at the sender's risk. Adress all letters and make all orders, drafts, etc., pay

MUININ de CO.,

361 Broadiway, New York. TIET
Scientific American Supplement.
This is a separate and distinct publication from Hir SCIENTIFIO American, but is unfform therewith of engravings, many of which are taken from foreign papers, and accompanied with translated descriptions. The Scientific american Supplement is published weekly, and includes a very wide range of contents. It
presents the most recent papers by eminent writers in all the prinilpal departments of Science and the
Useful Arts, embracing Biology, Geclogy, Mineralogy, Natural History Geography, Archæology Astronomy Chemistry, Electricity, Light. Heat, Mechanical Engineering. Steam and Railway Engineering, Mining Ship Buildipg, Marine Engineering, Photography,
Technology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Econony, Biography, Medicine, etc. A vast amount of fresh
and valuable information obtainable in no other pub lication.
The most important Engineering Works, Mechaniems,
and Manufactures at home and abroad are illustrated Pricefor the SUPPIEMENT for the United States and Canada. 85.00 a year, or one copy of the SCIENTIFIC AmCRICAN and one copy of the SUPPLEMENT, both mailed and remit by postal order, express money order, Arches MUNN \& Co., 361 Broadway, N. Y..

Building Edition

The Scientific American architicts' and Single copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary bnok pages; forming a large and splendid Magazine of A rchitecture, rich ly adorned with elegant plates in colors, and with other ne engravings; illustrating the most interesting ex allied subjects.
A special feature is the presentation in each number a variety of the latest and best plans for private resiences. city and country, including those of very mod perspective and in color are piven, together with full
Plans, Specifications, Sheets of Details, Estimates, etc. The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any
Architeccural publication in the world. Sold by all MUNN \& CO., Publishers,

361 Broadway, New York.
PRINTIING INKES.
THE "Scientific American" is printed with CBAS

