oxalic actd in 8 parts water. It in a powerful poison
and requires care in ite
nee. Sliphtly wet a cloth with the solution and rub the boiler. Wash clean with hot water.
(234) C. F. P. writes: I am about to erect a tobacco sweat house, 15 by 16 which must be completely steam tight. Can you tell me how mayy 15 by 16,7 feet high, to a uniform heat of 90^{2} day and night? I also need a moisture of 95°, which must be absolutely there day and night; would you recommend the heating by hot water or steam circulation? Is there any steam tight paper manufactured, which will stand moisture and heat any length of time What will it feet of 1 inch pipe for your sweat room. If you have staam upon the premises, it is recommended. If not, small greenhouse hot water stove is recommended galvanized water evaporator can be hungon the heating pipes for moisture. For ascertaining the amount of moisture in the room, we recommend a mason hygro meter as the most reliable means, cost $\$ 2.50$ to $\$ 3$. They can be purchased throngh the optical trade. There is oo paper lining that would stand the moisture and heat, lesst a disagreeable odor who coal tar, which would rooms in New York are only lined with matched ceiling oards that have been well oiled with lingeed oil and hen painted with mineral paint (no lead). Some are only oiled.
(235) C. B. asks: I would like to know if the dynamo described in No. 600 could be made in whalf size by using exactly half the dimensions every
whao if there would be any difference in the wire? A. To make a dynamo of one-half the capacity of the one referred to, reduce every dimension twenty five per cent. If you make it one-half size linear measurerfent. the ma
(236) H. M. C. writes: Please give definition and value of following terms: 1. Electro-motive
force? A. The force directly producing an electric urrent. What it is, is unknown. 2. Ohm? A. The ductor through which a unit of electromotive forc (one volt) will produce a current of one ampere. A cylindrical column of mercury one meter long and one millimeter in diameter has a resistance of 1.2247 ohms. 3. Megohm? A. One million ohms. 4. Micro farad A . One millionth of a farad. A conden ser of one microfarad capacity, charged at a potentia one volt, will contain one microcoulomb of electri city, enough to mantain a current of one ampere for
rofor second. 5. Volt? A. The unit of electromotive force. A gravity battery gives about $1 \cdot 07$ volt. 6 . cceeding a resistance of one ohm. . Series A A. One succeeding
the other. 8. Parallel? A. One by the side of the other, so as to be in action simultaneously. 9. Mul
tiple? A. Several at once. 10. Multiple arc? A. $\begin{array}{lll}\text { tiplef } & \text { A. Several at once. 10. Multiple arcy A } \\ \text { Several voltaic arcs arranged in parallel between two }\end{array}$ conductors. This is the proper meaning, but it is ap plied to incandescent lamps, and means several disposed in parallel as just described. 11. Ampere hour? A. A Compound wounds A. In a dynamo, having separately arranged windings on the electro-magnets.
(237) F. W. asks if men and women have been scalped and have recovered from it? A
Yes; there have been such casea, though they have oc curred but rarely. Oue of the veterans in our office well remembers having seen, when a boy, an entirely re covered and healthy man who had been a subject of an Indian scal ping knife. Possibly such survival has been due in some instances to the fact that the Indians, in hurriedly performing the work, removed only a por tion and not the whole of the scalp. An instance was also reported, some years since, of an operative in an caught in the machinery, and of her recovery from the caught in the machiner
(238) H. L. W. asks (1) for a process o naking soft water for the purpose of manufacturing iq the lime is present as bicarbonate, it can be precip If the lime is present as bicarbonate, it can be precipi-
tated by boiling. If it is present as sulphate, it should not cause you much tronble. 2. How to make a cheap electrophorus powerful euough to ignite gas or gasoline A. Cast a cake of resin six inches in diameter and one inch thick. Provide for it a wooden box lined with tin foil. A tin disk four inches in diameter is provided with a central glass handle. To exciteit, stroke the resin with a cat-skin, put the diek upon it as nearly cen then remove the finger. The dials lifted by the gis handle, brought near a gas fixture, will give a spark

Euquiries to be Answered. The following enquiries have beensent in by some of
our subscribers, and doubtless others of our readers our subscribers, and doubtless others of our reader
will take pleasure in answering them. The number of the enquiry should head the reply.
(239) W. H. M. asks : Please describe the method of firing red hot shot. We know it ha been done, but it seems impossible to gain any personal
information.
(240) F. C. L. asks: Can you inform me about how deep the water is in Niagara river, from
one to two hundred feet back of the great falls? Is the rock in river bottom here comparatively level 9 Also city of Bufalo ofer 8100,000 pras to the parts furnishing the most feasible scheme to utillze the power of the falls?
(241) H. C. W. asks whether it is easier for a fireman to keep steam on an 80 h . p. boller to run
a 50 h . p. engine $(14 \times 20,180$ revolutions) or a 75 h p engine doing the same amount of work as the 50 h . p . engine, and do the work. We fire with the refuse from rotary veneer machines and poplar bark, and sawdust from a heading saw. We find it pretty hard work to
keep 80 lb . of steam on our 80 h . p. boiler to ran 50 h
p. engine. Would we find it any better to put in
larger engine? Would we find it any more work keep steam?

Replles so Enquiries.

The following replies relate toenquiries recently pub Scievific American, and to the number
(35) Circular Saw, Connections, etc., fo same.-Your saw, 36 inches, should travel 1,000 revoluions per minute. You caunot obtain this speed with. out usiug a belt or multiple gearing. Better use a belt. If you have a hy wheel 5 feet in diameter on your enyour saw arbor, providing your engine travels 200 rer lutions per minnte, which it should with a boiler pre sure of 150 pounds. It would then indicate $27 \cdot 6$ hore power if the stroke is 8 inches. This arrangement will allow of your cutting 5,000 feet of lumber per day, if your boiler is of sufficient size. But I do not think it mate being made of its power. You should give num ber and size of tubes and size of fire box.--s. H. Pratt, M. E.
(56) I. S.-With the velocity of the air in the pipe at 14 miles per hour, with pressure of 100 lb . less the friction and other losses, we compute that you may realize 8,000 horse power, and for 200 lb . pres
(58) W. H. C.-White porcelain clay or aolin is a silicate of alumina, known by its soft, reasy feel and absorbent nature when touched to the ogue. Address L. A. Solomon \& Bro., 216 Pear
(59) F. H. G.-For coal, the grate hould be 24 inches from the boiler; and for the small power you intend to use, you may make the grate sur
face only 3 ft . wide, if the grates are 4 ft . long. This cace only 3 ft . wide, if the grates are 4 ft . long. Thick
can be done by false sides upon the grate, of fire brick
(60) H. B.-For computing the indited horse power of an engine: Multiply the area he cylinder ($D^{2} \times$, und this product by the travel of the piston in feet per minute, and divide by 83,000 . The meanengine presaure for $1 / 4$ cut-off $=0.637$ of boiler pressure; for $2 / 2$ cut-off $=0.766$; for $1 / 6$ cut-off $=0.88$. For computing the distance of the weight on the safety valve lever: Maltiply the
area of the safety valve $\left(\mathrm{D}^{2} \times 0.7854\right)$ by the required area of the safety valve ($\mathrm{D}^{2} \times 0.7854$) by the required
pressure for blowing off. Divide thls product by the pressure for blowing off. Divide thls product by the
weight of the ball. Multiply the quotient by the weight of the ball. Multiply the quotient by the
length of the fulcrum in inches and decimals; the prolength of the fulcrum in inches and decimals; the prothe fulcrum to the center of the ball. Thus for a 3 in safety valve, 100 lb . pressure, 60 lb . ball, fulcrum 2 in $3^{2} \mathrm{in} .=9 \mathrm{in} . \times 0.7854=7.06 \times 100 \mathrm{lb} .=708 \mathrm{lb}$. , and $706-0_{0}=11.76 \times 2 \mathrm{in} .=23.52 \mathrm{in}$., $223 / 6$ in. from the fnl crum to the center of ball.
(73) 1. Resistance of accumulator and mp. - Watts $=250$ per unit of time. Amperes \times volts number of watts. 2. Resistance of lamp, 188 much at a white heat as cold. 4 You cannot unless you allow one or more of the arc lamps to go out,
without reducing greally their brightness. 5. The atteries should be connected in serles with the lights.
(74) E. A. B.-Bromide Prints.-See Scientific American Supplement, No. 330, practical
hints ou the making of bromide and gelatine prints.
(75) L. M. C.--For your thermostatic bar, cuta strip of sheet Iron and a strip of sheet zinc inch wide and long enough to reach across the incubatorbox. Rivet or solder the ends together, and
wind twine tightly around for the whole length to hold wind twine tightly around for the whole length to hold
the pieces close together, or if convenient, the strips the pieces close together, or if convenient, the strips
can be soldered together. Fasten one end to the inside of the incabator. The other end will swing with the eatin any way that you may devise
(77) Recovery of Silver from Waste. The waste papers are thoroughly washed in water and dium chloride (salt) is added thll precipitation is comlete, decant the solution, wash the precipita water, and again decant. The remaining precipitate is ried and then ready to reduce to metallic state. The ilver chlorideis mixed with about an equal portion of mixture of sodium and potassium carbonates and
fused in a clay crucible. A few minutes after fusion fused in a clay crucible. A few minutes after fusion
pour the contents of the crucible into some clay dish and allow to cool, when the silver batton is easily se burned and the ashes treated with nitric acid. Dilute nd precipitate with salt and proceed as above.-E. W W
(77) Recovering Silver Waste.-1. Burn e material, and treat ashes with nitric acid and water, ng silver nitrate. 2. Know of no method for repro ducing negatives directly. You may make a positive on glass fr
C. A. \mathbf{c}.
(78) Red gas flame.-Suspend in the hare a fine wire ganze basket containlag strontium
(82) Raising a weight.-The power
(83) Who invented the telephone ?-The elephone was invented by Phili
patent is dated Bra.-C. A. \mathbf{C}.
(84) In pidsties' wheels.-The wheel used by hepidaries is a fiat copper dlak, charged on the edge nond dast. It
(86) M. C. H.-Matehes.-Clear white
work on the fabrication of matches by Duseauce, fo
\$8, its price.-Address Paul Pryibil, 463 West 40th 8 t New York, for splitting machines. (87) F. S. W.-Hot Water Heating Ap paratus.-The hydrogen which you tgnited at the air proper proportion of air to become so. There may be a possibility of vegetable matter in the water of you
ot water apparatus disengaging a small portion of hot water apparatus disengaging a small portion of
gas, which may accumulate in a radiator. In stean oilers, the flow of steam carries any gases of decom position with it,
plosive mixture.
(90) T. G. A.-Granite ware is glazed inds orcena enamel in the same manner as othe sinds of enamel ware. The diference being in glazing both inside and outside, and in the color and quality of
the glaze. Any colors can be utilized that are available for chinaware. See Scientific American Suppie urnt, Nos. 248, 314, enarnels and enameling.
(91) W. H. B.-Wire Netting for Drying -Nothing that you can put on the wire netting in th frames will resist disintegr.
(94) 2. Battery for Heating Wires.-1 hink you will find the Grenet or simple bichromate of aranh pattery the best for heating wires. One cell, with
a
zinc of the same size, heats $1 \frac{1}{6} \mathrm{in}$. of No. 30 platinum wire to a white heat in two or three secouds. For greate length of platinum wire, connect more cells in series,
With greater battery power, you can probably obtain white heat in a second. The battery fluid soon become hausted with this work.-L. B.
(94) Telephone call bell.-1. The bell would be rnng over the wire by the magneto call bell,
but the resistance of the wire is too great to operate by a battery. 2. You do not mention the length of
(95) Movements of the ocean.-Two. The tidal movement caused by the attractions of the sun and moon, and the ocean currents, as the Guln
tream, caused by the rotation of the earth and.the un qual heating of the waters at the equator and th
(96) Horse power of waterfall.-1. Ove 25 foot fall, $1 \cdot 527$ H. P. 2. Over the 50 foot fall 054 H. P.-C. A. C
(97) Leather belt.-Always turn the T Po bla an, in most cases, be promptly obtained through the Scientific American office, Munn \& Co., 381 Broad way, New York.

TO INVERTORS.

An experience of forty years, and the pre paration of more than one hundred thousand applications for pa
tents at home and abroad, enable us to understand the ams and practice on both contine nts, and to possess un equaled facilities for procuring patents everywhere. ynopsis of the patent laws of the United States and a
foreign countries may be had on application, and person contemplating the securing of patents, either at home oo abroad, are invited to write to this office for price ensi MUNN \& CO. oftice ScIENTIFIC AMERICAN, 3 il Broad

INDEX OF INVENTIONS

or which Letters Patent of the Unized States were Granted

Jaǹuary 8, 1889,

AND EAGH BEARING THAT DATE.

Seenote at end of list about copies of these patente.

Arricultural boiler or barrel heater................ Tvedler.
Air, apparatus for moistenin
tow \& Lutzner
Alarm. See Overflow alarm.

Anæsthetics, apparatus tor combining. J. S. A

Axie lubricator, car, T. F. N. Finc
Axle lubricator, car, T. Saunders

Bag lock, L. B. Cutler. Baling prese, T. Runkle

Rylling press, T. Runkle.......
Bar. See Railmay splice bar.
Basket cover, T. W. Lankford
Batteries, apparatus for charging and dischargin secondary, W. P. Kookoge y.
Batteries, preparing solution co

Battery. See Medical battery. Volt
Bell cord attachment, G. A. La Feve
Binder, temporary, G H.
Binder, te mporary, G. H. schar
Binocular glass,
Binocular glass, J. E. Brikgs..
Blind,
Bindow. A. P. Heidt...
Blower. Porge, J. Day...........
Board. See Ironing board.
Boat. See Ice boat. Life brat.
Boat. See Ice boat. Life brat.
Bobin, o. o. sullivan........................ 38%
Boiler. See Arricultural boiler. Steam boiler.

Boot tree, A. M. Moore.............
Boring and reaming tool, C. Robin
Bottle, nursing, L, W. Oster.
Ber
Bottles stop drink rexlstering attachment for liquor
H. C. Barker
Bor. C. Barker.................................. Axle box. Knockdown box. Letter
box. Paper box
Brace. Soe Rstchet brac
Brace. See Rastchet brace.
Bracket. See fefietor rata
Brake. See Veblecte brate.
.

 Carpet sweeper, W. J. Drew..... Cart, road, Schnuedlen \& Byrne. artridge loader. J. V. Thomps

Cathode for an electro-depositing apparatus, E . Emerson

Emerson.. 395,773
35595
396.812

Chalk holder, F. Chambers............................ 336.81818
Chuck, lathe. D. E. Felt.................................. 39

 Clothes drier, F. J. French............................. Cofkn handle. Koehler \& Heer. ombination hook, L. Kent...
Conveger, chain, J. M. Dodge. Corn cob holder, F. B. Fetherstonhau Corn, machine for hulling green, J. Ritty..........
Corsets, manufacture of ornamental, L. Kraus.. Cosmetic cream. N. K. Gentry..................
Cotton compress, G . Taylor............ Coupling. See Car coupling. 1 Hoselcoupling.
Coupling link. B. Morton........................ 395,794
Crusher, See Clod crushe Cunsher. See Clod crusher.

Dial, timepiece, M. . B. Ethridge................... 255,696
Die. See Screw cuting die.
Diestock, A. W. Bartholome w....................... 395,656

Draught, check, w. J. Owens.............................. 3595917
Draught equalizer, A. G. Brown................. 355,874
Drier. See Brick drier. Ciothes drier.
Boehncke
Brick machine, J. J. Brewis
Brick machine, W. Weeber

Bridges, automatic Rate for swing, H. Marcheter. sexp,752
Buckle, L. L. Conkes................................. 395,742
Buckle guard, G. M. Hubbard........................ - 385,924
Buffng machines, belt tightener for, J. G. Blount 295,782 Burner. See Oil burner. Petroleum 396.025
395.745

Cabinet, merchandise, s. C. Adler..................... 395.889 Cable system, traction, M. F. Bradley............... 395,800 Cable, wire, H . Leschen. \qquad 395,983

amera. See Photographic camera. . Can forming and soldering machine. Leavitt \&
Notron................................ 88.738
Can forming and soldering machine, E. Norton... 895.735
Cane w.

788

0

\qquad | 396,789 |
| :--- |
| 336,966 |
| 335,787 |
| 335,775 | 385,787

355,75
355768
395,982 . 395,768
39582
. 395,704
304 $.359,183$
3950,63
396,98 3956,698
395.997
395.709
3
Drier. See Brick drier. Ciothes drier.
Drill. See Mining drill. Radial drill. Ratchet
drill.
Drilling and centering tool, J. E. Ketchem.......... 3358,
Dilling machine, C. M Woolworth..
396,018
Dust collector, J. H. Weets............................... 3965,018
ler.....................................
ene
ectric limhtins systems. regulator for incandes-

Engine. See Gas engine. Pumping engine. Ro-
tary engine. Steam engine.
Enkines, automatic pressure regulator for the re.
ceivers of compound, J. T. He nthorn........ 395.82
Engines, automatic pressure regulator for the re.
ceivers of compound, J. T. He enthorn........ 395.828
Engines, distributing motive fluid in compound,
Westinghouse \& Rites $\mathbf{3 s 5 , 9 3 5}$
Excavator, G. J. Stafrord................ $\mathbf{3 5 5}, 854$
Excavator, G. J. Stafford........ 385,85
Eyelasses to head apparel, mans for attachiog,
Brownlow \& Warner.......................... : 80,81
Brownlow \& Warner. $1 ~$

Fence post, w. D. Stillman...........................
Fene wire barbs, forming. W. Gent...........
Fencing, machine for making wire, L. W. Free

Drill. See Mining drill. Radial drill. Ratchet
drill.
Drilling and centering tool J e. Ketchem

