recently patented inventions.

Rallroad Appllances.

Car Coupling.-Edward P. Eastwick, Jr... New York City. Thiscoupleris oftheclass having
knuckle connecting links, and provides means whereb knuckle connecting links, and provides means whereby
the striin on the drawhead caused by a buffing blow is the etrain on the drawhead caused by a buffing blow is
made much less than usual, from the eppecial cunstrucmade much less than usual, from the epecial construc-
tion of the kuuckles and drawhead, and whereby the locking pin may be readily raised from the side of the
ar.
Car Truck Connection. - Aaron Twyman, Pullman, Ill. This invention provides for bars around the pivotal center of motion of the truck leaving an open space at the center of or within the attachment which may be utilized for the convenien placing of a motor or grip, or other purpose, the ising bolt and center plates being dispensed with.
CAR Door.-Henry Alsop, Chicago, ars, etc., and is formed with a bridge.like section o portion loosely or pivotally connected at its lower edge
with the car, so that, when released, this section will be with the car, so that, when released, this section will be free to turn ontward to and apon a platform or chute,
forming a bridge for the passage of stack into or out of

Railway Car. - Gerald P. Warren, San Antonio, Texss. In this car the ends or vestibule
portionsare constructed with their outer sides in movable sections, and bullet proof, with port holes, the ar rangement beingsuch that these portions can be quickly
closed to make a fortifed chamber wherein passengers will be protected against train robbers.
Bell Cord Attachment.-George A. La Fever, Selkirk, N. Y. It consists in a carriage
mounted on a guiding bar supported in a horizontal position in the car above the bell cord, and provided
with a device for clamping the cord and severing it in case of an onnosual movement of the cord, preventing it from being drawn rapidly through the car and en dangering passengers.
Hot Air Generator. - Emmet M Crandall and Thomas H. Turner, St. Joseph, Mo. It ia for heating the cars of a train, the generator being fitted ho the smoke arch, and consisting of a ring-shaped
hollow casing perforated by short pipes for the passage
of heat and smoke, while the casing has an outwardly opening fonnel for the entrance of air, and a pipe cou nected with the cars of the train.

Engineering.

Mining Drill. - John P. Paynter Pomona, Kansas. A frame carrying an engine is
mounted to travel on a track, the engine operating a transverse cutter shaft, witha drill of novel construction, especially adapted for undercutting coal in sma seam8, cheapening the cost of mining
miner from his most difficult work.
Vacuum Engine.-John R. Cameron Pittsburg, Pa. This invention covers a novel construction, whereby a given body of air is rarefled by heat and
allowed to escape as it expands, while the remaining body of air is then suddenly cooled to create a partial affording means for operating a piston within a cylinder

Mechanical.

Lathe. - Joseph K. Koons, Montgomery, Pa. This lathe is made with movable supports
for the centers or work holders, whereby the work- in the operation of the lathe will be moved as it is rotated for turning ovals and oval shafting, or for tarning bodies having elliptical cross sections.
Drilling and Centering Tool.John E. Ketchem, Morrillton, Ark. This is a tool in
tended especially for watchmakers' use, and has a spring by which a steady feed pressure may be exerted on either the center marker or the drill, either of which may be conveniently applied to the machiue, and the presenre can be regulated and adjusted to properly feed the tool in working in different materials.
Saw Mill Feed.-A lois Lang, Atlanta, Ga. This constructiou has a combination of disks secured edgewise to each other and upon shafts driven
from the saw shaft wheel, a shifting lever engaging a from the saw shaft wheel, a shifting lever engaging a
wheel sliding npon a shaft, while there isa lever having a cam-shaped pivoted end for moving the wheel to and from the disks, with other novel features, designed to
overcome certain objectious in this class of mechanism.

Miscellaneons.

Cutting Hair. - Marcus Klein, Chicago, Ill. This invention relates to an apparatus combining a comb and a pair of scissors so connected
and arranged together as to be adjusted for scissors of and arranged together as to be adjusted for scissors of
different sizes, and also for regulating the length of the hair cut.
Ornamental Box.-Mendel Baskam, New York City. It is composed of united panels form ing tbe side and end walls of the box, each being made plate, and an interposed ornament, the panels being
eccured to a bottom, making a cheap box with the ornamentation fully protected.
Music Boxes.-Gustave J. Jaccard, New York City. This invention relates to mechanism and consists principally of a duplex stop acting apon the countershuft, so that there will be less strain and less wear upon the vertical shafts which carry the stop

Oil Fied for Lamps. - Christian Sieghold, Salinas, Cal. The lamp is provided with a valve in its bottom, connected with a float contained by
the body of the lamp and a pipe leading from the valve the body of the lamp and a pipe leading from the valve
opening to an oil reservorr, making a simple and effectnal device for uniformly sapplying lamps with oil.

Carpet Stretcher and Taceer.Anstin F. Lamb, Stock briage, Vt. pivoted frame on the end of the sliding bar, a bar ad justably secured in the frame, and a tacker carried on the end of the latter bar, whereby carpets may be easily retched and fastened down.
Oil Tank.-John C. Dilworth. Pittsorg, Pa. This invention relates to metallic oil tanks through which waste oil is passed back into the oil chamber, and provides a strainer cup therefor, with will be material, ayd a strainer pocket, with which it will be impossible for ϵ ven the finest particles of dirt
to enter the oil, while the strainer can be easily cleaned.
Album Clasp. - Louis B. Prahar, Brooklyn, N. Y. A spring pawl is held within a pocket, which has a button extending outward, a plate being adapted to slide within the pocket, and having ratchet
teeth engaging the pawl, with a stop for the plate, making a clasp designed to be ornamental as well as making
nseful.

Chewing Gum Locket.-Christopher . Robertson, Somerville, Tenn. This is a locket having hinged sections and anti-corrosive linings, for holding, with safety and conve
confections, or medicines, etc.
Tobacco Pipe and Cane. - George . Coursen, Baltimore, Md. This invention provides pipethat will be of the usal shape, either ornamental cane, from which it is detachable, the bowl constituting the handle of the cane and the stem a portion of the the ha
stick.

Tobacco Pipe.-George F. Golquitt, arcelh, Indian Ter. This invention consists of a pipe leading into the bowl, and with a valve for closing said opening, the design being to prevent the nicotine and other unhealthy substances from entering the smoker's

SCIENTIFIC AMERICAN

buIldina EDITION.
JANUARY NUMBER.-(No. 39.)
table of contents.
Elegant plate, in colors, showing perspective view of a one story Sonthern house, costing two
sand two hundred dollars. Floor plans, etc.
. Plate, in colors, showing a block of economic brick dwellings. Floor plans, elevations, with details,
etc. The Washington
page engraving.
4. Design for the ne
5. The new government building at Binghamton N . 6. Plans and elevations for a two thonsand five hun dred dollar cottage.
The Tacoma Building, Chicago. Half page en graving
A seaside summer honse. Cost, about five thou-
sand dollars. Plans and perspective. sand dollars. Plans and perspective.
Church of St. Paul, Luton. Half page engraving. . A dwelling near Newark, N. J., recently erected a a cost of about five thousand five hundred dollars. Plans and perspective.

1. View of the main entrance to Melrose Park, near
New York. New York.
A house for five thousand five hundred dollars, lately erected at Flatbush, Long Island. Plans
and perspective. and perspective.
2. A residence recently erected at East Orange, N. J. at a cost of five thousand four hundred dollars.
Perspective and fioor plans.
A Queen Anne cottage at Flatbush, Long Island. Cost, eight thousand dollars. Plans and perspective.
A cottage lately built at Flatbush, near Brooklyn N.Y. Cost, six
and perspective.
3. Desigu for an English cottage.
4. Construction of mills. Section of mill showing construction of two fioors and roof
5. Engravings and plans of some economical houses. ranging in cost from three hundred to one thou
sand dollars. ${ }^{\text {Ba }}$
6. Miscellaneous Contents : Construction and finish of house fiues.-Iron roofs.-Restricting heights.
-Traction over different pavements. - Dry rot -Traction over different pavements. - Dry rot son. - Wall plastering.- Mineral wool as a fillNatural gas lighting.-Lane patent door hanger. Automatic temperature regulators, illastraced. The Priudle metallic wire packed unions, illus trated.-Architectural wood turning, illustrated. Filling the hollow spaces in
buildings.-Terra cotta lumber.
The Scientific American Architects and Builder Edition is issued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to about t5 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages ; forming, practically, a large and splendid Magazine of ArchitecTris, richly adoraed with elegant plates in colors and
with Gne engravings, illustrating the most interesting examples of Modern Architectural Construction and allied sabjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Laraest Circulation
fany Architectaral publication in the world. Sold by any Architectaral pablication in the world. Sold by
newaleas. MUN
munn \& CO.. Fublyahrra,
301 Broedmay, Nef Yor
$\mathcal{Z u s i n e s s}$ and $\mathfrak{P e r s o n a l}^{2}$ The charge for Insertion inder thes head is One עolla Advertiser insertion; about eight worlis a a ine. as early as Thursday morning to appear in next issue
Screw machines, milling machines, and drill p
E. E. Garvin \& Co., $339-143$ Center St., New York.
New Patent for Sale-Inventor wishes to sell patent on improvement in safety catches for elevator. Apply
W. Muller, No. 20\% Lafayette St., Newark, N. J. All books, app., etc., cheap. School of Electricity, N.Y. Belting.-A good lot of second hand belting for
cheap. Samue! Roberts, 369 Pearl st., New York. Wanted-Single stand steam hammer, new or secon hand, 400 to 600 pounds. Give maker's nameand price
P. O. box 324, Chicago
Patent Salesman Wanted-A big opportunity on an invention of raremeritin the hardware line. Established
Best of reasons for seling. Address James A. Wilmot, Saco, Maine.
Dies, moulds, patterns, models, engraving, etc., to
order, Chas. A. Bailey, designer, Middletown, Conn Air compressor for sale cheap. Also steel tanks, iron rail, cars, etc. Address The Buffalo Wood Vulcanizin o., Buffalo, N. Y.

Pratt \& Letchworth, Buffalo, N. Y.
solicit correspondence relative to manufacturing spec-
ialties requiring malleable gray iron, brass, or steel cast solicit
ialties r
ings.
For

For the latest improved diamond prospecting drills, Link Belting and Wheels Link Belt M Co, Cis Presses \& Dies. Ferracute Mach. Co., Bridgeton Perforated metals of all kinds for all purposes. The bert Alccison Perforated Metal Co., Chicago, ill. The Holly Manufacturng Co., of Lockport, N. Y., chinery, and containing reports of tests, on application No. 11 planer and matcher. All kinds of woodworkin oachinery. C. B. Rogers \& Co.. Norwich, Conn.
Iron, Steel, and Copper Drop Forgings of every de The Improved Hydraulic Jacks, Punches, and Tub ©xpanders. R. Dudgeon. 24 Columbia St., New York. Safety Elevators, steam and belt power ; quick and
smooth. The D. Frisbie Co., 112 Liberty St.. New York. smooth. The D. Frisbie Co.. 112 Liberty St... New York.
Tight and Slack Barrel Machinery a apecialty. John Greenwood \& Co.. Rochester, N.Y. See illus. adv., p. 28.
Rotary veneer basket and fruit package machinery. Rotary veneer basket and fruit package machinery.
I. E. Merritt Co., Lockport, N. . Double boring machines. Double spindle shaping machines. Rollstone Machine Co., Fitchburg. Mass.
Duplex Steam Pumps. Volker \& Felthousen Co., Buf

Send for new and complete catalogue of Scientific and other Books for sale by Munn \& Co., 331 Broadwa
New York. Free on application.

Madex manisHINTS TO CORRESPONDENTS
Names and Add ress must scc:ompany all letters,
or no attention will be paid thereto. This is for our
information, and not information, and not for publication.
References to former articles or answers should
give date of paper and page or number of question. Inq uiries not answered in reasonable time should
be repeated; correspondents will bear in mind the
some answers require not a little research, and,
though we endeavor to reply to all, either by letter
or in this department, each must take his turn.
Speclal Writiten Information on matters of
personal rather than general interest cannot be pecial Written Information on matters of
personal rather than general interest cannot b
expected without remuneration. Scientitic A merican Supplements referre
to may be bad at the office. Price 10 cents each. Bookser re.
price.
Minerale sent for
marked or labeled
(192) T. K., New South Wales, asks inPormation for grinding and setting a hollow ground
razor. A. Razors that have been in use until the edge is razor. A. Razors that have been in use until the edge is
rounded by strapping cau be brought to a flat bevel on the edge by placing them on a perfectly fiat hone or other fine-grained stone, with a little thin oil, as lard oil or fine machine oil, letting the back always rest upon
the stone, and with small circular motions of the hand without pressure grinding down the bevel until thestone marks meet on both sides in a thin feather edge. The regular razor hone as imported through yonr cutlery
trade from Englaud is the best. The finest washed four trade from Englanc is the best. The finest washed flour
emery laid on a flat piece of wood with glue and pressed emery laid on a flat piece of wood with glue and pressed of floar of emery paper glued to a strip of wood and pressed upona fiat iron or piece of glass, willanswer the
purpose. In using the emery stick always draw the razor backward from the cutting edge to pre rent catch-
ing and hacking the edge against any uneven particles ing and hacking the edge against any uneven particles
of emery. For a strap use a strip of fine, even calf skin, glued to a piece of wood, on which rub a little oul. Draw backward and keep the heel or back of the on. Draw backward and keep the heel or back of the
razor in contact, so as not to round the edge. Oxide of tin or putty powder mixed with oil also makes a good razor strap paste. The skin of a
highly recommended for razor straps
(193) G. P. asks how chimney stacks (factory, etc.) are built so as to gradually taper toward the top (and how everything is kept plumb). Also how
the graduallessening of the bricks ismanaged. A. The the graduallessening of the bricks ismanaged. A. The
insides of nearly all tall chimneys are parallel and vertical. They are carried up by plumb bob and long plumb line for correction in the usual way of mason's practice.
The outaide batter is carried up in detail by a plumb bob set for the angle, which is verifed by actual measarement of the diameter every section of a few feet. The
batter is brought in by cutting a brick on each second third, or fourth outside course, the joints nsually allowing for considerable drawing in of the batter for several courses. The same practice is almo nsed for
thinning the wall, with rule measurement for regu-
architect usually furnishes the compatation for batter diameters by sections. If there is any donbt as to the work, a plumb line is let down the center and measures tanatop
(194) E. D. F. writes: Can you give nstructions through your valuable paper for painting photographic pictures on convex glass, also on plane . Soak the pictures in wriginal photo. be preserved? paste to a concave glass such as can be bought at the art stores. Afterthey are dry, rub down with pumice tone until nearly transparent, hold against the light,
and paint them. Soak with castor oll when they are nd paint them. Soak with castor oll when they are against the back, and bind edges securely with paper or cloth, using gum tragacanth. Or you may: fow ammar varnish on the glass, and after soaking the picWhen all is perfectly dry the paper can be almost comletely rubbed off with a wet finger, leaving the picture. aint, and flow a second time with dammar varnish. In both cases aitach the picture to the convex surface.
Practice on flat glass with valueless pictures firs. The otogrsph is destroyed.
C. J. C. is referred to latter process, in
(195) J. W. asks (1) the difference beween the working of a high pressure and low pressure ngine. A. The main difference between a high pres-
ure and a low pressure engine is that the latter works with a partial vacuum on the preceding side of the piston, made by condensing the steam and thus adding about 13 pounds to its effective work for every square inch of the cylinder area. We recommend you to read
the "Practical Steam Engiueer's Guide," by Edwards, the "Practical Steam Engiueer's Guide," by Edwards,
2.50, which we can mall for the price. It contains a \$2.50, which we can mail for the price. It contains a
full description of all kinds of steam engines. 2. The largest engine in the United States. A. The largest ingle cylinder engine is near Bethlehem, Pa., at the ehigh zinc mines, used for pumping.
(108) G. C. H.-We have no further inormation in regard to clover hullers than that conained in articles quoted. Prof. Sweet, of Cornell, now in Syracuse, N. Y., designed the straight line engine. aticengines are so called becanse the ordinary gov rnor valve is dispensed with, and the governor so ar ranged as to act directly upon the motion of the slide
salves. The slide valve moves upon a flat surface while a rocking valve (Corliss and similar) makes a partial revolution in a cylindrical steam chamber. The variation in prices of engines mostly corresponds with peculiarities and complesity in construction, also in finish. Some engines of the same size cylinders vary Your $11 / /$ inch belt at 200 feet per minute represents 3
(197) B. F. C. asks : How is a piano (197) B. F. C. asks: How is a piano not done with emery belts or belts of some kinds A The polish finishing of piano cases requires experience o assure success. The cases are first smoothed with a planing machine or hand planes, and then are scraped and smoothly sandpapered. They are then stained, and "filler "-a rosewood paste for instance-is carefully rubbed in, to completely fill the pores of the wood. A rubbing coat of varnish is then applied, this coat really When thoroughly dry this rubbing cost is rubbea down perfectly smooth with ground pumice and felt rubber and water. Then a fiowing or finishing coat of varnis is skillfully applied, and when dry it is fine-rubbed and rottenstoned, using water and the palms of the hands in this operation,which removes all scratches and leaves a right polish, which is completely finished by rub bing off with oil. In finer classes of work a "scraping" and when dry this scraping cost (which is really pores, and when dry this scraping coat (which is really four is carefully scraped off by steel plate scrapers, a delicate operation, then the rubbing coat above named is riginal smoothing is not doneat and oil finish. The machine or hand smoothing planes, scraping and sand papering. It requires about three mont hs' timeto polish a piano case. and the wo
ful, experienced hands.
(198) J. S. asks : 1. Will you describe of Paris? A. It ismade by grinding and heating gypsum. . Can it be made in any other way than by burning ypsum? A. It is made by no other method. 3. Wha making plaster of Paris? A. Spons' Encyclopedia, which we can supply for 75 cents in parts, contains treatise on plaster of Paris and lime. The burning of alum i described in the United 5° ates Pharmacoperia, which you an consult in any drag store.
(199) W. A. S. writes: I am in want of ance of magnet which will lift, say 4 pounds, a dision as to giviag the dimensious of the different parts? I would also like to know if a Lecianche battery of two cell would operatesuch a magnet in good shape. A. Your
battery is rather weak. The larger the magnet core for battery is rather weak. The larger the magnet core for
the same number of ampere turns, the more powerful the same number of ampere turns, the more powerful
will your maenet be. A $3 / 4$ bar of iron wound with No 18 wire nntil 1 inch to $11 / 4$ inch thick should give good
(200) J. W. K. asks for a cement to imaten rubber to iron. A. Soak pulverized ${ }^{\text {khellac in ten }}$ when its bulk of strong aqua ammonia for three weeks, When it will become a transparent mass. Spread upon ow to dry. First cemented, and press together hydro hloric acid 1 ces the iron by immersion in hyd free from acid in hotwate
(201) M. E. S. asks : 1. Will the fluctuating motion of a windmill answer well to drive the
eight light dynamo of Supplement, No. 600 ? A. It
will not. 2. What sized storage battery will be requirt
to operate the eight 18 candle power lights for six hours
when there is no wind to drive dynamo, or how much battery per light per hour? A. Twenty-five cells
will be required for fifty volt lamps. 3. How much wastage to storage battery when not in use, charged and uncharged: A. It should be kept charged, when there
(202) G. W. C. asks whether tisere is any lost power in belting as per sketch over the ordinary
friction, or if there is any power gained by so belting.

(206) J. L. S. asks how to succeed in astiug small iron door bells. I have trouble in getand common metal. A. For small bells of cast iron it is necessary to have a very fluid iron that will run sharp on the edges and also be solid. This may be done by using good charcoal iron with fine-grained scrap for the ounce of tiu that has been granulated by melting and pouring in of 50 pounds of iron. This may be
ments of toue or temper. By placing the finely disintegrated tin in mixed in drawing the iron upon it.
The required tone of the bells de-
A. As you have failed to note particularly in regard to distancesbetween the centers of trausmission, we mus assume several conditions to satisfy a general answer
If the central pulleys and shaft do no work, or are only means of transfer, there is nothing gained by thei ase for distances of less than 40 feet between extreme points or shafts. There is a little friction from the bending of the belts, the journals, and also a slight loss of contact on the extreme driving and receiving pulleys The sag of the belt made by dispensing with the trans fer pulleys enables a more perfect economy by increased
belt lap with decreased tension, for lap and tension are belt lap with decreased tension, for lap and tension are
equivalent factors in this problem. Within reasonable equivalent factors in this problem. Within reasonable the sag of a moderately long belt is the best means of regulating the tension to the required work. For long distances, say 80 to 100 feet, the intermediate or transfe pulleys become in most cases a necessity, although long belts running upon idlers are admissible, and are part
of the regular scheme in wire rope transmission where of the regular scheme in wire rope transmission where
the weight and momentum of the rope gives it uni formity of motion. The ouly objection to the use of
very long belts arises from their elasticity and vibra tion. In many kinds of machines the work or motion sets up a synchronous vibration in the belt that become destructive. In such cases a very light idler may obviate the difficulty. We can only say in answer to your direct question, that in no case is there a gain in power over the absolute power of the driving pulley. The
only gain is in a esving of otherwise lost power by
steadiness of transmission in long distances.
(203) A. T. S. writes: In several of our lazzed office cars, observation room end windows are glazed with double glass in order to keep out the cold
while running. A space of $1 / 6$ inch is left between the
pends upon the thickness and shape
of the patterns, and is necessarily a matter of trial Auminum is also much used for making cast iron flow Ireely and solid. Address the Cowles Electric Co..
ockport, N.
Y., who will send you their his subject. If you find that the ring is not sharp With the harder iron the bells will be brittle.
(207) A. B. asks information in regard the utilization of tin scrap. A. Scrap tin is used in New Yorkand vicinity by chemical manufacturers, who olution of tin is made into tin salts used in dyeing, and the iron scrap, if large enough, is rolled into tag iron, or made into rouge or the red oxide of iron, used or polishing or paint. The scrap tin is also used with pig or scrap iron in an ordinary cupola for casting
sash weights or other iron articles not reguired to be cush weights or other iron articles not required to be cut with tools, as it is hard. Scrap tin is of very little
value, and will hardly pay for its own transportation ny considerable distance.
(208) S. T. C. asks how to keep boilers omrusting that are kept for reserve, only fired once maykeep them empty, provided you can withdraw the aykeep them empty, provided you can withdraw the
water perfectly, leaving openings above and below so that they shall be perfectly dried. Otherwise leave
them full of water that has been boiled. A little caustic oda or potash may be added with advantage.
(209) Paul writes: 1. I contemplate ighting my residence with incandescent lamps, using orage batteries to supply the current. I have a dy-
amo whose capacity is said to ve 70 volts and 15 mperes. The batteries are said to be 100 ampere
ours and 2 volts each. I use a gas engine in ours and 2 volts each. I use a gas engine in my barn

sible to prevent dust between them, but now, as cold Weather sets in, the inside of the outer pane sweats, ob-
tructing the view. Do you know of any way to kee the space between the two glasses dry and clean9 A.
As the half inch space contains an objectionable amount As the half inch space contains an objectionable amoun
of moisture when condensed by cold, we suggest. as the lessair between the glasses, the less moisture will be condensed upon the outer glass, that the glasees be 8 that the inside glass be set in a hinged frame to allow of opening and wiping moisture from the outside glass Another method, requiring more care, is to make a opening under the present air space and insert a shee iron box (narrow and the length of the space), with a
lid or door to close the space air tight. When the weather induces frost or condensation on the glass, pu quicklime in the bor. Tts amnity for water will mak the inclosed air dry enough to'preventcondensation dur dehydrated in an iron pipe or pan iu any common fire one or two quarts of lime should be sufficient for an observation window. Chloride of calcium is used for the same purpose in some northern countries.
(204) J. S. writes: I made a motor like one described in March No. dated 17 , and it runs to per
fection: have five large batteries 12 inches square. 30 one-half inch carbon pencils, and porous cup with zin in it, that ${ }^{7}$ is, each has that amount, but find it pretty expensive to keep running, so now I want to make an a storage battery to run motor, and also light my dwelling at same time. I would like to know how many storage batteries I am to get. There will be only four
lights used most of the time,once in a while six or eight lights used most of the time,once in a while six or eight
lights. A. Three or four storage battery standard cells lights. A. Three or four storage battery standard cells
woild ran your motor. To charge the battery it must be connected in series. For cells address some of onr Will need more battery, as you will require cells equal in number to one half the voltage of the lamp. Thus for
(205) F. M. E. writes: I wish you would give a ligt of the products of petroleum compared with give a ing of the products of petroleum compared with
products of cosl tar, sa it seems difficult to get the in-
formation anyother way. A. The products of coal tar are so numerors that any acoont of them would fill a book. The products of petroleum are much less inter-
esting, falling largely into the olefine and paraesting, falling largely into the olefine and paraf-
fine eeries. The benzole and allied series given in such fine series. The benzole and allied series given in such
quantity by coal tar are wonderfully prolific in their quantity by coal tar are wonderfully prolific in their
substitution producto. We recommend Crewe's "Pe-

I want to burn about 20 lamps of 16 candle power during the whole day, say 10 hours. I have been told that
if I use the storage batteries as regulators, charging them at one end and discharging them into the lamps at the other end, a smailer
number of batteries will sumfice. If that is the case, how many batteries
of the above capacity will be necesof the above capacity will be neces-
sary? How many horse power will it need to light the lamps as stated above, and how many if lighted dj
rect from the dynamos A. Yodr dynamo will supply 1,050 watts or about 20 incandescent lamps. storage battery is sometimes used as an auxiliary to from lead to lead between the dynamo and lamps Then any surplus of current charges it, and if there a deficiency, it is supposed to be made up by
 i. P. (electrical) to light the lamps (or 10088 In far from 2 H . P., and for the storage batteries twenty ve per cent more. 2. Is there a rule for determining and arc lamps? A. Allow from 3 to 4 watts to the candle power. 3. What would be the most economical voltage for lamps of 16 candle power lighted by storage
batteries? A. For storage battery work, lamps of low batteries? A. For storage battery work, lamps of low voltage are required; in general terms, the lower the
better. Thus for every 2 volts a cell is required, so better. Thus for every 2 volts a cell is required, so
that for 50 volt lamps 25 cells would be needed. The conomy refers to the number of cells required, not to battery plates from too rapid diseharge.
(210) J. H. B. writes: There is a process, known to some sign painters on glass, of making a
letter upon glass with half of the letter gold and the balancesilver. A. Size one-half of the letter and gild part of the gold leaf, and apply silver leaf.
(211) C. G. W. whites : Will you please ive description and how to use Nippoldt's telephone bridge, made by Hartmann \& Braun, Bockenheim sistance coils and bridge? Or give through Scientific nitrican name of book which tells how to use thit
nstrument. A. We would sugest Practical Electricity by W.E. Ayrton. This gives many methods of bridge work, though it does not mention the particular bridge
you speak of. We can send it free by mail for 82.50 . (212) P. P. S. writes: What combinay appl and phosphide of calcium ignite when water is applied and phosphide of calcium lignite when water is applied
o them. All these must be handled with great care.
(213) J. J. W. writes : 1. How much 100 cubic feet dry air at 180° Fah., and have no wate lefts A. 152 pounds; it will increase the volume o the air to about 133 cabic feet. 2. What will be the

Will the resaltant saturated air be heavier or lighter than the dry air at 160 ${ }^{\circ}$? A. It will be ture, wet air is lighter than dry air.
(214) F. C. T. asks (1) for a preparation that will take the place of oil for tapping cast iron and
wrought iron. A. Use strong soap water. 2. Also the names of some good mechanical books. A. We recom-
mend Spon's "Mechanic's Own Book," \$2.50; "Engineer's and Mechanic's Pocket Book," by Haswell, 84
" 507 Mechanical Movements," 81.00 , which we can il at above prices.
(215) E. E. S. asks: How can I bleach bromo-gelatine negatives to have them remain per-
manently white? A. Soak plate in water 15 minutes, manently white? A. Soak plate in water 15 minutes,
then immerse in a solution of bichloride of mercury then immerse in a solution of bichloride of mercury,
strength 20 grains to the ounce, for five or ten min utes.
(216) A. J. D. asks how the so-called vory type on glass is mades A. See full directions in
No. 8, vol. 5 , page 120, of the Scientiric Amer (217) H. E. B. asks: 1. If a force of ten pounds is necessary to slide a piece of steel off
another piece of steel, both pieces being unmaguetized, how much greater force will it take if the pieces of another, or in other words, how much does magnetism increase the coefficient of frictions of course your answer will have to be largely in the nature of a guess, a of current, etc. A. The moving block of steel would weigh about 50 lb ., and might easily develop 100 lb . re sistance to sliding. It would be very largely affected
by the condition of the surfaces as well as by the mag. netic force. 2. How much water would waste from a boiler in an hour, if a hole th of an inch was drilled in of 100 lb .9 Also, how much would waste from a hole of an inch? A. The streams will emerge with a velocity of 95 feet per serond. Multiplying this by the area gives as the quantity per second $0 \cdot 29165$ cubic inch and
$1 \cdot 16860$ cubic inch, or per hour 1,050 and 4,200 cubic $1 \cdot 18680$ cubic inch, or per hour 1,050 and 4,200 cubic
inches respectively. 3. Ina neighboring city are several small water motors run by the water from the city water works. The motors are run by the simple im-
pact of water against the outside of the wheel. About what per cent of the ipower of the water is utilized by the motors? A. They should utilize from 50 to 75 per cent. 4. Supposing that instead of the wheel running by the direct action of a jet of water, the wheel was made hollow, and from arms radiating from the wheel
jets of water were made to discharge at right angles to jets of water were made to discharge at right angles to
the arms, all in one direction, and causing the wheel to run by reaction. Would not the wheel develop just a much power as the present style of motors described in principle of Barker's mill, and have been made to give water wheel results in practice. 5. Does A. Reactio 8. What are screw plates? Can they be used to cut threads on bolts, the same as dies? A. A screw plate
is practically a collection of dies. They are nsed for e identical purposes as dies, generally on the lighte
(218) B. writes: Will you inform me to $/$ ke jelly from non-gelatinous fruits, such as Two cupfuls of sugar, one of lemon juice, Soak the gelatine in the cold water, one box Pour the boiling water on it, add the sugar and given in the cook books for various fruits.
(219) A. F. G. asks : What part of a boiler, when steam is up, sustains the greater pressure? My friend maintains the part containing the steam is
under the greater strain, while I hold to the opinion that there is as much strain on the bottom as there is upon the top. A. All parts of a boiler are under the
same strain from the pressure of the steam alone. The same strain from the pressure of the steam alone. The drostatic pressure or weight of the water. This may nary cylinder boilers.
(220) H. A. S. asks how the horizontal pressure exercised by a current in midstream is ascer-
tained, for example: When a $24^{\prime} \times 10^{\prime}$ surface is preright angles to its course what is the horizontal right angles to its course, what is the horizontal pres
sure, by a two knot stream, on the 240 square feet thus presented to the current? A . The formula for the resist ance of plane surfaces at right angles to the flow of by the surface of the water per cubic foot multiplied duct multiplied by the square of the velocity of the stream in feet per second, and the last product divided by twice gravity, or twice the velocity that a body attains at the end of on
ance, as iu your case:

$\frac{64032}{23}:=2,387 \mathrm{lb}$. pressure, or nearly 10 lb .

 square foot. For tables and formula illustrating the motions of bodies in fluids and resistance of and Engineer's Pocket Book," which we can furnish to(221) L. H. L. writes: 1. Please give full directions for making a stereotype, using form of printer's type in chase as the. intaglio, aud using the aecember15, 1888, for matrix. A. The paste is thinly spread on successive layers of tissue paper, enough to
make mould of sufficient substance, the compound make mould of sufficient substance, the compound
sheets thas formed being kept level by flat metal plates; sheets thus formed beirg kept level by flat metal plates;
these sheete are of a sabstance to admit readily beating them into the surface of the type with a brush, althe form with the sheet upon it is placed upon a steam table till the water is all drawn off, and the sheet, then resilily removed from the type, constitutes a perfect mould to cast from. 2. Would poptor mache be preferwhere can above paste? If so, how can I make it, or the parpose; it is not sufficiently fine and strong.
ive formala of cement used in forming letter sheets,
ote heads, etc., into tablets. A. Glue is made into very thin solution, after ten minutes' soaking in cold water. For every fifty pounds of dry glue nine pounds of glycerine are added to the mixture. It is colored
(222) W. L. P. writes: 1. Can a small wire be heated to a red heat between points in a battery
ircuit? A. Yes. 2. What is beat battery to use, and ow many cells? A. Use two cells of Grenet or simple plunge battery. 3. What is the best metal for wire?
A. Use No. 30 to 35 platinum
(223) P. E. M. asks. 1. What kind of heats A. of most by cold and expands the most peratures, zinc. 2. How many cells of the Law battery will it take to run up strong the motors that you escribed in SUPPLEmENT, No. GAI? A. The Law
battery will not answer. Use ten to fifteen cells of a attery will not answer. Use ten to fifteen cells of a
simple plunge battery. 3. Has a nut lock been invented hat will prevent the nuts from coming off by the ibration of the train on the track, and leave the fish plates loose aud the track loose? A. Yes; there are many patente on them.
(224) A. A. (Transvaal, South Africa) eas the value of crocodile, giraffe, hippopotamus, and sea cow skins, saying they have plenty of them in that very small lots or singls only come to this counsible to name standard market value. Alligator skins, the product of our Southern coast, which we suppose quite 1 apiece, as taken off. Small biraffe alkins oung anima are much the gate are and would probably command about same price per pound if in good condition. The hippopotamus would have no appreciable value for any regular use. There is a little leather made from skins of sea lions, fof use in buffing wheels, but the skin is diffcult to tan, apd its value very uncertain, dependent upon size and condition. You should write to some of our hide dealers, stating number, size, and weight of skins you can
supply.
(225) W. F. H. writes: Will you kindly let me knowwhat mixture you would use to make 5 gals.
of electropoion fuid for a carbon battery? A. Mix 1 gal. oil of vitriol and 3 gals. water cartefully, and allow pot a a carefully while the latter is still hot. This will make a (226) Turner asks: What is electricity, Neither of these queries admits of an answer. Human knowledge has not gone farenough tosolve the enigma. n a Grove battery chemical energy disappeare, and its alent of electric energy is produced.
(227) G. M. G. writes: Will you let me know thy mixture used for making mercury adhere to strnoth surface, pour mercury over it, slide a piece a Ilase with its advancing edge just under the surface,
then press and place on edge to drain. The same process will answer for on edge to deel; most other metal will be attacked and injured by the mercury. Abov once amalgamate with the gold and make it very brittle.
(228) I. R. B. writes: Will you please give me a receipt for a good stove polish in the form of
a powder? A. Use good quality plumbago, applied with a stiff brush.
(®29) J. W. H. asks: What is the simplest method to remove tobacco stains from fine
blue kersey cloth, so that it will not injure the cloth, blue kersey cloth, so that it will not injure the cloth,
yet remove the stains permauently? A. Try lemon yet remove the stains permauently? A. Try lemon
juice; oxalic acid followed by ammonia; weak muristic oap and water
(230) M. K. asks if there is any differ nce between Baume's hydrometer and that of Twadit? For example, suppose Baume's hydromete showed 4°, what would that represent on Twaddell's A. You will find the specific gravity scale of the
Baume scale in works on chemistry. You can compute a scalc in works on chemistry. You can comby 5, add 1,000, and divide by 1,000 . Thus: $1^{\circ}=1,005$ $\circ=1,010 ; 3^{\circ}=1,015 ; 4^{\circ}=1,020 ; 5^{\circ}=1,025 ;$ which is within a fraction of 4° Baume $=1,027$
(231) F. E. asks: In a cannon of 6 inch uare, powder produces a pressure of, say, $30,000 \mathrm{lb}$. pe juare inch; what is the barsting strain the tube is sub jected to at each point around the circumference. and material having an elastic limit in tensile strength of material 0000 lb . per square inch, how thick must the wall of the tube be to stand this pressure of $30,000 \mathrm{lb}$. pe square inch? The bore of cannon taken as 6 inches. A. The bursting straiu around one lineal inch of the circumference of the bore is equal to $30,000 \mathrm{lb}$. \times by
the diameter $=180.000 \mathrm{lb}$. This product divided by the diameter $=180,000 \mathrm{lb}$. This product divided by
$60,000 \mathrm{lb}$. tensile strain $=3$ inches of metal, and this multiplied by 7 as a factor of safety makes 21 inches of the breech ond then 2% incres in
(232) H. R. K. asks for some art o use on leather belting to prevent slipping. Re sin is not good, as it cakes and ruins a belt in work on practical engineering, engines and boilers, exwork on practical engineering, engines and boilers, ex
clusively. A. Use a piece of beeswax zubbed on the inside of the belt or on the pulleys as a temporary remedy in cases of emergency, though with proper siz belts and pulleys, properly put in, there should not or dinarily be any slipping. We recommend you the 82.50.
(233) E. C. asks: Can you tell me the best preparation for eleaning coopper boilers on outside
so as to remove all tarnish? A. An excellent pre. so as to remove all tarnish? A. An excellent pre
oxalic actd in 8 parts water．It is a powerful poison
and requires care in ite
nee．Sliphtly with the solution and rub the boiler．Wash clean with hot water．
（234）C．F．P．writes：I am about to erect a tobacco sweat house， 15 by 16 ，which must be one－inch steam pipes it would require to heat this room， 15 by 18,7 feet high，to a uniform heat of 90^{2} day and nights I also need a moisture of 95° ，which must be absolutely there day and night；would you recommend
the heating by hot water or steam circulatious Is there the heating by hot water or steam circulation？Is there any steam tight paper manufactured，which will stand cost me to gat and foet of to get a hygrometerf A．You will require 7 in feet of 1 inch pipe for your sweat room．If you have
staam upon the premises，it is recommended．If not， a small greenhouse hot water stove is recommended．A galvanized water evaporator can be hungon the heating pipes for moisture．For ascertaining the amount of moisture in the room，we recommend a Mason hygro meter as the most reliable means，cost $\$ 2.50$ to $\$ 3$ ．They can be purchased throagh the optical trade．There i no paper lining that would stand the moisture and heat， unless thoroughly saturated with coal tar，which would
impart a disagreeable odor tothe tobacco．Many sweat rooms in New York are only lined with matched ceiling oards that have been well oiled with linseed oil and then painted with mineral paint（no lead）．Some are only oiled．
（235）C．B．asks ：I would like to know if the dynamodescribed in No． 600 could be made in halrsize by usingexactly half the dimensions every
where．Also if there would be any difference in the wire？A．To make a dynamo of one－half the capacity of the one referred to，reduce every dimension twenty－ five per cent．If you make it one－half size linear measurertent．the mer
（236）H．M．C．writes ：Please give defi nition and value of following terms：：Electro－motive
forces A．The force directly producing an electric current．What it is，is unknown．2．Ohm？A．The ductor through which a unit of electromotive force （one volt）will produce a current of one ampere．A cylindrical column of mercury one meter long and one millimeter in diameter has a resistance of 1.2247 ohms．3．Megohmp A．One million ohms．4．Micro－
farad A．One millionth of a farad．A conden a charged at a potentia of one volt，will contain one microcoulomb of electri city，enough to mantain a current of one ampere fo force．A gravity battery gives about 1.07 volt．B Porce．A gravity battery gives about 1.07 volt． 6 ．
Ampere？A．The current produced by one volt through resistance of one ohm．7．Series？A．One aucceeding a resistance of one ohm．
the other．8．Parallel？
A．One by the side of the other，so as to be in action simultaneously．9．Mul A．Several at once．10．Multiple arce A
Several voltaic arcs arranged in parallel between two conductors．This is the proper meaning，but it is ap plied to incandescent lamps，and means several disposed in parallel as just described．11．Ampere hour？A．A Compound wounds A．In a dynamo，having separately arranged windings on the electro－magnets．
（237）F．W．asks if men and women have been scalped and have recovered from it？A
Yes；there have been such cases，though they have oc curred but rarely．Oue of the veterans in our office well remembers having seen，when a boy，an entirely re covered and healthy man who had been a subject of an Indian scal ping knife．Possibly such survival has been due in some instances to the fact that the Indians，in hurriedly performing the work，removed only a por tion and not the whole of the scalp．An instance was also reported，some years since，of an operative in an caught in the machinery，and of her recovery from the caught in the machiner
（238）H．L．W．asks（1）for a process o raking soft water for the purpose of manufacturing liquid blueing with oralic acid，without distilling．A If the lime is present as bicarbonate，it can be precip
tated by boiling．If it is present as sulphate，it should not cause you much tronble．2．How to make a cheap electrophorus powerful euough to ignite gas or gasoline． A．Cast a cake of resin six inches in diameter and one inch thick．Provide for it a wooden box lined with tin foil．A tin disk four inches in diameter is provided with a central glass handle．To exciteit，stroke the resin with a cat－skin，put the disk upon it as nearly cen then remove the finger．The disk，lifted by the glass handle，brought near a gas fixture，will give a spark．

Enquiries to be Answered． The followingenquiries have been sent in by some of
our subscribers，and doubtless others of our readers will take pleasure in answering them．The number of the enquiry should head the reply．
（239）W．H．M．asks ：Please describe he method of firing red hot shot．We know it ha been done，but it seems impossible to gain any personal
information．
（240）F．C．L．asks：Can you inform me about how deep the water is in Niagara river，from
one to two hundred feet back of the great falls？Is the rock in river bottom here comparatively level？Also city of Buffalo offer $\$ 100,000$ premium to the party furnishing the most feasible scheme to utillze the power of the falls？
（241）H．C．W．asks whether it is easier for a Areman to keep steam on an 80 h ．p．boller to run
a 50 h ．p．englne（ $14 \times 20,180$ revolutions）or a 75 h ． ． engine doing the eame amount of work as the 50 h ． p ． engine，it requirlng 80 lb ．of steam to run the 50 h ．p．
engine，and do the work．We fire with the refuse from rotary veneer machines and poplar bark，and sawdust from a heading saw．We find it pretty hard work to
keep 80 lb ．of steam on our 80 h ．p．boiler to ran 50 h
p．engine．Would we find it any better to put in
larger engine？Would we find it any more work lager steam？
keep

Replles so Enquiries．

The following replies relate to enquiries recently pub hed in Scientific Aqerican，and to the number
（35）Circular Saw，Connections，etc．，for same．－Your saw， 36 inches，should travel 1,000 revolu－
ions per minute．You caunot obtain this speed with－ out usiug a belt or multiple gearing．Better use a belt． you have a fiy wheel 5 feet in diameter on your en gine shaft，you will need a pulley 1 foot m diameter on lutions per minnte，which it should，with a boiler pres sure of 150 pounds．It would then indicate $27 \cdot 8$ horse power if the stroke is 8 inches．This arrangement will allowof your cutting 5,000 feet of lumber per day，if your boiler is of sufficient size．But I do not think it
is．Your description is too meager to is．Your description is too meager to permit of an esti－
mate being made of its power．You should give num－ ber and size of tubes and size of fire box．－－S．H．Pratt， （56）
（56）I．S．－With the velocity of the air a the pipe at 14 miles per hour，with pressure of 1001b． you may realize 8,000 horse power，and for 200 lb ．pres sure nearly double，or say 15,000 horse power．
（58）W．H．C．－White porcelain clay or aolin is a silicate of alumina，known by its soft， reasy feel and absorbent nature when touched to the
tongue．Address L．A．Solomon \＆Bro．， 218 Pearl
（59）F．H．G．－For coal，the grate hould be 24 inches from the boiler；and for the small power you intend to use，you may make the grate sur Pace only 3 ft ．wide，if the grates are 4 ft ．long．This
can be done by false sides upon the grate，of fire brick；解
（60）H．B．－For computing the indi－ ated horse power of an engine：Multiply the area of taken from tables，for mean presaure due to cut－of and this product by the travel of the piston in feet per minute，and divide by 83,000 ．Themeanengine presaure for $1 / 4$ cut－off $=0.637$ of boiler pressure；for $2 / 2$ cut－off $=0.786 ;$ for $1 / 6 \mathrm{dut}-$ off $=0.86$ ．For computing the distance of the weight on the safety valve lever：Moltiply the
area of the safety valve（ $D^{2} \times 0.7854$ ）by the required area of the safety valve（ $\mathrm{D}^{2} \times 0.7854$ ）by the required
pressure for blowing off．Divide thls product by the pressure for blowing off．Divide thls product by the
weight of the ball．Multiply the quotient by the weight of the ball．Multiply the quotient by the length of the fulcrum in inches and decimals；the pro－ the fulcrum to the center of the ball Thus for 3 in safety valve， 100 lb ．pressure， 60 lb ．ball，fulcrum 2 in．： $3^{2} \mathrm{in} .=9 \mathrm{in} . \times 0.7854=7.06 \times 100 \mathrm{lb} .=706 \mathrm{lb}$. ，and $206+20=11.76 \times 2 \mathrm{in} .=23 \cdot 52 \mathrm{in}$ ．， $23 / 3$ in．from the fnl－ rum to the center of ball．
（73）1．Resistance of accumulator and mp．- Watts $=250$ per unit of time．Amperes \times volts
number of watts．
2．Resistance of lamp， $183 \cdot 3$ hmm．3．The resistance of carbon is about 6 －10 as much at a white heat as cold． 4 You cannot unless you allow one or more of the arc lamps to go out，
without reducing greally their brightness．5．The atteries should be connected in serles with the lights －C．A．c．
（74）E．A．B．－Bromide Prints．－See Scientific American Supplement，No．330，practical
hints ou the making of bromide and gelatine prints．
（75）L．M．C．－－For your thermostatic inch wide and or sheet iron and a strip of sheet zinc batorbox．Rivet or solder the ends together，and wind twine tightly around for the whole length to hold
 of the incabator．The other end will swing with the the incabator．The other end will swing with the eat in any way that you may devise．
（77）Recovery of Silver from Waste． The waste papers are thoroughly washed in water and dium chloride（salt）is added thl precipitation is．com－ lete，decant the solution，wash the precipitate with water，and again decant．The remaining precipitate is ried and then ready to reduce to metallic state．The ilver chlorideis mixed with about an equal portion of mixture of sodium and potassium carbonates and
fused in a clay crucible．A few minutes after fusion fused in a clay crucible．A few minutes after fusion
pour the contents of the crucible into some clay dish and allow to cool，when the silver batton is easily se burned and the ashes treated with nitric acid．Dilute arned and the ashes treated with nitric acid．Dilute
and
and
（77）Recovering Silver Waste．－1．Burn he material，and treat ashes with nitric acid and water， per cent solute． ducing negatives directly．You may make a positive on glass fir
C．A． ．
（78）Red gas flame．－Suspend in the fame a fine wire ganze basket containlng strontium
（82）Raising a weight．－The power
（83）Who invented the telephone ？－The telephone was invented by Phil
patent is dated
Bran．－C．A．C．
（84）In pidaries＇wheels．－The wheel used by hepidaries is a fiat copper dlak，charged on the edge nond dost It
（88）M．C．H．－Matehes．－Clear white
work on the fabrication of matches by Dussauce，fo
\＄8，its price．－Address Paul Pryibil， 463 West 40 th 8 t
New York，for spliting New York，for splitting machines． （87）F．S．W．－Hot Water Heating Ap paratus．－The hydrogen which you ignited at the air
cock is not explosive；it requires to be mixed with cockis not explosive；it requires to be mixed with
proper proportion of air to become so．There may b a possibility of vegetable matter in the water of you hot water apparatus disengaging a small portion of gas，which may accumulate in a radiator．In steam boilers，the flow of ateam carries any gases of decom－
position with it，and also all air that might make an ex－ losive mixture．
（90）T．G．A．－Granite ware is glazed in porcelain enamel in the same manner as othe inds of enamel ware．The difference being in glazing both inside and outside，and in the color and quality of
the glaze．Any colors can be utilized that are available for chinaware．See Scientific American Suppie endt，Nos．248，314，enarnels and enameling．
（91）W．H．B．－Wire Netting for Drying Nothing that you can put on the wire netting in the rames wil resist disintegr
（94）2．Battery for Heating Wires．－1 hink you will find the Grenet or simple bichromate of potash battery the best for heating wires．One cell，with
zinc plate $23 / 4 \mathrm{in}$ ．$\times 1 \%$ in．between two carbon plates of the same size，heats $1 / \mathrm{in}$ ．of No． 30 platinum wire to a white heat in two or three secouds．For greater length of platinum wire，connect more cells in series
With greater battery power，you can probably obtain white heat in satecond．The battery fuid soon become chausted with this work．－L．B．
（94）Telephone call bell．－1．The bell would be rnng over the wire by the magneto call bell， by a battery．2．You do not mention the length of
（95）Movements of the ocean．－Two． he tidal movement caused by the attractions of the sun and moon，and the ocean currents，as the Gulr equal heatlng of the waters at the equator and the les．－C．A．C．
（96）Horse power of waterfall．－1．Over 25 foot fall， $1 \cdot 587$ H．P．2．Over the 50 foot fall 54 H．P．－C．A．C．
（97）Leather belt．－Always turn the
grain or hair side of the belt to the pulley．－c．A．c． TF Boiks or an，in most cases，be promptly obtained through the Clientific Am
way，New York．

TO INVENTORS．

An experience of Porty years，and the preparation of
wore than one hundred thousand applicationg for more than one hundred thousand applications for pa
tents at home and abroad．enable us to understand the laws and practice on both continents，and to possess un equaled facilities for procuring patents everywhere．A synopsis of the patent laws of the United States and all
foreign countries may be had on application，and persons forelgn countries may be had on application，and persons
contemplating the securing of patents，either at home or abroad，are invited to write to this office for prices tensi fol MUNN \＆CO．．oftice ScIENTIFIC AMERICAN，ssi Broad

INDEX OF INVENTIONS

which Letters Patent of the Unized states were Granted

Jaǹuary 8， 1889 ，
AND EACH BEARING THAT DATE．
［Seenoteat end of list about copies of these patents．］
Adding machine，D．E．Felt
Advertising device，T．Clark
Arricultural boiler or barrel heater．T．Tredi．．．．．．．．．

tow \＆Lutzner ．．．．．．．．．．

Anæsthetics，apparatus tor combining．J．S．Am

Axle box and bearing， Arle．car，w．Hases．．

Axle lubricator，car，T．F．N．N．Finn
Axle lubricator，car，T．Saunders
Bag lock，L．R Cutler．．．．．．．．．．．
Beling press，T．Runkle．．．．．．
Bar．See Railway splice bar．
Basket cover，T．W．Lankford
Batteries，apparatus for chargin

Batteries，preparing solution compounds for gal
vanic．W．P．Kookogey．．．．．．．．．．．．．．．．．．．．．．．． 8 ．
Batr
Battery．See Medical battery．Volt
Bell cord attachent，a．A．La Feve
Binder，temporary，
Bell cord attachment，Q．A．La Fe
Binder，temporary，G．H．scharf．
Binocutar glass，J．E．Briggs．．．
Blind，window，A．P．Heidt．．．．
Blower．Porge，J．Das．．．．．．．．．．．．．．
Boarr．See Ironing board．
Boat．See Ice

Boiler．8ee Arricultural boiler．Steam boile．．．．．．．．．．．． 39% ，
Bolt．See Wedge boit．

H．C．Barker．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 398.0
Bor．Bee Axle box．Knockdown box．Letter
box．Psper box．
Broce．See Ratchet brace
Bracket．See Refen

Brrcket． 800 Refliector bra
Brake．Soe Vehlele brake．

amera．See Photographic camera．

Cane mil．C．Hughes．．．．．
Car coupling，H．Braley．．
Car coupling，R．H．Dowling．．．．．．
Car coupling．J．Frey ．．．．
Car coupling．S．B．Frier
Car coupling，S．D．King．
Car coupling，S．D．King．．．
Car coupliug，G．N．Moats
ar coupling，s．Myers．
Car door，H．Alsop．．．．．．．．
Car，raterer，E．P．Sartell ．

Car step，extension．J．W．Graham．．．．．．．．．．．．．．．．．．． 335,825
Cars，safety brake for cable，C．Bullock．．．．．．．．．．． 345,736
Carpet stretcher，B．Hoden

artridge loader．J．V．Thompson．．．．．．．．．．．．．．．．．．．．．．．．．．．355888 385,897
Cathode for an electro－depositing apparatus，E．
Emerson．．
Chairs，lounges，etc．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 38

Cigarette machine，E．J．Lumley．．．．．．．．．．．．．．．．．．．．．．
Clasp or buckle，S．B．Ferris．．．．．．．．．．．．．．．．．．．．
Clod crusher and roller，combined，w．Knutzen．．

Coffn handle．Koehler \＆He．．．．．．．
Combination hook，L．Kent．．．
Conveger，chain，J．M．Dodge
Conveser，chain，J．．．Dodge．．．．．．．．．．．．．．．．．．．．．． 3955,7083
Corn cob holder，F．B．Fetherstonhaukh ．．．．．．．．． 3956,698
Corn，machine for hulling green J．Ritty

Coupling．See Car coupling． 1 Hoselcoupling．
Coupling link，B．Morton．．．．．．．．．．．．．．．．．．．．．．395，544
Crusher，See Clod crushe

Dial，timepiece，M．V．B．Ethridge．．．．．．．．．．．．．．．．．．．． 395,696
Die．See Screw cutting die．
Diest ock，A．W．Bartholomew．．．．．．．．．．．．．．．．．．．．．．．395，656
Door check，J．J．Krom．．．．．．．．．．．．．．．．．．．．．．． 395,761

Draught equalizer，A．G．Brown．．．．．．．．．．．．．．．．．．．．． 3 ．
Drier．See Brick drier．Ciothes drier．
Drill．See Mining drill．Radial drill．Ratchet
drill．
Drilling and centering tool，J．E．Ketchem．．．．．．．．．． $3558,3,3$
Drilling machine，C．M．Woolworth．．．．．．．．．．．．．．．．．96，018
Drilling machine，C．M．Woolworth．．．．．．．．．．．．．．．．．．． 396,018
Dust collector，J．H．Weets．．．．．．．．．．．．．．．．．．．．．．．． 356,801
Electric conductors．support for aerial，H．H．Cut－

Engine．See Gas entine．Pumping engine．Ro－
targengine．Steam engine．
Engines，automatic pressure regulator for the re－
ceivers of compound，J．T．Henthorn．．．．．．．．．
Engs．828
Engines，distributing motive fluid in compound，
Westinghouse $\&$ Rites
F．．．．．．．．．．．．．．．．．．．．． $395,9,35$

Brownlow \＆Warner．．．．．．．．．．．．．．．．．．
abric．See Kn：t fabric．Wire fabric．
Feed trough，M．V．B．Stevensou．．．
Feed water purifer，A．Heberer．．．

 Fencing，machine for making wire，L．W．Free－

