great as the rectilinear velocity of the axis. The periphery does not move at the bottom. All parts of the
periphery move with equal velocity around the axis.
(443) M. A. P. asks (1) how to make paste such as bookbinders use. Do they nse glue or though sometimes a little glue is added to make the paste tougher. Some antiseptic, such as carbolic acid or alum water, is added to prevent souring. 2. How engravings are made by the process known as "zinc
etching." Is it the same as producing engravings from etching." Is it the same as producing engravings from
zinc plates by the action of acids? A. The process is zinc plates by the action of acids? A. The process is
the same in principle, but in the ordinary "process" plates, for printing with types in a form, the blacks plate the whites are in relief and the blacks sunken the printing then being done as that of a steel engraving. Nitric and muriatic acids, of various degrees of strength, are used in each case to bite out the metal. 3. Where can the zinc plates be procured, and what are
their cost? A. Most large electrotyping establishments their cost? A. Most large electrotyping establishments
could furnish them to order. They are not on sale by could furnish them to order. They are not on sale by dealers, and are specially prepared of soft zinc, with a 4 Would like a short deseription of how electrotyping and stereotyping are done. A. For electrotyping, the mould is then taken, and a thin electro deposit of copper made therein. This thin deposit of copper is stripped off and baked with type metal fiowed on. For stereo typing a plaster cast is made of the face of the type to
form a mould -or the mould may be made of a kind of form a mould -or the mould may be made of a kind of The face moulds so made are placed in another mould the melted type metal.
(444) D. T. E.-Printers' rollers are not usually made withindia rubber, except such asareused For ordinarily fast presses on book work the following is a good composition: $101 / 2 \mathrm{lb}$. best glue, 2ζ g gals. black molasses or honey, 2 oz. Venice turpentine, 12 oz
glycerine. The quantities of glue and molasses be slightly varied according to the season, comparatively more glue being used in summer than in winter. If
French glue is used, it will be necessary to let it soak French glue is used, it will be necessary to let it soak
overnight to take up the right quantity of water, but most domestic glue will take up sufficient water in be added and well mixed with the composition just before pouring. When rubber is used to make the black composition described in the Scientific Ayebican of January 12, the rubber should be cut in fine shreds and dissolved in benzine, ether, or bisulphide of carbon, not in alcohol. It should be mixed with the
turpentine and added to the composition the last thing before pouring, the glycerine and vituc;ar being mixed with the glue and molasses a short tinle earier, after water bath over the fire or in a steam- jacketed kettle

Enquiries to be Answered.

The following enquiries have been sent in by some of our subscribers, and doubtless others of our readers
will take pleasure in answering them. The number of the enquiry should head the reply.
(445) M. E. G.-Please state why throwing salt upon a fire will put out a burning chimney? raising tables, chairs, etc., by simply laying their hand uponthem? This is an old performance, and is now being done by Kellar
(446) H. B. H. writes: Will you please advise us of the mixture used for coating iron so as to irons? It is called Berlin black, and will not rub off.

Replies to Enquiries.

The following replies relate to enquiries recently published in Scientific American, and to the number
(20) Halifax.-Relief Maps.-Although not sure of the method used in Germany, there is one way which, although it involves considerable expendi-
ture of time and materials, produces a map in relief which is extremelylaccurate and would command exten sive orders were the work.carefully and accurately per ormed. Suppose you have a map of a section of coun
try on which are marked contour lines made by passing horizontal planes at vertical distances of ten feet, of any other distance. Take sheets of cardboard so that the thickness shall represent one foot, then ten super posed will give ten feet. The thickness of the card-
board is of course the unit of your scale, both vertical board is of course the unit of your scale, both vertical and horizontal. Now cut out pieces of cardboard of the same size and shape of the horizontal space embraced by the different contour lines. Then on your map draw in between the contour lines and approximately parallel
to them nine other lines, and cut pieces of cardboard corresponding to them. Superpose these in their regu lar order, and you have the rough formation in relief of your map. The pieces of cardboard are pasted to gether and carefully pressed to keep the whole mass uniform. Then smear wax over the whole, in order to make a smooth surface. Different culors willirepresent roads, grass, rivers, etc. Trees or forests can be re
presented by dried green moss. Houses and other presented by dried green moss. Houses and other
buildings and constructions are made of wax. In the practical work of making such a map, other details present littledifficulty to any one at all conversant with modeling. The chief difficulty lies in procuring map modeling. The chief diffculty lies in procuring
with contour lines marked on them.--S. R., Jr.
(245) C. T. I. - Battery Zincs. - The writerhashad very good results from zinc plates, buil had at the time). Tbese plates were built up by folding over and over and hammering down the fold each time, so as to produce a compact plate of the size required Building up by cutting several pieces, all to the size re
quired, and then fastening together, was very good, but quired, and then fastening together, was very good, but
not so good as the building by folding a longstrip

No trouble was had in amalgamating, as the thickness
of the plate, after being built up, made it stiff enough the plate, after being built up, made it stiff enough
to stand well, though the mercury struck clear through each sheet, as was the case. The extreme top of tbe
plate, to which the copper wires were fastened, was not amalgamated, for say a half an inch, to avoid breaking and the brittleness that would have resulted had this end been amalgamated. These plates stood long and severe use, kept their amalgamation perfectly, and con-
sequentiy never showed any local action. Riveting the plates could not well be done, unless zinc rivets were
used. Any other metal would at once make from the galvanic couple that would be set up by it presence in the zanc plate, even though it was amalga mated. The four-cell battery mentioned would prove all right if the motor is wound for a low tension current It would be better yet to use five carbons and fou zincs, 80 as to have a carbon plate for the outside on each side of the cell, and so reduce resistance by havin, The size of recetacle will, of course The size of receptacle will, of course, determine
whether this can be done or not, and the winding of the motor will determine whether four or eight cells should be used.-C. D. P.
(320) S. L. F.-Stay Bolts.-The pres is the square of the distance multiplied by the pressure $=3,600$ pounds strain on the stay. If the areas are not $\mathrm{squares}$,divide the
average for the area.
(321) S. H. P.-Propeller.-You will re quire 65 horse power, besides power required for fric tion of engine and
38 in. in diameter
(329) D. Y. M.-Softening Water.-See ic american Supplembnt, Nos. 629, 270, 18 (329) How to Soften Water.-If the hard boiling the water. If it is due to calcic sulphate, it can be removed by adding sodic carbonate (common washing soda). In the last case two new substances are
formed. One is insoluble and settles, the otheris soluble, but does not act on soap.-W. F. W.
(330) S. T. R.-Steam in Boiler Furnaces -Steam from the boiler or exhaust has been used jecting it under the grate when the draught is otherwise good, or otherwise by using a steam blower which carries a portion of steam under the grates with the air One of the oldest practices among engineers or firemen is to wet the ashes or throw water on the ash hearth,
which evaporates and feeds the fire with moisture. The steam in contact with the hot coal is decomposed, producing carbonic oxide and hydr
combustible in contact with air.
(334) W. L. G. -1. Starch granules may be well mounted dry, but best in Canada balsam. If as possible of balsam diluted with turpentine be applied they will cling to the slide and allow pure balsam to fiow over them without making air bubbles. To mount blood corpuscles, cover the slide on the spot required with a coating of blood as thin as possible and allow it to dry. Fasten on cover with a ring of varnish. 2.
Raphides are often mounted dry, but are easily mounted Raphides are often mounted dry, but are easily mounted
in balsam. 3. The highest power of the Lick telescope in balsam. 3. The highest power of the Lick telescope
is about 4,000 diams For microscopic mounting consult Mr. Davies' useful little book on "The Preparation (335) L. W. S.-Cyclones.-1. In the arst place, do not call them cyclones; that is a misnomer that the public has fallen into, thanks to the daily newsare storms of are try different character ches. Cychones tornadoes only in one respect, namely, they are both rotary storms. The tornado is a funnel-shaped column diameter, rotating about a nearly perpendicular axis It forms in the upper air a few miles overhead and works down to the earth. Its track is generally no more than twenty-five miles until it disappears into the apper air from whence it came. They are caused by strata of warm and of cold air struggling against each
other. Take, for example, the tornadoes which struck Pittsburg. Reading, and Brooklyn, last January. They Pittsburg, Reacing, and Brooklyn, last January. They ameter of which was about 500 miles. The center of the storm was between Chicago and Grand Haven, Mich. Draw a circle of 500 miles radius from the general storm center, and you will find that in the southcastern quadrant of that circle tornadoes will form and will move toward some point in the northeastern quadrant. At 8 o'clock A. M. on January 9 , there were sutherly winds and very high temperature along the
south Alantic coast. In Florida the temperature was over 70°, while in Pennsylvania it was below 30°. The isothermic line for that day bulges up at Chicago and drops violently downward through Pennsylvania and Northern Virginia. The hot air south of the isothermic line was struggling to get northward, and the cold air north of the line was struggling to get south. I was this struggle that caused the tornadoes. Normally
the air is much warmer on the earth's surface than it is sky air is much warmer on the earth's surface than it balloon at Pittsburg, you would have struck warme air as you went up. The line where the warm and cold air comes into closest contact was the line where the tornadoes formed. 2. There were probably just as many tornadoesthen as now. Remember that they are storms of a very limited area, and in a sparsely settled
country they would easily escape observation.-H. S. W.
(336) E. W. T.-Gold Lacquer for Tin -Use thin copal varnish slightly colored with turmeric and bake in an oven. You can buy the varnishes of
any required color for stamped tin work from F. W. any required color for sta

- (364) M. S. O'K.-Stationary Point in Piston Stroke.-Tbe piston stroke of an engine comes well as in practice. So far as visible means can tell starts immediately on its return stroke, but actually in
ng, it may be, with the number of strokes per second riction, etc. The well known formula for space, 8 passed over in time, t, in seconds at a velocity, v, feet pe
econd, is $s=v t$, make $v=0$, as it must be at the end of the stroke, and $s=0$, which indicates theoretically a state
of rest.-S. R., Jr.

Books or other publications referred to above Scientific American office, Munn \& Co., 361 Broad way, New York.

TO INVENTORS.

An experience of forty years, and the preparation of ore than one hundred thousand applications for pa-

 nore than one hundred thousand applications for patents at homeand abroad, enable us to understand the aws and practice on both continents, and to possess un
equaled facilities for procuring patents everywhere. syopsis of the patent laws of the United States and all oreign countries may be had on application, and person abroad, are invited to write to this office for prices which are low. in accordance with the times and our ex-
tensive facilities for conducting the business. Address

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

February 19, 1889,
ANI EACH HEARING THAT DATE.
[See note at end of list about copies of these patents.]

Alarm. See Burglar and fre alarm.
Arrow, vacuum. F. White.
Automaton. A. M. Pierce..
Axle lubricator. W. O. Dunba
Axle, vehicle. A. Corbin, Jr
Axle, vehicle, A. C
Bag. See Mail bar.
lor.:............
Baling press, J.
Baling prese, Hilman \& Risp

Baling press, Hillman \& Ripple

Band cutter and feeder, H. A. Underwood
Barbed nail. P. . . . Husted
Barrel cover, J. P. Herp
Barrel cover, J. P. Harp.................
Rnth tuhs, basin rack for, L. D. Ruth.
Ratteries, element for thermo

teary. fo worth..

Bearine, roller. J. W. Hyatt....
Bell, gong. Sparks \& Landol
Belt, electric, S. De Baun..
Belt tightener, J. A. Wiga
Bicycle, L. F. Carsten
Bicycle, E. Thuemler.
Binder,
Binder, load. J. S. Speer..........
Binder, temporary, W. H. Pardee
Bit. See Bridle bit
Bit. See Bridle bit.
Bleaching by electrolysis, apparatus for, E. Her
mite et al
Blind switch, F. C. Weir.
Board. See Ironing board
Bobbin. J. Scott......
Boiler. See Locomot
Boiler, R. W. Hewett.
Bolt heading tool, F. Mut
Bolting reel. D. G. Reitz.

Boots or shoes, nippers for cutting pegs from
J. C. Green........................
J. C. Green..

Bottle indicator, H. B.
Bottle tap. M. J. Keane.
Box. See Musical box.
Box. See Musical
Box, J. M. Griest
Brake. See Air brake. Rotary brake. Wago
brake.
Brick machine. C. \& E. Doerfler
Bridle bit, S. Fisher
Brush, H. W. Hascy
Brush attachment, paint, J. B. Flautt
Brush holder, G. . . Meeiker.
Brush, printer's, J. C. Irruel
Brush, printer's, J. C. Israel...............
Brushes, attachment for flesh or bath, W. J. Tur kington...
Buckle, G. P.
Burglar alarms, door spring connection for ele
tric, J. Geary

burner.
Button, cuff or collar, G.s. Tiffans
Button, cuff or collar. G. S. Tiffany................
Buttonhole finishing and staying machine, Knox
$\&$ Eberson.........
$\&$ Eberson...
Buttons to fabrics, attaching shank, w. E. Ben-
Cable or railway crosing, F. C. C. We..
Cake, biscuit, and doukhnut cutter. W. H. Eaton Calculating machine, J. Vermehren
Calendar, perpetual, T. A. Mc
Calendar, perpetual, T. A. McKee...
Camera. See Photorraphic camera.
Can or similar vessel, J. K . Cleary....
Candle moulding machine, L. Homan.........
Car brakes, pipe coupling for, w. M. Darrow
Car brakes, slack adjuster
Car coupling, J. M. Buack
Car coupling, s. Byrne...
Car coupling, J. A. Hinson......
Car coupling, E. H. B. Knowlto
Car coupling
Car coupling, C. A. Schroyer
Car door, railwas, J. Haish
Car, dumping, C. C. King...
Car for carrying. bugar cane,
Car heater. H. R. Albrecht..
Car heating apparatus, Btreet,

Closet. See Water closet.
Clothes stick, W. H. Scott.

Clothes stick	
Coal drilling machine, Sumber	
Cock, G. A. Barth.	
Cocoanut compourd, L. Sch	398,082, 398
Coffer dam for vessels, G.	
Comb. See Curry comb.	
Combination lock, H. C. Br	
Compress, M. V. Wagner	
Coop, foiding poultry, M. T. Maloy	
Corn sheller, J. H. Gilman.	
Corset fastening, W. M. Ducker...... Coupling. See Car coupling. Hose	

Cultivator, W. H. Parlin...
Cultivator tooth, J. C. Bird.....
Curb and gutter. combined, A. G. Park hurst...
Curry comb, H. McPherson............................ 387.18
Curry comb. W. Ransweiler................. $3: 8$
Cutter. See Band cutter. Cake, biscuit and
 Dental engine. I. G. Leek............................. 387,930
Desk, H. L. Thompson.......................... 38,095
Diamonds in cutting tools, securing, H. Keller.... 38,053 Diamonds in cutting tools, securing, H. Keller
Die. See Hammer or like die. Direct acting engine, G. A. Barth...
Ditching machine, Ditching machine, tile, R. E. Nevin.....................
Dock, fioating dry. Brow \& Biddlecombe......
Drawer pull, C. Drawer pull, C. L. Daston ...
Drawer pull. G. s. Pearson..

Dredging machines, chute for, M. Herron........... 359.985
Dress form, w. A. Johnson...................... 377,986
Drum or radiator, heating. N. H. Barnes........ 38,115

Egg beater, F. W. Huds 38,274 : ERg tester, N. Court.

Electric battery. E. A. Sperry.............
Electric circuit:switch, C. Electrlc converter, L. Gutmann. Electric current indicator, W. A. Cares........... Electric dischargederice, R. Belfeld (r)............ 10.986
Electric lighting system. J. A. Galvin........... 387.906
Electrical battery, w. Burnleg.................. 397,965 Electrical battery, W. Burnley..................... 397,965
Elevator. See Hydralic elevator. Water eleva-
tor. Water or liquid elevator.
Elevator. M. Hanford........................... 397,912
End . . Engine. See Dental engive. Direct-acting en-
ine. River power engine. Road engine.
Steam engine. Ster
 Engraving machine, wood, W. W. Krutsch....... 398,3:36
Envelopes or similar receptacles, machine for
398,28
making, G. Sickels,
Evaporator, H. Hill...
398,284
397,916
Fabrics, machine for making compound, G
Fullerton......
Fan, automatic, Buzby \& Snyder
Fan, dining table, D. J. Gregors
Feed water heater, J. Kirkaldy..
Feed water regulator. J. P. Cushing.................. $338,2637.774$
Hellies, machine for the manufacture of

rence, C. F. Fowler.
Fence, J. J. Monnett.........
Fence machine, H. G. Cads
Fence machine, H. G. Cady.
Fence machine, R. E. Rex.
Fence machine, J. Sornson.
Fence post, A. C. Peterson.
Fence wire winding machine, Baldwin \& Clement 338,215
"ile, paper, M. E. Dayton.......................386,316
Filter and cut-off, water, Bayless \& Nichols........ 38

Firearm, breech-loading, P. Mauser 388,063
Firearm, magazine, Cooper \& Cashmore.......... 398,130
Firearm, magazine, Cooper \& Cashmore............. $398,1,10$
Firearm signt, E.J. Cutler........................ 388,315
Firearms, cartridge ejector for breech-loading,
P. Muser... s98,
yire escape, F. A. Westbrook.............

Flask. See Moulder's fask.
Flax, etc., apparatus for scutching, McGrath \&
Manisty.....................................88,111

Frog, spring, r. C. Weir
Furnace. See Gas generating furbace. Glass pot
Furnace. See Gas generating furnace. Glass pot
furnace. Hot air furnace. Slack burning fur-
nace.
Gauge. See Safety gauge.
Gavanic battery, E. D. Cross...........................97,9
Game, J. P. \& J. W. Clarke..........
arment fastener and support, C. R. Hollis.......
Averell
Gas generating furnace, J. Gilbert.
Gas motor, C. T. A. H. Wiedlin
Gas regulator, J. Bar
Gate. See End gate.

