RECENTLY PATENTED INVENTIONS.

Railway Appliances.

Car Couplive. - Ephraim H. B. Knowlton, Watertown, Dakota Ter. This invention | covers a novel construction and arrangement of parts |
| :--- |
| in which the drawheads are counterparts of each other | and ench also provided with the ordinary coupling link and pin, the coupling hook provided by the invention

benng fitted to have a yertical movement on a pivotal being
pin.
Rallway Car. - William L. Covel, Biloxi, Miss. The car or locomotive has at its end a
three-sided platform, one side formed in line with the three-sidea platform, one side formed in line with the
car body and the other side inclined to the direction of motion, so that cars or locomotives meteting will be di-
ected of to oposite sides of the track, and the cars rected off to opposite sides of the track, and the cars
will be prevented from telescoping. Railway. - Rebert P. Faddis, New Mce held in a crib frame, anchor rods being paseed are held in a crib frame, anchor rods being paseed
through openings in and secured to the base of the rail at opposite sides, andextended and secured to the lower
portion of the crib frame, with other novel features, portion of the crib frame, with other novel features,
increasing the solidity and firmness of the construction.
Track Cleaner.-Augustus F. Priest, Fort William, Ontario, Canada. This device is made with two knives hanging on holts so that the lower bottom of the nose of the pilot of the locomotive, and adapted to clear the track entirely across between the rails, the apparatus being supported upon the pilot and
forward truck in such way as to be readily raised by the $\underset{\text { forward triner. }}{ }$

Abstract

Mechanical. Loom.-John L. Aldinger, Syracuse, r. Y. This invention covers a warp tension regulating device for looms, specially adapted for wire looms, and by which the warp beam or drum is dispensed with, the warp threads being run from the spool to the harness while at the same time the the warp threads or wires. Printing Machine.-Henry h. Har rison, New York City. This invention covers a novel combination and arrangement of parts designeed to pro. vide a machine for printing cards, circulars, or orther small matter, upon one side of the paper only, and cut the paper into sheets as rapidly as printed, the paper being printed from a continuous ribbon upon a drum. Windmill. - Franklin B. Kendall, Thriwan, of the wind whecl and with a slding with the epokes of the wind whecl and with a sliding rod operating on a drnm carrying the vane, with other novel features, whereby the wind wheel is turned out of the wind uutomatically as soon as the wind blows with ore than normal pressure Diamond Cuttivg Tools. - Hugo diamonds in the tools is covered by this invention, a longitudinal recest being provided in the cutting edge of the teeth for the insertion of the diamonds, which of the teeth for the insertion of the diamonds, which are held in place by a clamping plate riveted or brazed on, brazing material being used to fill up any spaces in the diamond socket, so that when the tool worn the dismonds may be readily removed.

\section*{Agricultural.}

Corn Harvester.-James McKivett, Garrison, Iowa. This is a machine designed to cut chine is drven across a field, in the sanie manner as mower or reaper is driven through grass or grain, the machine alsor removing the husks, the latter remaining
on the stalks, cleaning the husked ears, and delivering them into a bag or a wagon traveling beside the mahine.
Hay Stacker--Jesse Morris, Sioux Rapids, Iowa. This is a machine in which the fork is
operated by ropes passing over palleys at the top of int operated by ropes pasing over pulleys at the top of in-
clinedbeams and thence under pulleys located near the bottom of the main frame, the hay being deposited upon the tines of the fork, and th
upon by a horse hitched thereto.
Divider Shoe. - Charles W. Love, Fairpoint, Ohio. This invention covers an improve-
ment in outer divider shoes for the cutters of mowers ment in outer divider shoes for the cutters of mowers
and reapert, to so construct the seat tor the finger bar that the seat may be readily trimmed out to fit any of
the ordinary finger bars now in use, the invention also embracing other novel features.
Cultivator and Harrow.-Thomas E. Carter, Augusta, Kansas. In this machine the cul.
tivator teeth are so itxed as to effectually cultivate the round adjacent to the corn, while a serie of harrow may be projectea from the body of the cultivator proper, the harrows being adjustable, and there being a
the rear of the frame scrapers adapted to convey the loose dirt into the roots of the corn.

Miscellaneous.

Hot Air Furvace. - Benjamin F. Price, Bloomington, Ill. This furnace has a conical inner casing, bottom casiug, and upright outer casing
forming an inclosed air space in combination witha dome, tabe plate with short tubes, and other novel fuel and thorough utilization of the hot air
Steam Heater.-Daniel D. G. Langands and Ois E. Moulton, Dover, N. H. The boiler of
this heater has a large heating surface, large steam space, and comparatively small water space, and is not space, and comparatively small water.space, and is not
liable to beomem water-loged, the apparatue being
adapted to be rendily introduced into or incorporated with any casing.
Grain Weigher. - William H. H. Brunton, Ek City, Kansas. Mhis invention covers
various novel details and combination in a machine
designed to automatically measure and register the
quantities of grain delivered by an ol
with a thrashing machine or grain bin.
Gas Manufacture.-John C. Garvin d Henry Moody, Leadville, Col. This invention r manufacturing gas from hydrocarbon and other iquids, such as oils of various kinds, and for cleaning the retorts and pipes used without disturbing them, the liquids being decomposed and converted into gas by
being brought into contact with suitably heated being broug
surfaces.
Saw.-George H. Holmes, Ogdensburg, N. Y. This is a band saw for cutting wood, having an dge tempered with the ordinary temper of wood saws, the back of the blade being thin and the rest of it of
even thickness, making a saw designed to work even thickness, making a saw designed to
smoothly without being liable to crack or break
Wire Tightener.-Louis S. Flatau, Pittsburg, Texas. This tightener is more especially
designed for use in taking up the slack in wire fences, designed for use in taking up the slack in wire fences,
the frame having guides for the wire and a threaded earing in which turns a screw with a hook to engage the ire, there being a shackle for keying the hook to the arew, the device being also capable of use in tying
packages wire and for other purposes.
Thill Coupling.-Isaac Clark, Morris Tains, N. J. This coupling is adapted for use in convention covering novel details of construction and arrangement of parts designed to afford a coupling that is simple, strong, and convenient in use, while being easy to couple and uncouple.
Tricycle. - Patrick Gallagher, New York City. This invention covers an improvement on a former patented invention of the same inventor, a
ay wheel being applied to the driving mechanism and brake capable of application to the driving wheels, whereby the operator can readily regulate the speed of
the vehicle without changing his position on the seat.
Hat Mark.--Henry H. Wright, Paela, Kansas. This is a device, the use of which is designed 0 prevent parties taking the wrong hat, and consists of
frame adapted to be secured to the inside of the hat frame adapted to be secured to the inside of the hat ace thereon by a pin, the device being adapted to
SUSpender Buckle.-James England, New York City. This buckle has a base plate with atwaraly extenaing ears in which a bar is journaled having a longitudinal row of teeth, with one or more of
the teeth in the row inclined at a different angle from the others, but so that both rows of teeth may be
Bottle Faucet.-Felix Stefany, New York City. This faucet has two valves operated inde-
pendently of each other, one serving to open or close the inlet and outlet pipe and the other adapted to open or close a vent, the device being specially designed for conveniently filling a bottle with a liquid under pres-
ure, and for sealing the liquid in the bottle and disharging the contents as required.
Can Fastener.-Calvin Keeler and Harvey Lewis, Hobart, N. Y. This fastener consists of casting in which is being pivoted in the casting and arranged to bring the hook into engagement with the wired ring, the device eing especially adapted for use with milk can
Match Box and Cane.-Simon B. Simon, New York City. This is a box for use in cons made with a sliding lid, of such form that it will not adily open when the cane or umbrella is carried
Theatrical Appliance. - Fred Wilson, New York City. This invention combines interior of adjoining compartments, a chair having a alanced pivoted body with electric lamps sunk therein, ing room, aftording couvenient means for tlating light nd manipulating the chair.
Automatic Alarm. - Emil Meyer, Ottleben, Prussia, Germany. This invention provides reminded of recurring times to give attention to particular duties in connection with furnaces and other matters, and whereby, in the event of failure, an alarm bell will be rung, the latter to be connected, if desired, ith an alar
manager.
Sewing Maciine.-Williain C. Foster, ersey City, N. J. This is a machine for forming a double row seam, or "whip stitch," wherein the side the invention consisting principally of a hook and means for reciprocating it, whereby each side loop or stitch is shifted laterally to have the chain stitch loop hrust thr
$\underset{\text { Stiter, Jersey City, N. J. This invention covers the }}{\text { Sticher }}$ Foster, Jersey City, N. J. This invention covers the
method of stitching by the above machine, consisting of passing two loops through the fabric, a short distance apart, one to be formed into a chain stitch and the other into a transverse loop, the latter occupying a
Piano Key Board. - Enoch L. S. Osborn, Waxahachie, Texas. This key board has all he keys of uniform size and color, a sliding attachment the usual white and black keys, the keys also having umerals and letters forming guides for the adjustment of the sliding attachment, whereby the scale may be transposed, the invention being intended to facilitate teachmg.
Shade for Burners. - James and William J. Stration, Brooklyn, N. Y. The shade is farmed with an elliptical top, and has a funnel-shaped
ray conductor, a wire coil or ring carried by the shade
being such that the flame will not impinge against the shade whe
position.
Music or Book Holder. - Herbert . Brown, Auckland, New Zealand. This holder has an attaching portion with spring arms to engage a attaching anger being pivoted at the outer ends of the arms, and having on its lower end a weight.
Chimney Cowl.-David Teets, New York City. In this cowl a series of vertical equid stant semi-cylindrical plates arranged vertically, covering the slots and serving as smoke conductors, making a ven-
tiator cowl designed to promote draught and avoid tilator cowl de
Vehicle Spring.-James F. Thomas, Alexandria, Neb. This is a novel form of side spring,
the springs being bowed at their centers, with means for securing them at their central portion to the frame work of the vehicle, whereby they are restranned from torsion at their centers when the load is on, the inventhe same inventor
SAW.-Nicholas Petry, Rockpert, Me. This is a device for sawingtenons and gains and to save
the time and labor of measuring them, the heads or the time and labor of measuring them, the heads or
holders of the frame having slits in which saws are ad justably held, so that one saw can be dropped below the other, to permit cutting of tenons having one sid when the frame will form a gauge.

Hay Press. - Michael McCarty, Montower mechanism for operating the plunger and the hay or material to be compressed is fed in batches to the press box, where it is compressed by the reciprocating motion of the plunger, being compressed at each
forward motion and pressed out of the opposite end of the press chamber.
Water Closet.-John J. Balls, Jack onville, Fla. This invention covers a novel construc tion and combination of parts in water closets of that
class in which the bowl is flushed automatically by the

Wire Stretcher.-George R. Hughes Savoy, Texas. This-device has an essentially T-shaped body, the members of the head having a series of teeth,
combined with a pivoted lever and clamping jaws, whereby the device can be readily attached
and engaged with the wires to be stretched.

SCIENTIFIC AMERICAN

BUILDING EDITION.
MARCH NUMBER.-(No. 41.)

table of contents.

1. Elegant plate in colors showing elevation in per spective and plans of an attractive residen
costing five thousand dollars, sheet of details. Plate in colors of a cottage for three thousand
dollars, with plans, elevations, sheet of details, dollars, with plans, elevations, sheet of details,
etc.
2. Perspective and plans of a villa at Paris-Auieuil. . Moving a house thirteen miles by water. From

Stratford, Conn., to West Stratford, Coun. Fall
page of engravings showingthe various stages
the operation, also floor plans of the building.
5. A beautiful residence lately built on Reynolds

Terrace, Orange, N. J., from designs by architect
Jokn E. Baker, of Newark, N. J. Perspective Jokn E. Baker,
and floor plans.
6. A villa near New York. Cost eight thonsand dollars. Plans and perspective.
A Queen Anne cottage for three thousand five
hundred dollars, lately erected at Richmond Hill nundred doolars, lately erected at Richand perspective.
8. A beautiful "Old English" honse, lately erected
at Richmond Hill, N. Y. Perspective and floor plans.
9. An attractive cottage lately erected at East Orange N. J., at a cost of six thousand dollars. Plans and perspective.
10. A residence ar Bridgeport, Conn. Cost four thonsand four hundred dollars. Perspective and plan A house for eighteen hundred dollars, recentle
built at Rutherford, N. J. Floor plans and elevations. Hlans and perspective.
13. Engraving and plans for a cottage costing two
14. A residence for five thousand dollars, lately erected at Rutherford, N. J. Plans and perspective
15. Miscellaneous Contents: A lien law for grave stones.-How to save ceiliings when cracked, sagging, and ready to fall.-The Willer sliding blmds, illustrated.--Improved wood working machine,
illustruted -Canton, Ohio,-An improved duub
illustruted.-Canton, Ohio.-An improved dunul
waiter, illustrated.-Water pressure regulators.
The Scientitic American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages: forming, practi-
cally, a large and splendid Ma azine of ArchitecTURE, richly adorned with elegant plates in colors and with fine engravings, illnstrating the most interesting

allied subject

The Fullness, Richness, Cheapness, and Convenience
of auy architectural publication in the world. Sold by
all newsdealers.
MUNN \& CO.. Publishers,
301 Broadway, New York.

Business and Personal.
The charge for Insertion under thes head is One Dollar a line jor each insertion; about eight words to a line. Advertisements must be received at publication office
as early as Thursdou morning to appear in next issue.

For Sale-Patent Clothes Drier, granted August 7, 1888. Patent Nu. 387, 225.
State St., Chicago, ill.

Mechanical Dranghteman on Printing Machinery. Address, stating ake. experience, references, and pay
quired, Golding \& Co., Fort Hill Sq., Boston, Mass.
All books, app., etc., cheap. School of Electricity, N. Y.

$$
\begin{aligned}
& \text { _off. } \quad \text { Ball Engine.-_ Ball Engine Co., Erie, Pa. }
\end{aligned}
$$

Automatic cut-off. Ball Engine Co., Erie, Pa.
Philip Parsons, Bishopsgate Witlin, London, solicit
Philip Parsons, Bishopsgate Within, London, solıcite
gencies for the sale of American coods in England.
Special facilities for manufacturing light machinery, hardware, and novelties. Stamping, presswork, punches, dies, and special colls. Cort espondence
way Manuf. Co., \mathbf{j} E. lith St., New York.
Patentees and Inventors-Any one having valuable Inventions and needing money for developments may
abtain funds by stating full particulars and date of patent, to pest office bex $3 \mathbf{3 5}$, New York.
Screw machines, milling machines, and drill presses. For the latest improved diamond prospecting drills, ddress the M. C. Bullock Mtk. Co., Chicago, ill
For the best Hoisting Eugine for all kinds of work, Preses \& Dies. Ferracute Mach. Co , Bridgeton, N. J Perforated metals of all kinds for all purposes. The Rebert Aitchis@ Perforated Metal Co., Chicage, III. The Holly Manufacturing Co., of Lockport, N. Y.. winl send their pamphlet, describing water works ma-
hinery, and containing reperts of tests, on application. Iron, Steel, Copper, and Bronze Drop Forgings of very description. Billings \& Spencer Co., Hartford The Improved Hydraulic Jacks, Punches, and Tube Expanders. R. Dudge 0 , 24 Columbia St., New York. nvestigate Edson's Recording Steam Gauges. Save coal, Safety Elevators, steam and belt power ; quick and Tight and Slack Barrel Machinery a specialty. John Rotary veneer basket and fruit package machinery. . E. Merritt C•., L॰ckport, N. \mathbf{v}.
Pedestal tenoner. All kınds woodworking machinery. B. Rogers \& Co., Norwich. Conn.

Belting.-A good lot of second hand belting for sale Band saws. with tipping table. All kinds woodworkThe Star Fountain Gold Pen. The best made stylo. Price. $\$ 1.00$ fountain, $\$ 1.50$ and up. Send for circulars. Send
Send for new and complete catalogue of Scientific and other Books for sale by Mun
New York. Free on application.

HINTS TO CORRESPONDENTS.

 Books referred to promptly supplied on reecipt of ${ }^{2}=$
,
(411) R. G. D. -The so-called perpetual notions are not perpetual motions in a mechanical sense. They derive their motive power from some
change in the physical elements, princlpally heat. The change in the physical elements, princlpally heat. The
change of temperature during the day and night may be made to keep a machine or clock constantly running. There is power expended here, no matter if it comes
from a natural change of temperature, the blowing of the wind, or falling of water. It is a derivative power, and not the mechanical perpetuity that has crazed too many otherwise good and useful minds. The deep shot that is detached when it strikes the bottom. The 18 wound on a large reel driven by a steam engine (412) A. S. asks: What kind of a batmake to use to explode gunpowder, and also how he could make one, and of how many cells it should be? A.
Use two or three ceils of a plunge battery, such as described in Scientific American, of December 17 or
August 20, 1887. A small length of iron or platinum August 20.1887 . A small length of iron or platinum
wire No. 30 must be placed in the circuit embedded in wire No. 30 n
(413) F. S. S. asks how to make a batery of sufficient power to run the simple motor? What
would such a battery cost? Would it be practical to reduce said motor in all dimensions 50 per cent? Alsu
could you mention a book, of reasonable price, on bat could you mention a book, of reasonable price, on bat
teries of different kinds for different uses? A. See

Scientific American of August 20 and December 17,
1887, and September 3 , 1881, for batteries; for an excelScientific American of August 20 and December 17,
1887, and September 3. 1881, for batteries; for an excel-
lent method of making battery plates consult the Scienlent method of making battery plates consult the Scien-
trific American of October 27 , 1888 . The battery
would cost frum two dollars upward. You can reduce would cost frum two dollars upward. You can reduce the motor, using wire three or four numbers smaller.
For general description of batteries, we refer you to Scientific American Supplement, Nos. 157, 158 ,
und 159. (414) J. E. A. asks: Are there any ocomotives built that are driven by electric motors
riven by galvanic batteries? If so, what kind of galtricity, the current being derived from secondary hardly to be denominated a locomotive. A Daft elec ric locomotive has been tried on the N. Y. elevated road with success. See SUPPLEMENT, No. G87. Prim
batteries are too expensive as a source of energy.
(415) J. D. P. asks how talc can be de ermined, and if there is any market for same? A Talc occurs in several forms. As massive rock or
steatite, it is used in commerce for grate linings, grid steatite, it
dles, and similar uses. The finer varieties are used by
Indiarubber manufacturers, tailors, for marking cloth, India rubber manufacturers, tailors, for marking cloth, paper makers and other trades. Its general appearance,
slippery or soap-like surface, and softness enable it to be rec
nail.
(416) C. F. W. asks : 1. Can I use German silver wire in place of silver wire for the single fiuid
batteries described in Scientific American Supple ment, No. 157? A. German silver will answer for sul phuric acid solution, but will give inferior results. 2
What kind of batteries would be better for a smal electric light, the plunge batteries or the single fuid
batteries as named above? A. Use a good sized Bunsen or plunge battery
(417) P. D. H. writes : 1. I have a quantity of battery cells, and wish to construct glass covers to prevent evaporation. Can you tell me how to carbons and zinc plates? A. Select a copper or brass
tube of the size the holes are to be. Cement a cork the tube of the size the holes are to be. Cement a cork the
exact size of the bore of the tube upon the glass plate, where the hole is to be. Secure the tube in a brace
place it over the cork, and feed with emery and place it over the cork, and feed with emery and dly upon a good surface. The tube will soon cut
hole through it. 2. Has the motor described in Sul Plement, No. 641, a reversible motion? A. None ha been arranged for it yet. You can do it by shifting the reverse way. 3. Will ammonia evaporate when sub
jected to heat, or rather what is the effect when boiled jected to heat, or rather what is the effect when boiled?
Does it lose its chemical properties? What are the chemical changes? A. Ammonia evaporates when heated; there is no chemical change, unless we conside of ammonic hydrate ($\mathrm{NH}_{4} \mathrm{OH}$) are broken up into ammoniacal gas $\left(\mathrm{NH}_{3}\right)$ and water ($\mathrm{H}_{2} \mathrm{O}$). 4. Is there any depolarized in use in a sal ammoniac battery-t make them fit for use again? A. Let them stand, or heat
them in an oven. 5. Which of cast iron or wrought ron is the best electrical conductor? A. Wrought iron
(418) D. F. H. writes: What causes the singing of the telegraph wires? Here on the prairies it
is sometimes almost defeaning. A. The wind sets is sometimes almost defeaning. A. The wind sets
them in vibration on the principle of the Eolian harp. They really form an immense harp of this character.
(419) A. G. asks for the best method for making a permanent magnet- shape, temper, and steel?
A. Use chrome steel or other good quality of tool steel drawn to a straw color. Surround it with a coil of in sulated wire and pass a strong current of electricity
through the wire. This will magnetize it. The shape mroygh the wire. This will magnetize il. The shape 18,300 and 318 , which we can send you by mail for 10 ents each.
(420) E. P. B. writes : I have a circular
lass plate (common window glass), diameter 2 ft. 4 in . lass plate (common window glass), diameter 2 ft .4 in .
intended to use it for one of the wheels of a Holtz
electrical machine, but dropped my plan because I could not get a hole (for the axle) through the center of it. Wearing it with sand takes too long. A glass
cutter refused to take the risk, and acids are too expensive. Please let me know several good ways which will
accomplish the result, $i . e$, put the hole through center accomplish the result, i. e, put the hole through center.
A. You can drill the hoie with a copper tube. See answer to query 417. Experiment on several pieces o be very solidly supported from below. For directions for mounting a piate, with or without drilling a hole in it, consult Bottone, Electrical Instrument Making, pp
$30-36$, which we can send you by mail for $\$ 1.20$. (421) B. D., Jr., asks : How much of the wire used in makingthe electric motor should be in
sulated? A. All the wire should be varnished, and i cotton wound also, the motor will be more efficient.
(422) F. S. writes : 1. Will you kindly inform me through the columns of your valuable paper the SCIENTIFIC AMERICAN, of which I am a subscriber,
which is the heaviest, salt (sea) water or fresh? both being the same temperature, and if there is a difference,
what is the cause? A. There is a difference in the what is the cause? A. There is a difference in the
gravity or weight of salt and fresh water, due to the weight of the salt held in olution. For sea water,
this amounts to $18 \sigma 0$ in excess of the weight of an equis amounts to $18{ }^{8780}$ in excess of the weight of an
equal fresh pure water. 2. My parents are both German, but I am American born. Am I an au American citizen, but in speaking of your descent
the exprcssion " German-American " is customary and
(423) R. Williams writes: Can you give all the reactions in the preparation and use of a Plante
storage battery? A. The lead in the forming process is converted at the one pole into binoxide at the expense of the oxygen of the water molecule by the action of the
current (a). Then thedirectionis reversed, and the other current (a). Then thedirectionis reversed, and the other
plate is oxidized, while the binozide of lead is reduced
the metallic state (b). When ready for action, one with spongy lead. When the circuit is completed, the spongy lead takes up oxygen from the water, becoming
protoxide (c). The hydrogen that goes to the protoxide (c). The hydrogen that goes to the other pole
takes up oxygen and reduces the binoxide of lead to the form also of protoxide (d). While this is going on, the sulphuric acid in the cell combines with the protoxide f lead, forming plumbic sulphate at both poles (e). In he charging process this acid 18 set free, the sulphate of lead by the electrolytic process being converted into me-
tallic lead on the positive electrode (f), and into binoxide of lead on the other plate (g). The sulphuric acid thus set free increases the specific gravity of the solution, thus set free increases the specific gravity of the solution,
so that by observation, with a hydrometer it can be determined when the battery is charged. When the lead is completely reduced on one pole, gas is evolved, and this
also is an indicator of complete charging. The reactions above by letter are

(424) W. S. P. asks (1) the formula for wells. A. For high explof can Supplement, Nos. 674, 627, 552, 406, also a complete work on modern explosives and their use, by
Eisler, $\$ 4.00$, which we can mail. 2. The formula for a hite fire suitable to burn in a closed room, and made
by dipping sheets of paper in some preparation which is dried and when used the paper is fired. A. Dip in gum Techno-Chemical Receipt Book, \$2, on explosive agents. 3. The directions for making a megascope, an instru-
pent for throwing an enlarged picture of opaque objects ment for throwing an enlarged picture of opaque objects
wood cuts upon a screen. What kind of lenses, the or wood cuts upon a screen. What kind of lenses, the
size and length of focus, the focus or curvature of the reflector, and distance from lenses, and the angles of the icture to the lenses and refiector and position of the 3 or 4 inches in diameter may be used. The focus may be four times the diameter, set with convex sides toward each other, and $3 / 4$ their diameter apart. The general arrangement will be seen in the description of an electric
megascope in Scientifio American Supplement, No. megascope in Scientifio American Supplement, No.
640. The refiector may be a little larger than the lenses, of from 3 to 5 inch focus, set behind the light at a dis. ance that the refiected image of the light may jast cover the picture, the light being placed at one side, or
if two lights are used, then one on each side of the field of the lenses, so that no light will interfere by passing
(425) L. F. writes: 1. I wish to light $(425) \mathrm{L}$. F. writes : . I I wish to light four rooms of a house with incandescent lights. I wish
to run them with a battery. How many cells will it What will be the probable cost of the lamps, batteries etc.? A. Your lamps, wire, and general connections
will cost about $\$ 25$. The battery will cost $\$ 50$ to $\$ 100$ You will need twenty to thirty cells for each lamp tha is run simultaneously with the others. For each lamp
allow an expense of 2 to 5 cents an hour. 2. Please give receipt for the article called sea foam, used by the New England rum...................... 1 pint.
Bay rum.............................. Bay rum...
Carbon
Borax.
How to
3. How to make a (cotton) web razor strap? A. Rub
he surface with a mixture of washed emery and lard. Also a leather strap. A. Use Russia leather or the
in from a horse's tail. No preparation is needed.
(426) L. E. F. writes : 1. Can you in orm me of an economical process of making a good mirable method of making carbons from electric light Oncils, we refer you to the Scientipic American of
October 27, 1888. 2. Also if the current developed by he telephone gen ion, and presumably stops for an infinitesimal period aa
in alterngt the direction changes. Its strength is exceedingly slight. Mr. W. H. Preece has lately determined that a
Bell telephone will respond to a current represented by $x^{1010^{15}}$ ampere, or $0 \cdot 000,000,000,000,6$ ampere. One gramme degree of energy would suffice to make a tele-
(427) G. J. S. writes : 1 . What is under stood by the technical term or word volt, and how ap-
plicable in electrical science? A. Volt means the inducing cause of an electrical current, bearing the same relation to electricity that "pounds pressure per inch"
do to steam or "head "does to water. One cell of do to steam or "head" does to water. One cell of
gravity or Daniells battery gives about 1.07 volts po-
tential 2. What is understood by the technical term or ential. 2. What is understood by the technical termor or other conductor to the passage of an electric current;
1,000 feet No. 10 pure copper wire represent alittle over 1,000 feet No. 10 pure copper wire represent a little over one ohm. 3. What is the difference between a primary
and a secondary current in telephoning? A. The secondary current is an induced current derived from the secondary circuit of an induction coil. 4. What is a
storage battery? A. Many are described in our Suptorage battery? A. Many are described in our Sup
plements. Generally speaking, it is a battery that is brought into the active srate by the passage through it
(428) J. G. asks : 1. What is the value no weight of a cubic inch of pure gold? A. A cubic its present price , $\$ 20.66$ per troy ounce, is valued a
$\$ 230.23$. 2 . Value and weight of a cubic inch of pure silver. A. A cubic inch of silver bullion weighs 0.3788 troy pound, and at its present price of 98 cents per troy
ounce, is valued at $\$ 5.89$. 3. What kind of a small crucible is best to melt these metals in, and can they b
melted in a charcoal fire with the aid of bellows? I melted in a charcoal fire with the aid of bellows? If
not, how can they be melted without the aid of a furnace? A. Use the ordinary Hessian or sand crucibles,
which may be obtained through the hard ware trade which may be obtained through the hardware trade,
for melting pold and silver, or the black lead crucible,
which is gafer from breakage a charoonal gro in
cylinder, with small bellows, or an ordinary cylinder sove with a good draught, are
(429) C. A. F. writes : A client of mine is building an apartment house 120 feet by 140 feet, six drilled an artesian well which brings the water within 35 feet of the top of the ground; the well is 2233 feet deep, 35 feet being tlimestone rock, 125 feet white sandstone, the 123 feet from water level at the top of the building Now the questions are: Where would be the best lo cation for the pump-at the water level, or on top of the
ground? How many gallons of water would be needed forsay 250 people, hot water,steam for elevators, etc., in cluding provision in case of fire? The well is suppose
to have a capacity of 400 gallons per minute. How ca we test it? Give the name of a good manufacturer of force pumps. We would like to gel at their capacity of gallons per minute. Will the sand rock give way and
disintegrate when the pump is at work and the water disintegrate when the pump is at work and the water
agitated? Would it not be better to pipe it? Does the water in an artesian well fuctuate, or remain about a normal height? A. The supply of water in various
towns for family use, fire and other purposes has a large range in the United States, running as low as 30 gallons more in large towns or where the sources of supply are abundant. Probably for the above building a daily supply of 50 gallons per capita will be in excess of all demands. This will be 12,500 gallons per day, which should
be pumped within 10 working hours, or at the rate of 21 be pumped within 10 working hours, or at the rate of 21
gallons per minute. This will require a vertical dee gallons per minute. This will require a vertical deep
well steam pump equal to donble the required supply well steam pump equal to donble the required supply,
with extra long stroke. The pump bucket should work in the lower end of a tube at about 100 feet down to in sure a flow of water at the rate of pumping. Thisis the have the pump of sufficient size, you have only to lengthen the pipe and rod, if the pump draws the water The length of the pump pipe should be so proportioned as to be equal to more than the whole supply required, including the lowering of the water level, or say 200
feet. The pump should be located just above the feet. The pump should be located just above the
top of the well. You will require no tubing for the well, as the water probably comes from the sand rock There are causes that will make the static level of the
water in the well fiuctur dress the Deane Steam Pump Company, New York, and American Well Works, Aurora, Ill., for artesian well pumps.
(430) A. D. asks how much pressure there is to the inch in a rifie of 45 caliber, using 7 inch barrel. A. 350 grains lead, and twenty-eight from 30,000 to 40,000 pounds per square inch, according to the quality of the powder and the proportions of
weight of powder and ball. 2. And also how much more weight of powder and ball. 2. And also how much more
the pressure is behind the bullet than itis in the front it after leaving the shell? A. The pressure in fron of the bullet increases as it moves toward the end of
the barrel, but is only a very small percentage of the pressure behind. 3. When will a wagon run easiest-if the most of the load is put on the hind or on the front wheels? Who can take the biggest load-a good horse
weighing 1,500 pounds or a good oxiofthe same weight? A. Most of the load should be placed onthe hind wheels for easiest hauling. A horse can pull a heavier load
(431) C. F. M. writes: Some time since cayed in ared at my place of business here, a party engaged in the nickel plating of cutlery, whose claim to
the above mentioned mode of plating I think was unfounded, the coating appearing to me to savor more of
galvanizing. As an adjunct he had an iron pot in which it appeared he melted zinc, solder or spelter, after which the blades of the knives or forks were put into
some sort of acid solution, allowed to stand for the space of possibly 15 minutes before being subjected to the substance melted. Upon removing the articles from some kind of oil, after which they were rubbed dry. Will you kindly inform me through the columns of your issue as to the ingredients that were employed to produce the results attained? I forgot to mention that after the knives were withdrawn from the supposed acid so purpose, I suppose, of clarifying it. Now, what was the melting powder Ased and the substances placed in the melting pot? A. We presume that the knives were
plunged in a bath of metallic tin, and that the powder was sal ammoniac. They were not nickel plated, in any sense. The acid may have been muriatic acid; the oil may have been cotton seed oil, or lard oil; the doubt if it was spelter.
(432) J. H. B. writes: I wish to construct a dry pile. The books say cover a sheet of
porous paper on oneside with tin foil, ou the other with a paste made of powdered peroxide of manganese, etc.,
cut into disks one inch in drameter, etc., and place in glass tube. 1. How much of an interval is required through the paper, etc.? A. An hour or more may be Can a dry pile be constructed that will give a contin. 2. us current? A. Through high resistance it will do this when constructed as described. 3. What will be the effect of dampening the pile? The books say such a pile lasts for two or three years as to currentand durability.
A. Dampening will tend to destroy its action by short circuiting. 4. Can you indicate what the tension would be of such a pile, of say 500 elements? Would it give a slight shock to the nerves? A. Perhaps 100 volts.
will probably affect the nerves a little.
(433) C. A. Y. writes : In this neighborIt is on the side of a west slope, about 100 yards from a small creek and is 30 feet in depth. Apparently it is not connected with the creek, as it is not affected in the air flowing either in or out of the well. But in the
winter ice forms the botom sufciently air flowing either in or out of the well. But in the
winter ice forms at the bottom sufficiently thick to re-
olet the bardent blown of a heavy well buckot, while be-
tween this well and the creek is another well 20 feet
deep, the water of which shows scarcely any difference deep, the water of which shows scarcely any difference
of temperature during the year. This is the only instance of the kind in this country, to my knowledge. Is it a common occurrence or not, and is there any known
cause? A. The water in the water-bearing strata where cause? A. The water in the water-bearing strata where lower level at a rate corresponding to the declivity of hestrata and coarseness of the sand. In wells where this movement is large the water is always sweet by
circulation and not liable to freeze in coldest weather In wells that happen to be located in a sluggish current, or in a pocket that only draws its supply scantily from very direction, there is more liability to become fou! in summer and to freeze during the coldest weather.
Such wells require frequent cleaning. It is the circulaion of the cold air by gravity in contact with the still (134) D. B. wring
(434) D. E. writes: Will you tell what zes of wire to use to wind the simple electric motor, you say in one number that it would double the powe oo increase the lineal dimensions one-balf. Does that mean to make the spool three inches long instead of
wo and of no larger diameter? A. Connect itin shunt on the Edison circuit. Increase all lineal dimensions in ame ratio, make the spool half larger diameter, etc.
(435) E. W. W. writes: Can I use Leclanche cells for lighting a one-candle Edison lamp fo in twenty-four hours? If so, how many cells will it require? A. They are well adapted for this use. You will need five cells.
(436) A. P. G. asks : What is the proeess for printing from plate engravings, that is a fat copper plate engraved backward? Is a common letter pres
used for it? A. A roller press is used. The plate is inked and the smooth surface is wiped clean, the en. graved lines retaining the ink. The paperand plate are
then passed between the rollers of the press, when the ink is transferred to the paper
(437) P. Van S. asks how the solution of annatto is made and what from. A. It is extracted
rom the outer part of the seed of Bixa orellana, an vergreen, a native of Brazil. Alcohol may be used for (438) A. G. writes : I would like to know ow to color a meerschaum pipe or cigar holder so that
will be black as ebony, without smoking it? A. Try niline blacks, or logwood extract in water, followed
(439) F. B. writes : In edition No. 3, ol. 60 , I see question No. 161, F. B. C. asks : Could
charge storage battery of one cell, with static electricity generated by a belt? You answer him, practically, no What is the matter with using an old incandescent lamp or other form of Leyden jar as a discharger grounding
through an inverted induction coil or transformers (Please remember I am only asking a question.) The he low pharges being a/way in direction would there beltwo impulses, due first to magnetizing, nd a second to demagnetizing? If the static electricit rom the many belts of large mills could be used this seems impracticable, as there is but little electricity given off by a bell, and, when rednced in potential i would be hardly perceptible. The induced dischargee
would be in two directions. If the belts produced any quantity of electricity, they would run stiff in proporomething out of nothing
(440) D. O. B. writes: What power is required for an eight-light dynamo, and isthere a small You need about one horse power. For addresses of en ine builders, consult our advertising columns.
(441) H. \& R. ask: Cannot a high grade of steel be told by the color and the grain? Ar Also, is not a fine quality of steel susceptible to takitin and holding temper, as a coarse or loose grained stee is not. Our remarks are in connection with cutler steel? A. Much information as to the quality or grade of steel can be had directly from observation of the grain by fracture and its ease of breaking. The fineness of the rystalline surface and its color, as well as its toughness in breaking, are the leading points of observation with buyers of steel at first sight. Its qualities in hardening of steel require special manipulation in amount of heat and manner of hardening and tempering for various and manner of hardening and tempering for various
kinds of tools. The finer crystallization is generally preferred for high duty tools. Cutlery steel requires which have is generally made from the lower grades, spring steel. These have a coarser grain than the fine tool steels. See Scientific Ambrican S
No. 505, for an interesting article on steel.
(442) S. P. F. asks about a wheel reolving along the ground. (Plane surface.) 1. Does A. Every roolving bus center orter for why The center is not a revolving body, but is an imagi nary axis occupying a neutral point within the force generated by revolution. 2. Does centrifugal force act
with equal intensity on all points equidistant from the with equal intensity on all points equidistant from the
center of the wheel, or not? A. Yes; in a perfectly balanced wheel, in which the materals contributing to mass. 3. Are not the top and bottom of the revolving wheel the extremities of an infinite number of straigh lines drawn through its center perpendicular to the infinite number of points of contact with the ground, in other words, a line parallel to the surface along which
the wheel is revolving? A. Yes. 4. Does the top of the wheel revolve with greater velocity than the bottom, or than any other point equidistant from the center? . The top and bottom of a wheel rolling along a of a rolling wheel move only as fast tas the axis. The
great as the rectilinear velocity of the axis. The peri-
phery does not move at the bottom. All parts of the phery does not move at the bottom. All parts of the (443) M. A. P. asks (1) how to make paste such as bookbinders use. Do they nse glue or fiour paste? A. Ordinary fiour paste is generally used,
though sometimes a little glue is added to make the paste tougher. Some antiseptic, such as carbolic acid or alum water, is added to prevent souring. 2. How
engravings aremade by the process known as "zinc engravings are made by the process known as "zinc
etching." Is it the same as producing engravings from etching. "Is it the same as producing engravings from
zinc plates by the action of acids? A. The process is thesame in principle, but in the ordinary "process"
plates, for printing with types in a form, the blacks plates, for printing with types in a form, the blacks plate the whites are in relief and the blacks sunken the printing then being done as that of a steel engrav ing. Nitric and muriatic acids, of various degrees of strength, are used in each case to bite out the metal. 3. Where can the zinc plates be procured, and what are their cost? A. Most large electrotyping establishments could furnish them to order. They are not on sale by surface as smooth as glass, by an expert in this line. 4 Would like a short deseription of how in this line and stereotyping are done. A. For electrotyping, the type form is well brushed over with plumbago-a wax mould is then taken, and a thin electro deposit of copper made therein. This thin deposit of copper is stripped of and baked with type metal fiowed on. For stereoform a mould -or the mould may be made of a kind of papier mache substance beaten into the face of the form.
The face moulds so made are placed in another mould or form to give the pro
the melted type
(444) D. T. E.-Printers' rollers are not on newspaper presses maintaining a high rate af eused For ordinarily fast presses on book work the following is a good composition: $10 \frac{1}{2} \mathrm{lb}$. best glue, 2$\}$ gals, black molasses or honey, 2 oz . Venice turpentine, 12 oz glycerine. The quantities of glue and molasses will be slightly varied according to the season, comparatively
more glue being used in summer than in winter. If more glue being used in summer than in winter. If
French glue is used, it will be necessary to let it soak overnight to take up the right quantity of water, but most domestic glue will take up sufficient water in be added and well mixed with the composition just before pouring. When rubber is used to make the black composition described in the Scientific American of January 12, the rubber should be cut in fine shreds and dissolved in benzine, ether, or bisulphide of carbon, not in alcohol. It should be mixed with the turpentine and added to the composition the last thing before pouring, the glycerine and witce;ar being mixed with the glue and molasses a short tinue earlier, after
the latter has become well combined in a kettle in a water bath over the fire or in a steam-jacketed kettle.

Enquiries to be Answered.

The following enquiries have been sent in by some of
our subscribers, and doubtless others of our readers will take pleasure in answering them. The number of the enquiry should head the reply.
(445) M. E. G.-Please state why throwing salt upon a fire will put out a burning chimney
Also please state how the magicians do the trick raising tables, chairs, etc., by simply laying their hands upon them? This is an old performance, and is now being done by Kellar
(446) H. B. H. writes: Will you please advise us of the mixture used for coating iron so as to
give it the dull black finish seen in chandeliers and and. give it the dull black finish seen in chandeliers and and-
irons? It is called Berlin black, and will not rub off.

Replies to Enquiries.

The following replies relate to enquiries recently pubished in Scientific American, and to the number
(20) Halifax.-Relief Maps.-Although not sure of the method used in Germany, there is one way which, although it involves considerable expendi-
ture of time and materials, produces a map in relief which is extremelylaccurate and would command exten formed. Suppose you have a m ap of a section of country on which are marked contour lines made by passing horizontal planes at vertical distances of ten feet, or any other distance. Take sheets of cardboard so that the thickness shall represent one foot, then ten super posed will give ten feet. The thickness of the cardboard is of course the unit of your scale, both vertical
and horizontal. Now cut out pieces of cardboard of the same size and shape of the horizontal space embraced by the different contour lines. Then on your map draw to them nine other lines, and cut pieces of cardboard corresponding to them. Superpose these in their regu ar order, and you have the rough formation in relief of your map. The pieces of cardboard are pasted to gether and carefully pressed to keep the whole mass uniform. Then smear wax over the whole, in order to
make a smooth surface. Different culors willtrepresent roads, grass, rivers, etc. Trees or forests can be re presented by dried green moss. Houses and other buildings and constructions are made of wax. In the
practical work of making such a map, other details may come up, but they will generally be such as will present littledifficulty to any one at all conversant with modeling. The chief difficulty lies in procuring maps with contour lines marked on them.--S. R., Jr.
(245) C. T. I. - Battery Zincs. - The writerhashad very good results from zinc plates, built had at the time). Tbese plates were built up by folding over and over and hammering down the fold each time, so as to produce a compact plate of the size required.
Building up by cutting several pieces, all to the size reBuilding up by cutting several pieces, all to the size re-
quired, and then fastening together, was very good, bat quired, and then fastening together, was very good, but
not so good as the building by folding a long strip.

No trouble was had in amalgamating, as the thickness
of the plate, after being built up, made it stiff enough ing, it may be, with the number of strokes per second,
riction, etc. The well known formula for space, 8 second, is $s=v t$, make $v=0$, as it must be at the end of the stroke, and $s=0$, which indicates theoretically a state
of rest.-S. R., Jr.

Books or other publications referred to above can, in most cases, be promptly obtained through the
Scientipic American oflice, Munn \& Co., 361 Broad Scientific Amer
way, New York.

to inventors

An experience of forty years, and the preparation of
more than one hundred thousand applications for more than one hundred thousand applications for pa laws and practice on both continents, and to possess un-
equaled facilities for procuring patents everywhere. A equaled facilities for procuring patents everywhere. A
synopsis of the patent laws of the United States and all foreign countries may be had on application, and person abroad, are invited to write to this office for prices,
which are low. in accordance with the times and our exwhich are low. in accordance with the times and our ex-
tensive facilities for conducting the business. Address MUNN \& CO.. off
way, New York.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

February 19, 1889,
AND EACH BEARING THAT DATE. (329) How to Soften W ater.-If the hard boiling the water. If it is dueto calcic sulphate, it can be removed by adding sodic carbonate (common washing soda). In the last case two new substances are le, but does not act on soap.-W. F. W.
(330) S. T. R.-Steam in Boiler Furnaces. Steam from the boiler or exhaust has been used
nany years for increasing the intensity of the fire by in jecting it under the grate when the draught is otherwise good, or otherwise by using a steam blower which
carries a portion of steam under the grates with the air carries a portion of steam under the grates with the air.
One of the oldest practices among engineers or firemen is to wet the ashes or throw water on the ash hearth,
which evaporates and feeds the fire with moisture. The steam in contact with the hot coal is decomposed, pro ducing carbonic oxide and hydrogen, which are both combustible in contact with air.
(334) W. L. G. -1. Starch granules may the grains are laid upon the slide, and as small a portion as possible of balsam diluted with turpentine be applied they will cling to the slide and allow pure balsam to fiow over them without making air bubbles. To mount blood corpuscles, cover the slide on the spot required with a coating of blood as thin as possible and allow it
to dry. Fasten on cover with a ring of varnish. 2 . to dry. Fasten on cover with a ring of varnish. 2.
Raphides are often mounted dry, but are easily mounted Raphides are often mounted dry, but are easily mounted
in balsam. 3. The highest power of the Lick telescope is about 4,000 diams. For microscopic mounting con-
sult Mr. Davies' useful little book on "The Preparation and Mounting of Microscopic Objects."-Wm. H. P. (335) L. W. S.-Cyclones.-1. In the irst place, do not call them cyclones; that is a misnomer that the public has fallen into, thanks to the daily newspapers. They are lor different not cyclones. Cyclones tornadoes only in one respect, namely, they are both rotary storms. The tornado is a funnel-shaped column diameter, rotating about a nearly perpendicular axis. It forms in the upper air a few miles overhead and works down to the earth. Its track is generally not more than twenty-five miles until it disappears into the
upper air from whence it came. They are caused by strata of warm and of cold air struggling against each Pittsburg Reading and Brooklyn, last January. They were only local incidents of a general storm, the diameter of which was about 500 miles. The center of the storm was between Chicago and Grand Haven, Mich. Draw a circle of 500 miles radius from the general storm center, and you will find that in the southeastern quadrant of that circle tornadoes will form and will move toward some point in the northeastern quadrant. At 8 o'clock A. M. on January 9, there were southerly winds and very high temperature along the
south Atlantic coast. In Florida the temperature was over 70°, while in Pennsylvania it was below 30°. The isothermic line for that day bulges up at Chicago and drops violently downward through Pennsylvania and Northern Virginia. The hot air south of the isothermic line was struggling to get northward, and the cold air north of the line was struggling to get south. It was this struggle that caused the tornadoes. Normally
the air is much warmer on the earth's surface than it the air is much warmer on the earth's surface than it is
skyward, but on January 9 , if you had gone up in a balloon at Pittsburg, you would have struck warmer air as you went up. The line where the warm and cold air comes into closest contact was the line where the tornadoes formed. 2. There were probably just as many tornadoes then as now. Remember that they are storms of a very limited area, and in a sparsely settled
country they would easily escape observation. - H. S. W .
(336) E. W. T.-Gold Lacquer for Tin. -Use thin copal varnish slightly colored with turmeric and bake in an oven. You can buy the varnishes of
ny required color for stamped tin work from F. W any required color for sta
Devoe \& Co., New York
(364) M. S. O'K.-Stationary Point in Fiston Stroke.-Tbe piston stroke of an engine comes well as in practice. So far as visible means can tell it starts immediately on its return stroke, but actually in theory and in practice it stops for a space of time vary
to stand well, though the mercury struck clear throug each sheet, as was the case. The extreme top of tb amalgamated, for say a half an inch, to avoid breaking
and the brittleness that would have resulted had thi and the brittleness that would have resulted had this
end been amalgamated. These plates stood long and evere use, kept their amalgamation perfectly, and con plates could not well be done, unless zinc rivets were from the galvanic metal would at would be set up by it presence in the zunc plate, even though it was amalga all right if the four-cell battery mentioned wion curren It would be better yet to use five carbons and four zincs, 80 as to have a carbon plate for the outside on each zinc plate with carbon plate on each side of it The size of receptacle will, of course, determin the motor will determine whether four or eight cell
(320) S. L. F.-Stay Bolts.-The press the square of the distance multiplied by the pressure $=3,600$ pounds strain on the stay. If the areas ar
verage for the area
(321) S. H. P.-Propeller.-You will re quire 65 horse power, besides power required for fric 38 in . in diameter.
(329) D. Y. M.-Softening W ater-DSe [See note at end of list about copies of these patents.]
Adhesive material, machine for applying, I. Drey-
fuss.......................................135 Advertising device, W. L. Caldwell.................. 398.227
Air brake, A. R. Boluss............................ 398,310 Alarm. See Burglar and fre alarm
Arrow, vacuum. F. White Arrow, vacuum. F. White. Axle lubricator, W. O. Dunba
Axle, vehicle. A. Corbin, Jr... Axag. See Mail baf.
Bags or recenter

Batteries,
telement for the formo-elect
tern..
Battery. See Electric battery. Electrical bat
tery. Galvanic battery. Secondary batery. Bearing for
worth.....
Bearine, roller. J. W. W. Hyatt.
Bed bottom, spring J.
Bell, goong., Sparks \& Laddolt
Belt, electric, 8 . De Baun..
Belt tighteuer, J. A. Wigal
Bicycle, L. F. Carstensen
Bicycle, L. F. Carsten
Bicycle, E. Thuempler
Binder, load. J. S. Speer.............
Binder, temporary, w. H. Pardee
Bit.
Bit. See Bridle bit.
Bleaching by electrolysis, apparatus for, e. Her
Blind switch, F. C. Weir.....
Board. See Ironing board.
Bobbin. J. Scott......
Boiler. See Locom
Tubular boiler.

Boller, R. W. Hewett.

Bolting reel tool, F, Mu
Bonk case, Rittinger \& Eisenge..............
Book holder and marker, J. A. Beidler.

Boots or shoes, nippers for cutting pegs from

Bottle indicator, H. B. W
Bottle tap. M. J. Keane
Bottle tap. M. J. Keane.
Box, J. M.
Brake. See
brake
brake.
Brick machine. \mathbf{C} \& E. Doerfler
Bridle bit, S. Fisher.
Brush, H. w. Hasey
Brush attachment, paint, J. B. Flautt.
Brush holder, G. E. Meeiker.
Brush, printer's, J. C. Israel.
Brushes, attachment for flesh or bath, w. J. Tur
kington
Burglar alarms, door spring connection for ele
tric, J. Geary..........................
Burner. See Gas burner. Oil burner. Petroleum
Button, cuff or collar. G. S. Tiffany
Buttonhole flishing, G. S. Tiffany.......
\& Eberson...
Butcons to fabrics, attaching shank, w. E. Ben
Cable or railmay crossing, F. C. Weir..................
Cake, biscuit, and doukhnut cutter. W. H. Eaton
Calculating machine, J. Vermehren.
Calendar, perpetual, T. A. McKee...
Camera. See Photographic camera
Can or similar vessel, J. K. Cleary....
Candle moulding machine, L. Homan
Car brakes, pipe coupling for, w. M. Darrow
Car brakes, slack adjuster
Car coupling, J. M. Bouck
Car coupling, s. Byrne
Car coupling, J. A. Hiuson.....
Car coupling, E. H. B. Knowito
Car coupling, C. A. Schroyer
Car door, railway, J. Haish
Car door, railway, J. Haish
Car, dumping, C. C. King
Car for carrying. sugar cane, z. T. Earle
Car heater, . R. Albrecht.
Car heatiog apparatus, stree

398

Car mover, J. P. Halpin.
Car, railway, J. A. Brill.
Car, railway, J. A. Brill.
Car, railway, w. L . Covel.
Car, railmay, w. E. Elliott......
Car, street, E. E. \& w. s. Tayl
Car wheel, 1. Hogeland....
Car wheel, w. H. Melaney
Cars, driving mechanism for, F. J. Weis. . 388,207
Carburetor, Bury \& Bidelman
Carburetor. Bury \& Bidelman......................
G. \& E. Ashworth............................. 398,2
Carding engine flats, apparatus for truing bars
for. G. \& E. Ashworth.............................
Carding engines, stripping mechanism for, G. \& E.
Carpet stretcher, E. C. Ellwood 3988,318
Cart, road. s. . . Felt................................. 388,242
Case. See Book case. Folding case.
Case. See Book case. Folding case.
Cash carrier, M. C. Sezeev................... 388,356
Chair. See Child's chair. Office chair.
Chair jont, T. Curtiss
Channeling, machine, W. H. Haven, Jr.
Child's chxir or carriage. L. J. Adams.................387,
Churn, J. C. Kearns...............
Cigar cutter. F. A. Phillippi..........................
Clasp. See Locking clasp. Pocketoook clasp.
Cleaner. See Knife and fork cleaner. Track
Closet. See Water closet.
Clothes stick, W. H. Scott.
Clothes stick, w. H. Scott.......................... 388,089
Coal drilling machine, Sumper \& Pullen.......

Cock, G. A. Barth.. 3988,288
Cocoannut compourd, L. Schepp...........388,082, 3898
Coffer dam for vessels, G. Clarke................ 398,232
Coffer dam for vessels, G. Clarke...................... 388,232
Comb. See Curry comb.

Corn sheller, J. H. Gilman......................................388,146
Corset fastening, w. . . Ducker........186,
Coupling. See Car coupling. Hose coupling.

Coupling. See Car coupling. Hose coupling.
Crate. folding, W. H. Cadwell................
Cultivator, F. E. Griswold
Cultivator, W. H. Parlin
Cultivator tooth, J. C. Bird.......................
Curb and gutter,

Curry comb. W. Ransweiler........................
Cutter. See Band cutter. Cake. biscuit and
Sal
doughnut cutter. Cigar cutter. Stalk cutter.
Dam. movable, A. M. Scott.........................38.088
Dampenigg machine, J. . . Johnston........... 389833
Dental engine. I. G. Leek.......................... 377,930
Destal engine. I. G. Leek...970,980
398,055
Diamonds in cutting tools, securing, H. Keller.... 388,053
Die. See Hammer or like die.
Direct acting engine, G. A. Barth........ 397,959

Dredging machines, chute for, M. Herron.......... 389.985
Dress form, w. A. Johnson....................... 3797986
Drum or radiator, heating, N. H. Barnes........ 38,115

```
M,
```an, automatic, Buzby \& Snyder
an, dining table. D. J. Gregory
an, folding. F. Sternheimer....
eed water heater, J. Kirkaldy
Feed water regulator. J. P. Cushing.................... 3387.374
39llies, machine for the manufacture of, J.
Dence, Arnett \& Price... 337
397
Fence, C. F. Fowler
```

ence machine, H. G. Cady ..........................................88,2

```

Fince paper, M. E. Daston........................ 389,31
Filter and cut-off, water, Bayless \& Nichols...... 388,2
Filtering and filling liquids under pressure, appa
Filtering material, O. Zwietusch.......
Firearm, breech-loading, P. Mauser .
Firearm, ma\&azine, Cooper \& Cashmore.............. 3890,063
Firearm sight, E. J. Cutler................... 38,315
Firearm sight, E. J. Cutler.................................
Firearms, cartridge ejector for breech-loading,
P. Mauser.. 398,
F'lask. See Moulder's fask.
Flax, etc., apparatus for scutching, McGrath
lax, etc., apparatus for scutching, McGrath \&
Manisty................................ ss8,171
\begin{tabular}{l}
looring or paving, wond block, M. Macleod........ 398.162 \\
Folding case or package, C. T. Heisel............ \(3: 97,514\) \\
\hline
\end{tabular}

Furnace. See Gas generating furnace. Glass pot
furnace. Hot air furnace. Slack burning fur-
nace.
bace.
Gauge. See Safetygauge.
Galvanic battery.
Galvanic battery, E. D. Cross................. 387,9
Game, J. P. \& J. W. Clarke..........
Game, J. P. \& J. W. Clarke
Gas, apparatus for the manufacture of, J. D
as burner for oilliard tables, W. F. Folmer..
Gas generating furnace, J. Gilbert
Gas motor, C. T. A. H. Wiedling........................... 3988,00108
Gas requlator, J. Bards
Gate. See End gate.```

