Bcientific Amexican 2

NEW YORK，JUNE 28， 1851.

The Recognilion of Genlus and the Indastria

Priuclple．

There has been a cheering and gradual ad vancement of sound principles during the past century．In the daye of old，what were our forgers of iron and workers of brass，but the mere appendages of the State．The fighting and talking men alone were the recognised parts of it ；eloquence and military skill were the true and almost the only pasaporta to honor and distinction．The producing useful class－ es were good enough to be called villians，and their occupations degrading and vile．Like the fop in Henry IV．，the mechanic could not pass by one of your blood and monied nobility but the latter had to use his pouncet－box，lee his patrician sensibilities should be sho：ked． The trade degraded the man．Some change has been made in the socialadvancement of the hard handed and brown－browed toilers，though， as a general thing the trade is still held to lower the man．The progress made is definite－ ly marked in political advancement．In France，England，and the continent of Eu－ rope，the mechanics and artisans labored un－ der the most uijust and exacting lawa for the benefit of the nobility and favored inonopo－ lists．Iti France and England these unjust laws have been swept away，and so they have in many of the German States and King doms．In the United states of America alone among all the nations of the world，the politi－ cal rights of the mechanical classes are recog－ nized．Here they stand on a level with every other class．It will yet come to this in other landy，and the great exbibition of the industry of all nations is one of＂the signs of the times．＂The monopolies of trades and the mercantile monopolies－those odious enact－ ments of the Stuarta－have crumbled away， and genius，enterprise，and industry，are now found to be the aristocrats which rule the world．Your jousts and tournamenta；your royal military campaand gorgeous reviewa， all dwindle down into utter insignificance when compared with the＂Crystal Palace＂－ its external and internal triumphs．Men are now becoming something for what they can do and what they havedone，not for what their fathers were．The aristocratic principle is the past participle，the industrial is the pre－ sent．It is true，the great exhibition was de－ signed by a Prince and is under the patronage of royalty，but the designing and patronizing of it，and the broad democracy of its whole management，are evident signa of the times， in the recognition of the aristocracy of genius and the industrial principle．That nation which most encourages and rewards genius and industry，understands its true interests best．The nation which produces most is the most powerful；this is well understood by all enlightened statesmen，hence we have the congress of industry now in London．How is it that the little kingdom of Great Britain， not so large as Virginia，exercises dominion over $200,000,000$ of people situated in every quarter of the globe？By her genius and in－ dustry．Her Watts，her Arkwrigats，her Cartwrights，Bells，Napiers，and Stephensons are the real levers of her power．In America industry has a wide scope一 a broad sea and a fair wind．We have no guilds to make such a man as Sir Joshua Reynolds pay large fees， because he has not enrolled himself in the worshipful company of＂painters and stain－ ers．＂No Watt has to take refuge within the walls of a university to free himself from the feudal exactions of his fellow craftsmen．And what can we show for this industrial freedom？ Sir H．L．Bulwer has asid＂no people in the world are so lightly taxed and powerfully protect． ed，＂and let us add，produce so much of the essentially useful．
Much improvement has yet to be made in ecognizing these principles in all their length and breadch．Moral worth is no doubt the first grand principle，but there is certainly a moral in recognising the right．Drones should $4 \square^{\text {be a }}$ 5
the cloth should not receive more homage than the man who produced it．By a full recogni－ tion of the claims of genius and industry，by all nations and all men，we expect yet to he－ hold an era of inventions and discoveries，in comparison with which，the past great as it is shall be as the river Thames to the majesti Mississippi．

Pennsslvania Chrome Mines．
On the Octorara River，which separate Chester and Lancaster counties，there is Wood＇s chrome mine，about nine miles from Nottingham，which is about 170 feet deep， 200 feet long，and about 30 feet broad．This i considered to be the largest chrome mine in he world ；and he researches and analyses of 100 yards．

HOLLOW BRICKS FOR HOUSES

The accompanying engravirg is a section timbers；whilst，by the parallel longitudina of one of Prince Albert＇s model lodging houses erected in Hyde Park，London，and the model of which is in the＂Great Exhibition．＂－ Always endeavoring to present to our reader that which we consider new and useful，and as these houses had been spoken of in terms of the highest praise by some of our countrymen who had visited them，we thought it would be interesting and at the same time advance art by presenting this view of the building． The hollow brick is the subject of a patent by a Mr．Roberts，as noticed by us in Vol． 4
A A is a plan of the window and door jambe on alternate courses ；C is a partition of brick； E ，equare jamb and chimney brick；F is a section of a wall；D is a section of chimney brick．
The advantagea derivable from the use of hollow bricks are dryness and warmth，as well as economy of construction－considera－ tions which recommend them as a preventive of the evils that result from the absorption of moisture by eommon bricks and other porous material．
They are adapted for houses of moderate height，but ate not so strong as the solid brick，but their strength may be adapted to circumatances，and they are much stronger weight for weight．
When used for partitions，or for roof and Door arches，they are fire proof，deaden sound more effectually，and are coniderably lighter than solid brickwork．
By the form adopted in the patent hollow brickwork，a perfect bond，running longitudi－ nally through the centre of the wall，is secur． ed；all headers and vertical joints，passing chrough it，are avoided；internal and exter－ nal strength is obtained；and every facility
several chemista both of this country and Eu rope have ascertained that it ylelds the best cre，being nearly pure bl－chromate of iron， 3.384 is oxide of chrome．The mine ha been worked
interruption．
The site of this mine is represented as offer ing－what，indeed，the whole region has long been－a rich field of interest to mineralogiets． tabounds in magnesian and chrome minerals， yielding also beautiful specimens of emerald nickel，pennine，kammererite，marmolite，\＆cc． The magnesian ore is found in horizonta都 en followed into the side of the hill nearly
\square

reading of each page，and after it was thought to be perfect，it was pastod up in the hall of the University，with a notilication that \mathbf{x}_{50} would be paid to any person who could dis－ cover－an error．Each page was suffered to remain two weeks in the place where it had been pasted，and the Professors thought that they had attained the object for which they had been striving．When the work was is－ sued，it was discovered that several errors had been committed－one of which was in the first line of the first page．

 claims for our country the original conception and first development of the principles on which the crystal palace has been constructed． He awards the laurel to Mr．James Bogardus，
of this city，and says his invention embraces of this city，and says his invention embraces three distinct ideas－＂First，the application of cast iron for the purpose ；next，the bolting together of the huge pieces composing the frame of the building，so that they will not frame of the bailding，so that train in any dl－
only withatand any probable only withstand any probable strain in any di－
rection，but also，if perchance any one piece should fall，the stabiity of the rest will not be disturbed；and，lastly，the construction of all the joints much after the fashion of the joints of the ordinary cass－iron ten－plate stove；so that，while allowing for the contraction axd expansion of his metal under all possible chan－ ges of temperature，whether from the cold of winter or from an accidental fire，his buildings aball not be objectionable on account of expo－ sing their interior to the elements．＂
He also says，Mr．Bogardus visited Europe in 1836，and went to England in the hope of being able to interest capitalists of that coun－ try in his scheme．The subject was urged by try in his scheme．The subject was urged by
him there in vain for a year or two；the Bri－ him there in vain for a year or two；the byi－
tish writere on mechanica generally concurring tish writeri on mechanics generally concurring
in the belief that he had mistaken the capaci－ in the belier that
ties of his metal．
The statement is also made that the aci－ entific principles upon which the construction of casciron houses is based were applied for
the first time in England in the construction the first time in England in the construction of the Cryatal Palace，and that the housea which had proviously been built there are all wrought．iron，as are all the iron buildiuga so far put up on the Continent，as well as those which have been sent from Europe to Califor－ nia．The latter are joined and stayed on the principles applied in the construction of the
steam－boiler，and cannot withatand the action steam－boiler，and cannot withstand the action of fire，as if made of cast metal；while they cannot be put together in a day，or be taken apart without destroying them．
Mr．Bogardus，no doubt，is one of the most ingenious men，and best mechanics the world has ever produced．We make this as－ sertion unreservedly in all its length and breadth，but then instead of conferring honor upon our country，by undervaluing the claims of the inventors of other nations，it takes awayfrom our honor and lowers our dignity． Mr．Parton，we believe，is the sole inventor of Mr．Paxton，we believe，is the sole inventor of
the Great Exhibition Building，and a man of splendid intellect and ability．Mr．Bogardus erects the best cast－iron houses，we believe，in the world，but neither Mr．Bogardus nor Par． ton were the first to use cast－iron in buildinge， and the principles of erecting and secu－ ring cast－Iron structures were known and car－ ried into execution before either of these two eminent men came upon the business stage． The great principles of cast－iron houses were developed long a go in cast iron bridges．Mr． Frost，of Brooklyn，built a cast iron bridge in England， 30 jears ago，and the Southwark Bridge，London，was built about 1815，we be－ lieve，and is principally of csst－iron．It is a splendid structure of three arches，and is one fourth of a mile long．As to the material ＂cast－iron＂never having been used in atruc－ turesin England，before it was applied in the Crystal Palace；this is all nonsense．A small
castiron lighthouse was erected in the city of cast－iron lighthouse was erected in the city of
Glasgow，by Claud Girdwood，in 1824，and it may be there atill．An account of it can be found in the Glasgow Mechanics＇Magazine． The Crystal Palace will go down to posterity ac a disdem to the genius of Parton，and the cast－iron houses of the United States will be
enduring monuments to the genius of our Bo． enduring
gardus．

Tr Reported expressly for the Boientifio Ameriean, from the Patent Office Reoords. Patentees will
ond it for their interest to have their Inventiona it uatrated in the Boientific American, as it has by in a larger oirculation than any other journal of its olans in Amerios, and is the only souroe to whioh the publio are acouatomed to refer for the latest improveont. No obarge is made oxoept for the oxecution of pablication.

LIST OF PATENT CLAIM

 rooued from the Unitod stater Patent Office for the ware ending june 17, 1851. To Mahlow Gregg, of Philadelphia, Pa., for im provement in Brick MachinetI claim the rotaring mould wheel, construct ed as described, with a series of moulds in its periphery, and an annular plane outside of the moulds, and furnished with pistons arranged as described, for the purpose of discharging the bricks from the moulds, as set forth.
I also claim the mode herein described, changing the position of the pistons by means of the bar attached to the horizontal presser, with its block and plate which are made to impinge upnn the vertical plates, which are attached to the pistons for that purpose.
I also claim the combination of the hopper, horizontal presser, vertical presser, and hook rod, with the transverse horizontal lever and with the mould wheel; the whole being constructed and arranged in the manner and for the purposes described
To H. W. Hayden, of Waterbury, Conn., for imI
I do not claim to be the first to construct die with a lined surface, to deaden the metallic surface operated on, but 1 claim the application of a die, with a lined or corrugated surface, with the figure or pattern cut, or coun. tersunk, so that the lined surface deadens the plate of polished metal, and leaves the polish. ed aurface of the figure untouched, for producing ornamental designs on polished metallic surfaces.
To Elias Young, of Cincinnati, Ohio, for improrement in Cooking Stoves.
I claim the cold air passages, substantially as arranged, to wit : having each an external aperture, near their upper part, on each side, beneath which projects a plate that carries the air to the centre of the stove, whence, by a second plate beneath the middle of the passage, it is again deflected to the outer ends of the passage, (thus counterbalancing the cooling effects at its entrance, whence it is distributed in hot blasts, to the fire
To Wm. T. Barnes, of Buttalo, N. Y., for improve ment in Wash Boards.
rat, I fastening cloth, or its equiva lent, on the board to prevent fine fabrics from slipping and from being torn or rubbed too much; but I do not claim lining the grooved weshboard with india rubber, or other equiva lent material.
Second, I claim hinging the washboard to the frame, for the purpose of holding the clothes while being washed, and at the same time allowing the board to be turned over, sub. stantially as set forth.
To Ransom Cook, of Saratoga Springa, N.Y., fo
(mprovement in Augers.
I claim the fo'in of the tips or cutting edges of boring implements, as described, that is, such.tip commencing at the screw or centre point, and running nearly at right angles thereto, until about half way from the centre to the outer part of the boring implement when it assumes a curve upwards, or towards the handle end of the instrument, which curve is contirrued until it is nearly semicircular, or
until it turns within the periphery of the auge or bit, the curved edges being also under-cut or back-sloped, but withont being confined to any particular angle of such back-sloping o under-cutting, as set forth.
To Rufus Ellis, of Nothampton, Mase., (ansignor to Wm.M. Chase, of B.
in Knitting Machines.
I claim the arrangement of the needles in
the plane of the endless belt, instead of at right angles to it, in combination with the arrangement of the driving pinion and the projecting joints, \&ec., of the links of the belt on the outside of the belt, the belt being supported, and the whole being applied to the stitch hook yarn guide, and presser, and made to operate together, and with the work hanging on the inside of the belt, substantially as specified. To Chas. F. Brown, of Warren, R. I., for in
conneotion of Telescopio Masts and Spars
I claim connecting and adjusting tho
foing several joint of structed of telescopic tubes, or tubes fitting
one within another ly means of a screwed rod or screwed rods (two), nuts, female screwe, and set screws, or their equivalents; the whole be ing inserted in and secured or attached to the tubes, and operating in the manner substantially as set forth.
[This is the fourth patent secured to Mr Brown through our agency, during the past year, all of which have been illuatrated in the "Sci. Am."]
Toseymour Carver, of Geneva, Ill., for improvenent in machines for Dressing Shingles.
I claim the arrangement of the head block with the springs, cams, the rollers, and stops, for the purpose of passing the shingles between and out from the cutting cylinders, in combination with the arrangement for depress ing the upper cylinder, while in motion, for the purpose of giving a taper to the shingle; the whole combined and arranged as set forth. To G. S. Griggs, of Rosbury, Mass, for improvement in Ventilators.
I claim a ventilator as herein described, composed of two series or sets of curved slats, arranged one within the other, and running from the edge of the flue or other orifice, to a small circle or plate over the centre of the same, the whole forming a conical or globeshaped ventilator, the apaces between the se veral outer slats being protected by the inner slats, having spaces or apertures between the two sets of slate, the only openings to said apertures being in an oblique or sideways direction, all as set forth.
To W. O. Hickok, of Harriaburg, Pa., for imprnve ment in Regulatora for the pon beam in Ruling Maohines.
I do not claim to be the inventor of the flex ible hooked regulator, attached to the pen beam, but I claim the pieces in combination with the hinge joints, arranged and combined substantially as described.
I also claim the sliding piece, the bearings and the finger wheel, in combination with the other pieces, uniting by hinge joints, or in any otber manner aubstantially the same, using, in the construction of the whole machine, any material adapted to the purpose of form ing, as described, a pen beam regulator for ru ling machines.
To Chas. Anderson, of Warsaw, Pa., for improve ments in Revolving Boilers.
I claim lining the inside of that part of a revolving boiler which comes in contact with the fire or heat, with wire gauze, or cloth, or any perforated or pervious metal work, in the manner and for the purposes substantintly a described.
[See engraving in No. 34, this Vol. Sci. Am re-isbues.
To Eather L. Larkin, Admx. of J. E. Larkin, de ceased, of Ballston Spa, N. Y., for method of attach ing augors to their handles. Originally patented
Nov. 19, 1850.
I claim the handle made in two parta, one of which fits in a socket on the other, and carries a bolt screwed at its end, the said bolt passing through a hole in the auger shank, and part on which is the socke screw, or nut, in clasping or firmly holding the auger shank beween the ends of the parts of the handle or tock, substantially in the manner described
ToJ. G. Lamb, of Cinoinnati, 0 ., for two Designe or Stoves.
A bed of peat of the purest quality has been discovered within four miles of Saratoga N. Y., covering about 60 acres. Excavation have been made to a great deptb, without finding any bottom to the strata. It is said to be much cheaper and far
ita use for stovos or grates.
(For the 8cientifio American.) (For the 8oientifio Amorican.)
Practical Remarks on Illaminating Gas [Continued from page 318.]
Air deprived of its oxygen, then, is unft for respiration and cannot support combustion; therefore it becomes necessary to re-establish this important element, and remove the vitiated gases from the apartment; for this purpose a well arranged system of ventilation is highly important. By good management, any of the materials above enumerated, excepting tallow candles, can be burned with. out smoke; hence the products incidental to their combustion are not eoen, nor are their effects immediately felt; they are therefore scarcely ever thought about, unless the apartment becomes over-heated and the atmosphere endered insupportable.
The injurious effects and unpleasant sensations experienced in crowded or ill-ventilated rooms, is not so much caused by the heat, as the invisible gases which are evolved during combustion; for a high temperature can be borne without much inconvenience, provided e air be pure.
We have said that the products of combusa tion are alike, whether lamps, candles, or gas lights are used, but vary in quantity according to the relative proportions of light. This will explain why a gas burner, yielding ligh equal to twelve or fifteen candles, will warm a room more quickly than two or perhapa three candles; and this explains why the air in a room is heated, and otherwise unpleasant to the feelings, more quickly after gas lighta are introduced than before. It must be know that the vitiated or deoxygenated air, togeth er with the vapor and heated air, being lighter than the common atmospheric air in the room, ascends and collects in the upper part of the apartment, while the carbonic acid being of greater specific gravity than the air, descends and forms a strats at the lower part of the apartment, so that in order to ensure proper and thorough ventilation, openings should be made of ample capacity, according to the size of the room, and not only at the top of the apartment, whereby the impure air may es cape but also at the bottom for the exit of the carbonic acic gas, which may accumulate in buildings tightly made; and where fire places are not used, a well arranged system of venti lation is highly important ; and no system can be succeesful unless it provides for the altered circumstances at night, when shutters ar closed, curtains are drawn, lights are introduced, and when a greater number of per sons are assembled in the room thàn on ordi ary occasions.
We are so much infiuenced by habit that it frequently usurps the authority of reason.
Thus, when the shutters are closed, the cur tains drawn, the outside doors kept shut, and lights introduced-conditions which all con spire to make the room warmer than during the day, instead of letting the fire down, so a to accommodate it to these altered circumstan ces, it is generally trimmed afresh, and then-
the room is overheated.
In the practical details of warming, light ing, and ventilating apartments, we can fol low no saferguides than natursl processes.
Suitable allowances must be made, and some modifications are requisite, on accoun variable conditions. But the most simple, efficient, and economical plans for securing
comfort and health within doore, are these comfort and health within doore, are these
founded on the plainest intimations of what takes place out of doors.
The following result of an experiment by Mr. Rutter gives the temperature at the expiration of each hour ; at different distance from the floor, the experiment was per formed with one gas light.

5 feet from floor 10 feet from floor.
Commencement 62° Commencement 64°

1st hour	64°	1st hour	70°	
2nd	"	66°	2nd	"
74°				
3rd	"	68°	3rd	"
77°				
4th	"	68°	4th	"
78°				
5th	"	69°	5th	$"$
78°				
6th	"	69°	6th	"
78°				

All the fittings such as pipes and cocks should be of the best materials and perfectly tight. Much injury is done by leakage.
General Remaris.-Not unfrequently ga
consumers remark that their bills for gas are exorbitant, and it is with difficulty they can be convinced they have consumed as much as the faithful little instrument, the meter, indicates. Many severe deprecations have been put upon this instrument, and severe epithets have heen poured upon gas companies and their agents, by consumers who do not understand the principles of the meter, nor take the pains of informing themselves, and who do not exercise discretion in the consumption of gas. The ease with which this ever-ready light is obtained, is a great accessary to its waste lulness, for by the mere effort of the will, it can be increased or diminished; so simple a thing is it to turn a cock, that it is often done in harte and without thought, and if opened more than is necessary, large quantities es. cape, and if more gas escapes than there is oxygen enough to support its combustion, it passes off unconsumed, and therefore wasted The methods of burning illuminating gas have, up to the present time, commanded but little attention from the great portion of those persons who daily use it, and a few practica remarks relative to its economical consump tion may not be unworthy of the reader's at tention. Many different varieties of gas burners have been constructed in this country as well as in Europe, each claiming to possess advantages over prior inventions ; those which have been most commonly adopted in this section of the country are the Argand, the Bats wing, and the Fish-tail burners. The former is considered as the best of those enumerated, not only as regards its light-giving qualities, but also for its more perfect combustion of the gas; it gives a cylindrical flame simiiar to the lamp of the same name, the gas being sup plied to it through a ring perforated with mall holes about 1.32 nd of an inch in dia neter. It is surrounded by a glass chimney which forms an essential appendage to this description of burner, its use being to create a draft and direct the current of air through the flame. The slight noise which is sometimes noticeable with these burners is caused by the rush of air, created by the draft through the chimney. If the flame of an argand burner is turned up high, the air which rushes through the interior of the ring becomes de composed before it can reach the air on the top of the flame, which consequently burns in one undivided mass, the result of which is, the gas is only in part consumed, and carbon is deposited abundantly. If we shut out a portion of the air by partially closing the apertures in the burner, we sensibly increase the amount of light, but at the same time we subject our selves to the risk of a greater loss, as well as the injury which may arise from smoke; for should the pressure in the street main be increased by the extinguishment of a number of ights in the city, we should then find our burers amoking, because by shutting out the air by partially closing the apertures, we had deprived them of the necessary amount of oxy en which they required for complete combus tion. One cubic foot of carburetted hydrogen gas requires for its proper combustion and conersion into carbonic acid and water ten cubic eet of atmospheric air; an argand burner with the flame about $2 f$ inches in height, con umes 34 cubic feet of gas in one hour, and therefore requires for its perfect combustion not less than 35 cubic feet of air. The Bats wing and Fish-tail burners are used withou glasses, and are well adapted for the use of ma. nufacturing establishments, atreet illumina. tion, \&c. The former has a narrow cut or lot through which the gas issues, and the hape of the flame is flat, much resembling a bat's wing: the latter has two small holes, so constructed that the two jets of gas intersec ach other near the orifices from whence they issue; the flame produced is flat and not unlike the tail of a fish. These burners require much less attention than the argand, and, comparatively speaking, but a limited quantity o gas can pass through them, which renders them very desirable in manufactories where they are regulated by inexperienced workme
(To be Continued.)
Three hundred new houses were built in em days, on the blackened ashes of San Fran cisco. It takes the Americans.

