sheets in one piece, and even in the largest sizes are without a joint. A special plant has been laid down by the makers for this purpose, and they now make a large number of various sized and shaped buckets. The arrangement of these on the elevator chains is such that the maximum duty is obtained, as no space is lost in any way. Each machine is arranged to raise 50 tons per hour, but can, if necessary, raise 60 tons. The whole arrangement is most complete, and the machine we inspected worked well and was well constructed.
Our illustration represents a machine constructed for the transference of grain cargoes from large barges to ocean-going ships, weighing it in the process. This machine was made for use at Odessa, the grain arriving at that port by large sailing barges. As will be seen, one elevator leo is sustained at the end of the jibs or derricks, and raises the grain from the barge and delivers it to a conveyer. The latter empties it into a weighing machine placed on the pontoon carrying the elevator, which automatically weighs it, and delivers the grain so that it can be raised to the second elevator, which is carried by the upright frames shown. The second elevator delivers the grain to a conveyer. by which it is dropped into the ship.

The makers are Messrs. S. S. Stott \& Co., of Hasling den, near Manchester.-Industries.

The Fastest Railruad Train in the world.
Competition between two of the great English lines of railroad has recently taken the form of cutting down the running time. The London and North-Western and the Great Northern, striving against each other for the traffic between London and Edinburgh, have reduced the running time between these points to eight hours. By the first named road the distance is 401 miles, by the other it is 397 . For the entire distance the schedule is slightly exceeded by the short B. \& O. run between Baltimore and Washington, 40 miles in 45 minutes. But the length of the trip removes it from the comparison. On the North-Western road one run without a halt of 158 miles in three hours is a part of the trip. This exceeds the run from Fort Wayne to Chicago by 12 miles. To realize what this speed means, it may be compared with the trip from New York to Chicago by the Pennsylvania Railroad. The same speed would reduce the time between these points to a little over eighteen and one-half hours. It has been suggested that an afternoon train should leave New York and should reach Chicago in time for business the next day. The above proves the practicability of such a project.

Clouds of Moths.

The city of Reading, Pa., had a remarkable visitation of moths on the evening of August 1. Myriads of them infested the air, resembling at a distance a snow storm. They were first noticed flying around the electric lights about 8 o'clock, and gradually increased to such numbers as to obscure the brilliancy of the lights. Passengers on the street cars, as they passedunder the lamps, were covered with the insects, and handkerchiefs, hats, and fans were plied vigorously to keep them off. Fires were built under the lights and heaps of the moths were burned. PennStreet saloon men were compelled to close their front doors to keep out the pests, which were attracted to the barrooms by the bright lights. The doors and windows of dwelling houses had also to be kept closed to keep them out. Local savants pronounced them cotton moths, and they evidently came from the South. They are said to precede a hot wave and a decided rise in the temperature is predicted.
At Easton, Pa., butterflies by the thousands flew around the sixty-four electric lights, lit on the carbons and then dropped dead in the globes. When the men who renew the carbons visited the lights, they found on an average two quarts of dead butterflies on each globe, a total of four bushels, besides the lot that had fallen on the ground during the night.

Moths attracted by the Electric Light.
A curious and interesting spectacle is now presenting itself upon Third Avenue, New York. Myriads of moths are circulating around the electric lamps upon the corners of the street, their shadows being projected upon the sidewalks and opposite blank walls, asif upon the screen of a magic lantern. Passers-by are startled at perceiving these apparitions dart across their path and stand gazing astonished at the novel sight. The moths are barely a half inch long, but appear projected at least two feet, with outstretched wings in propor tion.

Thomas Latham

A $\$ 50,000$ Horse

A remarkable auction sale took place on July 31, at Lexington, Ky., on the occasion of the sale of the celebrated three year old stallion Bell Boy. This horse had a record at three years of $2: 26$, and was bought four months ago for $\$ 35,000$ by Jefferson \& Seaman. To close the partnership, the animal was again sold as above, and brought on the block the large sum of fifty thousand dollars, the largest price every paid for a horse in this country. The purchaser of Bell Boy was C. E. Seaman.

Scinutifir shmencam.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors

published weekly at

No. 361 BROADWAY, NEW YORK.

o. D. MUNN.

A. е. веACH.

TEEMS FOR THE SCIENTIFIC AMERICAN ne copp, one year. for the U. S. or Canada..
One comy, ix months, for the U. S. or canad.
One copy, one year, toany forein co nemit by postal or express money order. Australia and New Realand. Those who desire to receive the lonial bank notes. Address

MUNN A Brer Franklin Street, Nem York

The Scientifc American Supplement

s a distiuct paper.from the SCIENTipIC AMFRICAN. THE SUPPLEMENT sissued weekly. Rvery number contains 16 octavo pakes. unitormin size

 ng to the Postal Union.
hroughcut the country.
 The eatest way
rekistered jetter.
 NEW YORK, SATURDAY, AUGUST 18, 1888.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 659
For the Week Ending August 18, 1888.
Price 10 cents. For sale by all newedealers.
ASTRONOMY.-The Earth as Seen from the Heavens.-How our

 Tion of water of Condenation- - Anumber or the leadiug appara-
tus described and illustrated. -24 illustrations

NAVAL ENGINEERING. -Niqht Navieation on the Suez Canal.

 P
 rections. -3 illustrations.

\qquad

GEN. PHILIP HENRY SHERIDAN.

On August 5, at 10:20 P. M., Gen. Sheridan passed away. His death, following upon the demise of Gen. Grant, removes another of the great leaders of the United States army in the civil war, and acts to stil further relegate the conflict to the domain of history.
Gen. Sheridan's parents were natives of Ireland, and emigrated to this country about sixty years ago. He was born March 6, 1831, in Somerset, Perry Co., Ohio about twelve miles from the birthplace of Gen. Sher man, his companion in war and his survivor. His family were of pure Celtic blood, and many of the characteristics of the race are said to have appeared in Sheridan, especially in early life and during his West Point career. He graduated at West Point in 1853, and was sent to Texas, where he began his experience as a soldier in fighting the Apache Indians. Until 1861 he remained in the West. On the breaking out of the war he was assigned to various duties, principally cleri cal and in the quartermaster's department, until May 25,1862 . Then he took command of a regiment of cavalry, the Second Michigan, and at once began his brilliant record as one of the most daring commander on the Northern side. His magnificent achievement at Winchester and elsewhere are matter of song and history.
In 1870-71 he was with the German armies, and wit nessed many of the scenes of the Franco Prussian war He was often solicited to enter the field of politics, but persistently refused. In June, 1875, he married, and now leaves a wife and four children to mourn his loss His quiet and retiring disposition serves only to make the memory of his actions in war the more enduring.

THE MECHANISM OF THE COUNTER ATTACK.

With the coming of quick-firing arms and more des tructive engines of war, tacticians are looking with more favor upon the feasibility of the counter attack, especially where a small force is operating against a larger one, being, as one might say, upon the defensive and in this humor, allowed by the enemy to choose its own battle ground. It will be remembered that the French, in the early days of the Franco-German war occupying this latter position, invariably organized a counter attack and generally after the enemy's rank had been terribly mangled by the play of the mitrail leuse. But the French, peculiarly fitted as they are for offensive rather than defensive operations, rarely fol lowed up their advantages, and later on, the Germans adopting the same tactics with better organization kept a force in reserve to oppose the counter attack which, had the French been less discouraged, would doubtless have proved tardy, if, indeed, at all availing At least this is alleged in a recent paper of great inter est by Major W. M. Smith, of the Royal Artillery There is an extreme school of writers on the conduct of war with the new arms who insist that to occupy the "weak intervals" of the battle ground with anything beyond a mere "screen" or outpost line of infantry is a waste of strength needed elsewhere. The element in which lies the source of strength is, according to Major Smith, the extent of the fire-swept glacis in front of the position, and the intensity of the hail of iron and lead that can be poured over its surface. The enemy, he says, must be compelled to cross that zone, and to suffer the utmost penalty in doing so, and for this purpose the frontal fire of infantry must be a maximum in volume and in its lateral extent without a break or even a quaver. All military readers will recal Napoleon's famous plan for "piercing the center"-a system which now has fallen into disuse; the "pivot and interval" system rendering it abortive, though doubtless a Napoleon could still break the line with it, as Epaminondas used to shatter the strongest line with a steel-tipped wedge of warriors.

TORPEDO WARFARE IN PRACTICE AND THEORY

Captain Greenfell, late of the Royal Navy, having large experience with and little confidence in the locomotive torpedo, recently gave his conclusions to the Royal United Service Institution, where were many with equal experience ready and able to confute his most serious charges. Captain Greenfell thinks the big gun, such as modern ships carry, far more effective than the torpedo, the former having a battering range of from three to four miles, and the torpedo an effective range of only 500 yards. As to accuracy, he says : "Captain Gallway (an authority) speaks of a torpedo as being extremely accurate which showed a mean error at 400 meters of $2 \cdot 4$, say 94 inches, laterally, the depth being always within a small decimal of that at which the torpedo was set to run. Any modern gun will do for comparison. I take the first which comes to hand-the 24 cm .30 caliber long German gun. At a range of 2,000 meters (five times the other), its mean error is vertically 16 inches, horizontally 8 inches."
But Captain Greenfell admits it were impossible to train big guns on a moving torpedo boat, and with another big ship in sight, belonging to the enemy, the fight would be equal. But the torpedo boat is looked to to take a big ship at a disadvantage, and we quote his own authority. Captain Gallway says that machine guns, which are looked to to bat off torpedo
boats, are utterly unreliable in quick training. He ; The added root ration not only toned up the digestion sass: "I know of only one occasion in which they have of Lot 2, and enabled them to consume more corn meal been tried in actual war. I hear from an officer out in the Min River, that a boat approached the French fleet in the night, the electric lights were turned on to her, and all the Hotchkiss guns of four ships were brought to bear on her, yet, in the end, they had to send two steam pinnaces to bring her alongside, and then they found she was not even hit!"
During the discussion of Captain Greenfell's paper it was shown that a torpedo boat built by Herreshoff, of America, was fired at by one of the big ships in Portsmonth Harbor, England, for a whole day without sinking her. Also that, on the Danube, a boat carrying a spar torpedo was actually discovered and a very heavy fire opened upon her, yet she kept on and delivered her fire. And an instance was cited, where a big ship, with torpedo netting set, in the Mediterranean, and looking for them, did not discover their presence till they were under the netting and against the hull. It was shown that a small explosive force, under or nearly under the ship, has a far more forceful effect than many times its quantity above, having, indeed, the water for a gun; the resistance of the water being greater than that of the ship.

From the great mass of testimony brought out by this discussion, we might fairly sum up as follows :

1. Torpedo boats, to be effective, should be operated in fairly smooth water.
2. The torpedo boat, advancing end on, has little to
fear from the machine gun, even in broad day.
3. The discharge must be below rather than alongside the hull.
4. Several torpedo boats should be set to attack a single great ship, instead of leaving it to one.

Experiments in Feeding Sheep.

We have received Bulletin No. 2 of the State agricultural experiment station, Cornell University, Ithaca, ing sheep to determine the economic value and the effect on health and digestion of foods rich and poor in nitrogenous compounds. We make a few abstracts :
From a flock of about 100 lambs, six months old, six were chosen with great care with reference to uniformity in size, weight, and shape. They were of mixed Cotswold and Southdown blood.
Their food from weaning to October 10 had been grass alone.
On the above date they were shorn and all placed together in a box stall and prepared for the experiment by being fed hay, and at first a small portion of corn meal and bran, which was gradually increased, until it reached, on November 11-when the experiment be-gan-about $3 / 4$ of a pound per head.
From this time on they were divided into two lots of three each, in such a way as to make the total weight of each as nearly equal as possible. They were provided with warm stalls on the ground floor of the
barn. In order to make the feeding rations different in character, Lot 1 at the beginning of the experiment was fed daily $11 / 2$ pounds of oil ineal and $11 / 2$ pounds of coarse wheat bran. Later on in the experiment, in order to make the nutritive ratio still narrower, one pound of cotton seed meal was substituted for one of bran. We will call this the nitrogenous lot.
Lot 2 -the non-nitrogenous lot-was fed 3 pounds of corn meal daily.
Both lots were fed good mixed timothy and clover hay, great care being taken to give them only so much as they would eat up clean.
All ate their rations with avidity up to near the last of December, when that of Lot 2 had to be reduced for a short time to 2 pounds, and later on for three days they received nothing but hay, as they refused to eat their corn meal ; it was not until March first, when 4 pounds of mangolds were added to the rations of both lots, that they could be induced to eat their full ration.
According to the German standards of feeding rations, one to four is the narrowest (that is, one part of protein, or muscle producing food, to four parts of carbohydrates or heat and fat producing) and one to seven the widest ratio advisable for the purpose of fat-! tening sheep. Since the nutritive ratio of the food of one lot was below the lower of these ratios, and that of the other above the higher, it is natural for us to expect very marked results. These results were noticeable almost from the beginning of the experiment. The lambs of Lot 1 were livelier, more sportive, plumper, and showed far better development and growth than those of Lot 2.
The difference in the amount of water that was drunk as the experiment progressed was very marked Lot 1 drank 61 pounds in 6 days; Lot $2.211 / 2$ pounds The solid voidings were of a very different character those of Lot 1 being soft, while those of Lot 2 were hard and dry up to March 1 , when the ration of mangolds was added.
It was evident by March 1 that Lot 2 would not become fat enough or have sufficient development, without some change in tbe ration, to compare with
than they could without it, and to make a gain of 2%
more in one month than they had in the two previous months, but it also shows that Lot 1 was greatly benefited by the addition of roots to their food. Their average gain for the four preceding periods was $113 / 4 \%$. The ad
to 16%.
The average gain of Lot 2 for the same period was $71 / 2 \%$. The addition of the 4 pounds of roots increased this to 13%.
On the 25 th of April the lambs were shorn and the wool of each lot weighed. The weight of the wool of Lot 1 was 55% greater than that of Lot 2 ; moreover, it was of a much finer texture and better quality than that of Lot 2.
The lambs were slaughtered on the morning of the 26th of April by an expert butcher. Each lamb was weighed, then slaughtered, then weighed again to determine the amount of blood in each lot. Then the skin, liver, kidneys, spleen, heart, and several other important internal organs were separately weighed, and finally the dressed weight was taken. The bodies were hung up to stiffen for one day, at the end of which time each one was carefully cut into four sections. All the sections were photographed, and an average set chosen, from which colored plates were made. These are admirably executed, and form a part of the bulletin.
The sections show well the comparative disposition of fat and lean meat on the lambs of both lots. Although the fat of each lot was not dissected out and weighed, it is quite evident from the cuts that the amount found on the lambs fed on nitrogenous food exceeded that produced by those fed on non-nitrogenous food. The lean was also increased to an equal or greater extent. Both these facts are shown especially well in the plates.
The live weight of Lot 1 was 21 per cent greater than that of Lot 2.
The metatarsal bones of Lot 1 were 22 per cent stronger than those of Lot 2.
The tibias of Lot 1 were 24 per cent stronger than those of Lot 2.
It is seen that the valuable parts are proportionately larger in those fed on nitrogenous food. The kidneys and spleen of the nitrogenous Lot 1 are also considerably larger, while all the other important internal
organs are larger in those fed on non-nitrogenous food.

Although this experiment is but one of a series to be tried at the experiment station, and needs to be repeated many times before absolutely accurate results can be obtained, yet we may deduce from it that the effect of feeding an undue proportion of non-nitrogenous food to sheep is :

1. To decrease the production of wool by one quar-
2. To decrease the strength of the bones by one third.
[3. To reduce the production of both fat and lean
Not one of these three important effects is desirable in sheep husbandry; hence we may conclude that corn alone is not the best food for sheep.

War Ship Charleston.

The launch of this new war ship was successfully effected at San Francisco on July 19. Over 20,000 spectators were present.
The Charleston is 320 feet long over all ; length on load line, 300 feet ; beam, 46 feet; draught forward, $171 / 2$ feet; aft, $191 / 2$ feet; mean draught, $181 / 2$ feet; and displacement, 3,730 tons. There are only two short stump masts, with military tops for machine guns. All the steel used in the construction of the hull and all for the engines (except the crank and two line shafts, which were made by Krupp at Essen) is of domestic manufacture, known as mild steel, made by the open hearth process. The beams, outside plating, and protective deck plates were made in the East by Carnegie, Phipps \& Co. All the rivets, frames, and engine forgings, and all the steel castings, both for hull and engine, were made by the Pacific Rolling Mills Co., whose works are contiguous to the shipyards of the Union Iron Works.
The stem, stern, and rudder pieces are single steel castings, the stem being ram shaped and specially strengthened by braces and other attachments to the steel protective deck. The sternpost was cast on June 22,1887 . There were 30,960 pounds of metal used, and the weight of the sternpost, when delivered complete to the Union Iron Works, was 11,130 pounds. The stem weighs 13,430 pounds, and the rudder frame weighs 9,420 pounds.
The plating of the Charleston is of rolled stieel, the outside plating being from $7-16$ to $1 / 2$ inch thick, the inner bottom plating $1 / 4$ to $5-16$ of an inch, and the sheer strakes $5 / 8$ to $3 / 4$ inch. The horizontal plating of the protective deck, which extends from stem to stern, is 2 inches thick, and the sloping sides 3 inches thick. The motive power of the Charleston is furnished by
separate water tight compartments. The screws are hree bladed, made of manganese bronze, and 14 feet in diameter. There are six main boilers and eighteen furnaces, with 9 total grate surface of 485 square feet, and 2,578 tubes, with a heating surface of 15,600 square feet. There is a bunker capacity of 800 tons of coal, but the normal draught is 328 tons. On a natural draught there is an indicated horse power of 5,000 horses, and on a forced draught of 7,650 horses, a maximum speed of 189 knots being thus attained. At an indicated horse power of 7,650 , which requires the consumption of 800 tons of coal, the Charleston is expected to be able to steam 2.013 knots at the maximum speed. At the normal draught of 328 tons of coal, at the hourly consumption of 1.07 tons, and with 1,200 indicated horse power, she can steam $2,990 \cdot 60$ knots at 10 knots an hour ; or with a forced draught of 800 tons of coal, $7,476 \cdot 60$ miles t the same speed.
The quarters of the officers and crew are all situated on the berth deck, as usual. Some improvements on the orignal plan, suggested by Naval Constructor Fernald, have greatly improved this deck. Farthest aft are the captain's staterooms, titted in a sycamore veneering, dead polished, sliding doors, and furnished ike the wardroom, which comes next. The steerage is much larger and more comfortable than in most ships. The galleys for officers and crew are situated in the center of the ship, inclosed in a steel bulkhead and specially ventilated, to carry off the odors of cooking. The sick bay and dispensary are placed in the bows, just abaft the paint room, divided from it by a steel bulkhead. The space on this deck from the sick bay to the midship bulkhead is the space where the 308 men who will compose the crew will sling their hammocks and mess. Wire lockers are provided here for the utensils of each mess. Head room on this deck is about $61 / 2 \mathrm{feet}$, and the ventilation and light are as good as it is possible to make them, two blowers being used of 10,000 cubic feet capacity a minute. The cruiser will be lighted by two incandescent electric plants of 3,200 candle power each. All the most modern appliances for navigating have been provided. The masts are wade of half-inch plate, and one of them is used for ventilating the dynamo room. The masts, rigging, and boats are being constructed at the Mare Island Navy Yard. As there is no projecting keel on the cruiser, two bilge keels have been provided to prevent rolling. These stand out 20 inches from the bilge, and are made of wood, plated.
Adverse criticism has been aroused by the failure to provide hydraulic gear for the heavy guns and the substitution of 8 inch for 10 inch rifles, which latter are carried on the Naniwa-Kan. The machinery has been superintended by Chief Engineer W. S. Swith, U. S. N., and Assistant Engineers E. T. Warburton and I. N. Hollis, U. S. N.
The keel plates of the Charleston were laid August 27, 1887, less than one year ago, and the first rivet driven September 1. Her hull weighs upward of 1,350 tons. It is thought that the cruiser will be ready to be turned over to the government in five months' time. By the contract she should be finished by June 28, and a penalty is fixed for delay in delivering her. Her contract price is $\$ 1,017,000$; that of the English-built ship, the NaniwaKan, after which she was modeled, was $\$ 938,000$ complete. The San Francisco will follow the Charleston on the stocks. Only one steel vessel had been launched from the Union Iron Works previously, the Arago, a 1,100 ton steamer, and the yard was not ready for the construction of a 4,000 ton ship. But when the contract for the Charleston was obtained, a large slip was run out 80 feet broad and 300 feet long, on a foundation of 70 foot piles, calculated to sustain a weight of 1,500 tons. Additional offices and shops were erected, a hydraulic dock completed, and a 100 ton shears constructed.

Curculio and Chinch Bugs.

Bulletin No. 4 of the Ohio Agricultural Experiment Station discusses some elaborate experiments in preventing curculio injury to cherries, and treats in a practical way the best midsummer remedies for the chinch bug, which has lately appeared in destructive numbers in Ohio. In the cherry experiment, which was conducted by the station entomologist, Clarence M. Weed, twenty-two thousand five hundred cherries were individually cutopen and examined, and the conclusion reached that three-fourths of the cherries liable to injury by the curculio can be saved, without danger to the user, by spraying with a solution of London purple soon after the blossoms fall.-Vick's Mag.

The American Institute Fair, New Fork.
Large numbers of inventors and manufacturers have for many years found it of interest, and profitable as well, to attend and take part in the annual exhibitions of the American Institute, held in the fall of each year. The fifty-seventh annual exhibition will open October 8 , at the hall of the Institute, on Third Avenue, New York City, and promises to be in no way behind any of its predecessors in attractive features. Intending exhibitors should make early application to secure ing exhibitors should make early app
good locations and the space needed.

