pensated for by a special transformer. Finally, there are other transformers that serve to reduce the initial potential in a sufficient proportion to permit of the measurement of it by means of the apparatus in current use.
The Thorenberg installation is now supplying 3,500 Swan incandescent lamps of 10 candle power (35 watts), but, as all these are not lighted at the same time, a single machine suffices to perform the service. The light is paid for by contract, at the price of $\$ 4$ per lamp per year.
The lighting has been done for nearly two years and a half, and has always given entire satisfaction.-La Nature.

Cedar for Paving.

The popularity of round block wood paring is steadily on the increase. A company has been formed at Mobile, Ala., with A. C. Danner, the well known lumberman, at its head, to put in machinery for making sapless blocks to pave the streets of that city, using juniper, cypress, and cedar. Cypress has been used more or less, juniper is said to be similar to the white cedar of the North, and the red cedar is thought to be better than the Northern white cedar Wood paring can be put down at Mobile for $\$ 1.50$ a yard, as compared with $\$ 3.50$ to $\$ 3.75$ for asphaltum.

Before it was decided to go into the paring business, extensive correspondence was had with residents of cities where wood paring is in use, the replies being uniformly favorable. Fred. A. Tromley, secretary of the Board of Public Works, Grand Rapids, Mich., wrote that for ten years the city had used only yellow cedar for wood pavements, and for the past few years only the sapless cedar blocks, the duration of the paving being from seven to ten years, also that wood parements which are sprinkled during the summer last the longest. David P. Hadden, president of the Memphis, Tenn., taxing district, reported thirteen miles of cypress pavement in use. It was green, and of the Nicholson style, lasting ten or twelve years with good care. He advised putting down nothing but round blocks of red cedar. John Torrent, mayor of Muske gon, Mich., wrote that during the past two years about eighteen miles of cedar block paring had been laid in that city, its.life being from ten to twelve years. He believes it the most practical wood paving of any now in use. H. R. Wagar, president of the Wagar Lumber Company, Ionia, Mich., said that the round cedar blocks had made an elegant, durable paving, especially where the traffic was light or moderate. R. R. Blacker, of the State Lumber Company, Manistee, Mich., considered cedar the best material to use for street paving, and said that its life depended upon the amount of traffic to which a street was subjected. E. J. Senseney, merchant, East St. Louis, Ill., favored wood paving, largely because it made no noise, and was free from dust, while asphaltum was very dusty, and, being impervious to water, caused shade trees to languish. For heavy traffic, he regarded granite the best.-Lumberman.

A GREAT STONE.

There was recently cut out from the Pilkington Quarry, Horwich, in one piece, without crack or flaw, a large stone, weighing upward of 35 tons. The dimensions are $141 / 2$ feet in length, 6 feet high, and 5 feet 3 inches wide. The removal of this mass from the quarry to its destination, a bleach works in Bolton, a distance to its destination, a bleach of seven miles, over a
rough, hilly road, was suc rough, hilly road, was accomplished, as shown above, by the Phœnix Steam Boiler Company, Bolton, under the direction of Mr. H. W. Rushton. The London Engineer remarks, it is said to be the largest stone ever quarried in England.

IT is a fact not well known that native sulphate of baryta is an active poison to rats, mice, and dogs. It is not easy to explain its action, considering its extreme infolubility, but mixed with lard it is readily eaten by them. This being the case, the question suggests itself, whether it might not replace the more dangerons poisons now so much used for this purpose, and do away with the risk attending them.-Pharm. Jour.

CURIOUS OPTICAL ILLUSION.

Fecundity of the Eel

The engraving illustrates an interesting illusion observed by Mr. J. Rapieff, the well known electrician. The apparatus consists of semicircular and circular wire loops, provided with axles. by which they may be twirled between the thumbs and fingers. The lower row of figures shows some of the loops used in the experiment, while the upper figures represent the effects periment, while the upper figures represent the effects
produced. The wire has a polished surface. When

Mr. Fred Mather, the well known fish culturist, has been estimating the number of eggs in a six-pound eel in November (in what is known to fishermen as " eel fat," but which are really the ovaries), and credits that eel with fully $9,000,000$. Under the microscope he found that they measured 80 to the linear inch, and taking one ovary and dividing it by means of the most delicate scales known to science, he halved, quartered, and further divided the mass seventeen times, until he had a section small enough to count the eggs in it. This section represented 1-131,072 of the total number, and three sections were laboriously counted under the microscope. One of the sections contained 68 eggs, making the total $8,912,896$ eggs. The second held 77 eggs, or $10,092,544$ in the whole. The third section consisted of 71, from which it would appear that there were $9,306,112$ eggs in the eel. Taking the last as the medium number, Mr. Mather figures, in round numbers, that that six-pound eel contained $9,000,000$ eggs.
There have been many theories about the reproduction of the eel, some of them being wildly absurd, such as their being hatched by fresh water mussels, or that the lawprey was the female and the so-called silver eel the male, etc. The fact is that the lamprey, miscalled "lamper eel," is a form of life lower than that of the true fishes, to which the eel belongs, and is a vertebrate with a cartilagenous skeleton instead of a bony one, has its skull imperfectly developed, and has no lower jaw. Superficially it appears like an eel, but is not nearly related to it. $-N$. F. sun.

Cleaning Furs.
Now that the season has arrived for get-
the single semicircular loop is twirled, the only effect is to produce a gauzy glimmer of spherical form, as shown in the upper right hand figure. When three of the loops are joined together, each extending from the other at an angle of 120°, the figure produced is similar to that already described, but with two perfectly distinct curved black lines extending from one axle to the other, as shown in the upper central figure. When four loops are joined at right angles to each other, three jet black lines are shown, as indicated in the upper left hand figure. A circular loop shows a single black line.
This curious effect is produced by holding the apparatus so that the light is reflected as much as possible from the inner surface of the wire. The result is due to the eclipsing of the bright surface by the shaded portion of the upper loop as it passes between the eye and the lower loop. The whole of the loop is not eclipsed at the same instant, but persistence of vision causes the entire eclipse to be seen at once.
Success in this experiment depends upon holding the loops in the right position relative to the light, as well as the provision of the proper background. The oops should be held over a dark ground, with the axles parallel with the plane of vision.
G. M. $\dot{\mathbf{H}}$.

Within a radius of forty miles of Rochester there are more than 1,500 fruit evaporators, giving employment during the autumn and winter to about 30,000 hands. Last season the production of these evaporators as about $30,000,000$ pounds, worth at first cost about $\$ 2,000,000$. A large proportion of the product is exported.

ting out fur garments, some of our readers will doubtless be glad to hear how such garments are cleaned and renovated in Russia, the country of furs.
Some rye flour is put into a pot and heated upon a stove, with constant stirring as long as the hand can bear the heat. The Hour is then spread over the fur and rubbed into it. After this, the fur is brushed with a very clean brush, or, better, is gently beaten until all the flour is removed. The fur thus resumes its natural luster and appears absolutely as if new.-La Science Illustre.

Transmutation of Cotton Seed.

Was there ever, says Banker's Monthly, such a history as that of the cotton seed? For seventy years despised as a nuisance, and burned or dumped as garbage, then discovered to be the very food for which the soil was hungering, and reluctantly admitted to the rank of utilities, shortly afterward found to be nutritious food forbeast as well as for soil, and thereupon treated with something like respect. Once admitted to the circle of farm industries, it was found to hold thirtyfive gallons of pure oil to the ton, worth in its crude state $\$ 14$ to the ton, or $\$ 40,000,000$ for the whole crop of seed. But then a system was devised for refining the oil up to a value of $\$ 1$ a gallon, and the frugal Italians placed a cask of it at the root of every olive tree and then defied the Borean breath of the Alps. And then experience showed that the ton of cotton seed was a better fertilizer and a better stock when robbed of its thirty-five gallons of oil than before, and that the hulls of the seed made the best of fuel for feeding the oil mill engine, and that the ashes of the hulls scooped from the engine's draught had the highest commercial value as potash, and that the "refuse" of the whole made the best and purest soap, stock, to carry to the toilet the perfumes of Lubin or Colgate.
Sure Death to Buffalo Moths.
Of the vast number of remedies tried for exterminating that most trouklesome pest, the buffalo moth, the following is said to accomplish the object : to accormplish the object :
Take strips of red or blue Takestrips of red or blue
flannel (as these colors are particularly attractive to them), dip in liquid arsenic, and lay around the edges of carpets, or wherever the pests are troublesome. They will soon eat a desired amount and collapse, to the entire satisfaction of the housewife, without the least injury to her carpets.
many competent judges have not hesitated to express an opinion that in the line of battle a vessel of this description would be dangerously out of place. Yet, if the Re Umberto is not useful as a battle ship, it is hard to see what she can be useful for. The Times says that, writing in the August number of the Jahr bucher fur die deutsche Armee und Marine, Herr Spiridion Gopcevic denies her utility altogether. She is, he declares, neither a battle ship nor a cruiser. She is not a battle ship for the reason that her sides are entirely unarmored. She is not a cruiser for the rea son that she does not carry sufficient coal. She is, moreover, too costly to be risked on cruiser's work For the cost of a singleItalia or Re Umberto, four iron clads, each of about 3,500 tons, might, he thinks, be built. Their united strength in artillery might equa that of the big ship; and if that were so, they would he maintains, be together much more than a match for the monster. There would be four vessels-that is four rams against one; and it is hard to believe that, even if she were successful in one or two cases, th large vessel would put out of action or sink all her opponents before being herself sunk. Nay, more, the single ship, in this comparison, labors under the con siderable disadvantages of being unable to divide her self and to be in four places at once. She is the less able, therefore, to enforce a blockade. Her draught of water debars her from many ports and waters, her size from many docks. She takes four times as llong as a small vessel to build. Whenever she is under repair, a fourfold strength is doomed to lie idle. Herr Gopcevic urges all this, and much more, against huge unarmored ships; and doubtless Italy has run some risk in invest ing so much money in them as she has in vested during the last twelve years. Her navy is not, and never can be, strong enough to theoretically justify her in putting more than comparatively few eggs into one basket. Nevertheless, the Re Umberto, for offensive purposes at least, deserves to be called a most formid able ship, if only because she will, when completed, throw a heavier weight of shot than any ship that has yet been built. Including all guns of 6 in . caliber and over, the gun-strength of the most heavily armed bat tle ships of the naval powers is as follows:

	Weight of Discharge.	Muzzle energy of Discharge.	
Re Umberto (Italian)	${ }^{8} 8,960 \mathrm{lb}$ l	${ }^{236,896}$	ot-tons.
Victoria (British) ...	${ }_{5}^{51760}$	132,632	"
Deutschland (German)	3,864 "	66,530	"
	4,9880 ${ }^{4}$	$1{ }^{153772}$."
Krp. Rudolr (Austriany)....................	3,000	57,00	

This comparison, even if no other elements be taken, is sufficient to show that, whatever may be the weak nesses and demerits of the Re Umberto, she is a very The Engineer

Paget Sound Lumber.

Lumber is the oldest, most profitable, and the most actively prosecuted industry of the sound, employing as it does a capital of over $\$ 60,000,000$ and thousands of men. Six or eight combined and wealthy sawmill companies virtually control it, owning their own timber lands, ships, stores, and the town sites upon which their mills are located, the dwellings of which are simply rented to their employes. They govern not only the price of the manufactured article, but the amount that shall be manufactured and the price that shall be paid loggers for logs. These are mainly of red fir, the trees often attaining a height of over two hunfrequently yielding over 16,000 feet of manufactured lumber.
Logs are usually cut in the spring and summer, as convenient to streams as possible, to which they are hauled by long strings of oxen over well-greased round timbers, laid every eight feet, called skids, floated to the sound, made up into rafts and towed to one end of a long sawmill, usually located on some convenient company at from four to six dollars per thousand feet, according to quality. At the opposite end of the mill, anchored stern on, are vessels from Californian, Australian, and other ports, awaiting their cargoes. So complete are the modern sawmill devices for the manipulation of these enormous logs, that the hand is seldom touched to them till the manufactured article is pushed into the stern portholes of the vessels for stowage. One must be on the alert in order to follow the log when jerked from the water up an incline to the mill platform, squared by:circular saws, its slabs cut into lath pickets and other small stuff, and the remainder quickly reduced by gang, band, circular, and other saws to timber, joist, plank, and boards, and delivered to the awaiting ships.
Some of the large mills have a daily output of 200,000 feet, and outward bound cargoes of from 800,000 to $1,200,000$ are not unusual. The refuse pieces are carried on an endless belt of iron links, running in a trough to a safe distance from the mill, and to a pile
through a long capacious iron pipe, the sawdust. In this wayscraps that, at the East, would be worth hundreds of dollars annually, but that here would oon prove a serious and costly obstruction, are re moved and destroyed automatically.
As the sawmill companies own their own vessels, pay bout five dollars per thousand feet for logs, and re eive from $\$ 18$ to $\$ 25$ per thousand feet for the manu factured lumber at San Francisco, hauling back on their return trips, at little or no ciost for freight, merchandise of all kinds to be retailed out to their men at arge profits, the business necessarily proves a bonanza of the richest kind.

The Heroult Aluminum Process.
The Swiss Metallurgical Company, established close o the Rhine Fall at Neuhausen, has adopted the process of M. Heroult for the production of alloys of aluminum. The process resembles in some ways that of the Cowles Brothers, which is so successfully employed at Lockport in the United States, and which has been recently introduced in England and the Continent. In both the Cowles and Heroult processes an electric current is employed. In the former it is used simply to produce a very high temperature in a limited zone, the reduction of the ore being due to the tem perature alone, and not to any effect of electrolysis, so that an alternating could be used as well as a continu ous current. In the Heroult process, according to the views of the inventor, the reduction of the ore is partly electrolytic and partly due to the heat of the arc. The furnace has a carbon pole at the top, and the current passes in by it through the melted aluminum oxide to the reduced metal at the bottom, the ore is decomposed, the oxygen passing upward and attacking the carbon while the molecules of the metal travel downward and are merged in the metal bath.
The furnace used in the process is a large carbon blockhollowed out in the proper shape and inclosed by a frame of iron. In the smaller furnaces a single block of carbon is used, and the iron is cast around it; for larger sizes slabs of carbon are used, and are held to gether by wrought iron bands. There is an opening in the bottom of the furnace for drawing off the re duced metal. The current enters the crucible through a carbon electrode which enters the top, and which consists of a bundle of carbon slabs ten feet long, sev enteen inches wide, and nine and a half inches deep. The distance of this electrode from the surface of the molten metal is regulated by an attendant. This dis tancen is very sinall, preferably not over a quarter of an inch. One of the electrodes is consumed in producing about half a ton of aluminum. The crucible is covered by carbon slabs insulated from the body of the cruci ble. In the top holes are provided for the introduction of ore and scrap metal. The ore generally used is alumina, free from silicon and other impurities, and the scrap metal is either iron or copper, according to the alloy which is desired. The process of smelting is a continuous one, the ore being introduced and the crucible tapped at regular intervals. . The production of aluminum per horse power hour varies somewhat with the percentage of the metal contained in the alloy, the average being thirty grammes of aluminum and the maximum being forty grammes. That is, to produce one pound of aluminum requires fifteen horse power hours on the average, and eleven horse power hours under favorable conditions. The present capacity of the crucible is four hundredweight of aluminum in twenty-four hours.
At the works at Neuhausen the current is produced by two dynamos driven by a turbine of three hundred horse power. These dynamos are of the multipolar type designed by Mr. C. E. L. Brown, and built at the Oer likon Engineering Works. They are designed to give six thonsand amperes each, at an electromotive force of twenty volts, and they can be worked up to thirtyfive volts. The speed of the turbine is controlled by an automatic regulator acting upon a throttle in the inlet pipe of the turbine. While the working current is normally twelve thousand amperes, it sometimes increases to twenty thousand amperes, because of a short circuit in the furnace, caused usually by one of the slabs of which the carbon electrode is made burning more slowly than the others and touching the surface of the molten metal. This increase of current does not in juriously affect the dynamos. There is no sparking at the brushes of the dynamos. The process promises to be a successful one. From the figures given it compares favorably with the Cowles process in the amount of aluminum reduced per horse power.-Science.

An Antiseptic Gargle

The Union Medicale credits Muller with the following formula

Thymol..
 Tincture Water.
 33 45 180 1,250

At bedtime the teeth are to be cleaned with powdered ap and a brush, and then the mouth can be rapidly sterilized by gargling for "half a minute or a minute with sterilized by gargling for half a minute or a
the solution.-NVew York Medical Journal.

