Certainly, from considerations of cheapness and prac ticability, they would seem to leave little to be desired. The multiplication of bridges across the great rivers of the West is a movement in the direction of advanced civilization. The simple and cheap pontoon bridges, by their number, may be made to do better work in facilitating intercourse than would be effected by a smaller number of more pretentious structures. For some years their service may be all that will be desired and, as they prove inadequate, one by one they can be replaced by more permanent works.

Solidification of Powdered Metale.

Professor Chandler Roberts Austen dealt with the formation of solid metals by compressing strongly the powders of the constituent metals. Since 1878, the labors of Professor Walthere Spring, of the University of Liege, have been mainly devoted to the study of the effect of compression on various bodies. The particles of a metallic powder left to itself at the ordinary atmospheric pressure will not unite, but by augmenting the points of contact in a powder, the result may be very different. Professor Austen's experiments were made with the aid of a compression apparatus, in which the metallic powder is placed under a short cylinder of steel in a cavity in a steel block divided vertically, held together by a collar. The pressure is applied to a cylindrical rod. Under a pressure of 2,000 atmospheres on the piston, or 13 tons on the square inch, lead, in the form of filings, becomes compressed into a solid block, in which it is impossible to detect the slightest vestige of the original grains; while, under a pressure of 5,000 atmospheres, lead no longer resists the pressure, but flows as if it were liquid through all the cracks of the apparatus, and the piston of the compressor descends to the base of the cylindrical hole, driving the lead before it. The more interesting results were obtained by Spring with crystalline metals. Bismuth, as is well known, is crystalline and brittle, yet fine powder and bismuth unite under a pressure of 6,000 atmospheres into a block very similar to that obtained by fusion, having a crystalline fracture. Tin, when compressed in powder, unites, and if it is made to flow through a hole in the base of the compression apparatus, the wire so formed sometimes, though not always, emits the peculiar "cry" of tin when bent. The following figures show the amount of pressure required to unite the powders of the respective metals : Lead unites at 13 tons per square inch, tin at 19 tons, zinc at 38 tons, antimony at 38 tons, aluminum at 38 tons, bismuth at 38 tons, and copper at 33 tons. Lead flows at 33 tons per square inch, tin at 47 tons.

The Architect's and Builder's Edition of the
The November number of this splendid architectural journal has been out a few days, and may be obtained at book stores, news stands, or by mail direct from this office. Price 25 cents.
Besides two full pages of colored illustrations of new dwelling houses, the November issue contains engravings of a number of low priced houses, of recent contruction, representing the latest designs and accompanied with plan views, showing the interior arrangements of the houses. This number also contains an engraving of the beautiful munisipal building just completed at Glasgow, also the design for a new and magnificent hotel at Richmond, Va., a view under the central dome of the exposition building of Glasgow, and the New York Times nine story handsome building, which is nearly completed, and views illustrating the manner in which the building was reconstructed without disturbing the compositors or other employes or the printing presses or other machinery used in producing a daily newspaper, which feat was never before accomplished on so extensive a scale.
A small country church, with plan of the arrangement of the seats, and a stable and carriage house of moderate cost, are among the many other useful subjectstreated in the November nuwber; and any persons contemplating the building of a new house, or the re modeling of an old one, will find it to their advantage to consult all the back nuinbers (thirty-seven already published) of the Architect's and Builder's Edition of the Scientific American, and whoever does it will be very likely to save agood many dollars, besides being better satisfied with his improvement from the good suggestions he derived from their perusal.

The cranks of the age are for the present turning from the congenial labor of inventing perpetual motion machines to invent a new language, which they call "Volapuk." It is a conglomeration of all the modern and some of the dead languages, and an experienced linguist can see little sense in it. When a miller receives a letter informing him that "Klub at alabom rigi omik in lenpuk pegivol sis vigs kil komu volapukaklubi keli opubobs sosus olabobs spadi e vodabuk upubom egetobs bletimo penedi estabobs," he need not be alarmed. It is not a complaint that his flour is "off," nor a death warrant, nor a notice of the coming of the sheriff. It is simply a " volapuk" crank unloading his superfluous and valueless attainment.-Milling World

surentific ब Ammicam.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BRUADWAY, NEW YORK.

O. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIPIC AMERICAN.

 One copy, one year. for the U. S. or Canada..One copy, six months, for the U. S. or Canad 8300
150
4 One copy, one year, to any foreign country bel Remit by postal or express money order.
Australia and New Zealand.-Those who desire to receive the
SCIENTIFIC AMERICAN, for a little over one year, may remit $\mathcal{1} 1$ in curre SCIENTIFIC AMEHICAN, for a
Colonial bank notes. Address

The Scientific American Supplement
is a distinct paper from the Scientipic ammican.THE SUPPLemient is issued weekly. Hvery num ber contains 16 octavo pakes. uniform in size *5.00 a year, for U. AM and Canada. $\$ 6.00$ a year to foreign countries belong, \$5.00 a year, for U. S. and Canada. 86.00 a year to foreign countries belong-
lng to the Postal Union. Single copies, 10 cents. Sold by all newsdealers throughcut the country.
Cill be bioed Rates.-The Scientific ambrican and Supplement will be sent for
seven dollars.
The safest way
Aastralia and New Zealand.-The Scientific American and ent Colonial Dank notes.

NEW YORK, SATURDAY, NOVEMBER 10, 1888.

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT
No. 671.
For the Week Ending November 10, 1888.

 FLORICULTURE.-Notes on Roses--Rose Francois Michelon.-
Notes on leading roses, with a list of the best garden varieties.-

10711

PHOOTOGRAPHY--Cllodio-Bromide Emulsion for Transparen-
celes.-How to maike lantern tranparencies-a
adapted focess enperian
ase in
 TECHNOLOGY.-Improved Flax Scutching Machine.- A recent
improvement in the treatent of finX by machinery, as exhibited
at the

FACTS 18 TO LONG LIFE

What tends to long life is a study with more profit as facts are used for data. The editor of a Boston paper, unread in theory, sent blanks through Massa chusetts to men and women of eighty years and more, inquiring as to habits, state of eyes, teeth, hearing and the like, getting over 3,500 replies, and if in these there is nothing to refute the assertions of the theorists, there is yet not anything to sustain them.
They ate meat, save in a few cases, ad lib., and though none of them, if we take their own word for it, have drunk freely of spirits, all, or nearly all, have taken of them on occasion. These old people are from cities, towns, agricultural and maritime districts, in nearly all cases leading active lives, eating three meals a day, the dinner being, as is the custom in New Eng land, in the middle of the day, of meat and vegetables, and pie, and very hearty. Curiously enough, though the women are of medium height, the men are mostly tall, above the average; and so greatly do blue and gray eyes prevail that other shades are notable excep tions. Baldness is rare, the hair being usually brown and thick, but the teeth are very poor or entirely gone The report says :

These old people, men and women alike, are early risers almost without exception, and fully nineteen out of every twenty have observed this custom through life, except, perhaps, in some short period of youth

Exercise has been hard up to sixty-five or seventy years, and after that period has consisted (when the regular occupations have been given up) of walking or gardening, or both. Except in cases of sickness, these old people are as active and as fond of constant occupation of some sort to-day as most men and women are at thirty-five. One of the most significant facts gathered in this canvass is that regarding occupation. Out of 1,000 men, throughout life, 461 have been farmers; 92 have been carpenters; 70, mer chants; 61, mariners; 49, laborers; 42, shuemakers; 41, manufacturers; 23, clergymen; 23, masons; 16, black smiths; 16, bankers; 12 each iron workers, mill hands physicians, and lawyers; and the rest are divided among nearly all the other trades and professions. Eight hundred out of twelve hundred have been far mers' wives, and all but about fifty of the remainder mers' wives, and all but
have been housewives."
Tea and coffee drinking was indulged in by fully two thirds of the 3,500 , with some of them to excess; and of the men, nearly all have both smoked and chewed tobacco, the amount daily consumed by some having been enormous.
Their cares were as heavy as those which come to most of the human family, their work not less arduous. Most of them led lives which some might call mono tonous, yet with occasional excitement to them as great as the intenser kinds to those more used to it.
Summing up all that the compiler has set down from the answers sent to his questions, we find that all were regular in their habits, with plenty to occupy their hands and minds and getting plenty of fresh air. This seems to be at least a primal quantity in the solution of the problem of long life. Men like these, with plenty of work and fresh air, are able to eat and smoke, even to a point we would call excess, without injury, and even to drink at times with no evil resulting. It is those of sedentary habits, who do no hard labor and get little exercise or fresh air, who must be the most careful.

QUICK LETTER DELIVERY.

No mail service can be said to be good enough while a better one may be had. In New York City such possibility is clearly in sight, the means at hand, the way clear, and all that is wanted to take advantage of the conditions existing, an order from the postmastergeneral and the preparation of a time schedule. Three lines of elevated roads traverse the city, with trains running constantly and rapidly, and horse car lines bisecting them at every principal point. How easy to dispatch a letter quickly by means of these, if only some of the "routine" and manipulation now employed were dispensed with! Now, a letter posted say in lower Broadway and directed to West 25 th Street, must needs be taken to the general post office. Thence it goes uptown, perhaps by elevated train, perhaps by wagon, and to the sub-station nearest. As will be seen, it is delayed while en route to the general post office, again, if it goes by the elevated, while taken afoot to the sub-station. Supposing now the sub-stations were all arranged on the line of the elevated roads or the crosstown horse car lines, and let us suppose also that the carrier, on finishing his collections from the lamp post boxes. takes his letters directly to the nearest elevated railroad station, leaving the pouch for the first post car [a small section of a car would be sufflcient for the purpose, and say there was such a one every 15 minutes]. With the letters assorted simply as to the nearest sub-stations, the work could be quickly done, a man from each ready on the platform to take the packet for his station, and then hurrying off to the near-by branch office or taking a crosstown car for it, leaving a mate to await the next trains, down and up.

In this way a rapid service could be had, and a reliable one.
Like many another rule observed in public depart ments and "circumlocution" offices, that which provides for all letters collected downtown going first through the general office, or uptown only through certain specified "distribution" offices, is a long way around without, by any means, being the shortest way to security. At present, the collector and the distributing clerk in the post office to whom he hands his mail pouch are held responsible for letters dropped in the boxes of a certain district. Would there be any less responsibility, any less security, in handing the same letters to a similar clerk on a moving train? The system of receipts now in vogue in the post office is good enough for the system here suggested. The collecting carrier, on turning,over his letters to the mail agent, might get a receipt for them, with the time of day appended; the receiver, one of the messenger from the sub-station, and so on. Thus the claimant for a lost letter need only have a record of the position of the lamp post box he dropped it in, and the time, in order that a " tracer" might be started after it.
The business messenger boy system grew directly out of a public need of quick delivery, and the local telegraph system as well. Both are too costly for the use of the general public, not to say too slow and uncertain. The allurements of duck-on-a-rock, mumble-the-peg, and street ball are likely always to prove too strong for the average messenger boy, as well as the inclination to walk and save his fare; and telegraph offices are too few and far between to venture competition with a public messenger service supplied with well trained, well tested, well watched servants of mature years.
At present, the time required to collect and deliver a letter varies from about two hours, under the most favorable conditions, to about four-under the least. Under the plan suggested it seems not unreasonable to estimate two hours as the longest period required, and the average time as much less. There are, of course, even quicker means of letter distribution than rope, has proved so efficient, and here in America has been improved on. It is proposed you put your letter in a lamp-post box, and, whisp ! it is in the post office before you are gone. At the post office it is put into another pneumatic tube, whence it flies to the uptown sub-station. Thus, when you drop your letter in the box, you as good as put it into the hands of the lettercarrier in the far off sub-station, near its \&estination; its dispatch depending on him.
No doubt we shall have such a system in the future for letters, and, indeed, for small parcels as well. Till then we might reasonably expect to have a system at least as rapid as the conditions already existing will supply, and in seeking for such a system we ought not to overlook the opportunities for quick letter transit offered by the horse cars, as well as the elevated roads.

The Russian Asiatic Railway.

The opening of the great Asiatic railway has just been celebrated at Samarkand, in Bokhara, about three hundred miles from the Chinese frontier and three hundred and forty from the boundary of British India. This is the present terminus, but an extension to Tashkend, two hundred wiles further north, has already been surveyed. Although constructed for military purposes, the railway will probably be utilized military administration some experiments have been military administration some experiments have been
made in irrigation, which show portions, at least, of the arid country through which the road passes to be capable of extraordinary fertility. Near some of the rivers, where systematic irrigation has been carried on, mine crops of clover are obtained annually, and cereals produce a hundredfold. Although the ties, as well as the rails, tools, rolling stock, and a part of the provisions consumed by the workmen, were brought from Russia, the construction was pushed with great econo my, as well as rapidity, nearly four miles of track hav ing often been laid in one day, while the total average cost of the line, including land damages, track, stations rolling stock and other equipment, and telegraph line having been only about twenty-six thousand dollars a mile. One of the most serious items of expense was for the provision of a regular and sufficient water supply in that desert region, for all the stations, repair shops and workmen's settlements, but everything was done in the most thorough manner, all the stations, as wel as the barracks for the military guard, which were ne cessarily attached to the stations, being built of stone. The method of laying the track was derised with great ingenuity, and carried out with military precision. A permanent construction train was arranged, conveying two crews, each consisting of four or flve hundred native laborers, with a hundred and fifty soldiers to act as guards and overseers, and fitted with sleeping berths, kitchen and nospital cars, traveling blacksmith and machine shops. and provision cars, and attended by a private train of five or six cars, which served as the dwelling of General Annenkoff and his suite. Every five or six miles a siding was built, and when the day'
work began, the «construction train was transferred to the siding, to make room for the track-laying train, which was pushed to the extreme front of the line The track laying train consisted usually of nine platform cars loaded with rails, eight loaded with ties, four with spikes, flsh plates, and other accessories, and a dozen or so with material for stations and bridges and provisions and water for the workmen, the whole being just sufficient for a mile and a quarter of track These trains were loaded at supply stations on the fln ished part of the line, and sent forward at regular in tervals, and three of them were often required in aday In order to unload them quickly, and with the leas loss of time in handling and transferring materials, General Annenkoff, after some experience with the usual method, of taking the rails and ties from the sides of the cars, loading them on carts, or on the backs of camels, and transporting them to where they were wanted, equipped all the cars carrying ties and rails with runways on each side, fitted with rollers, and nearly meeting at the ends of the cars, so that the rails and sleepers, instead of being thrown overboard, and then picked up and carried where they were wanted, were simply shifted to the runways, and rolled rapidly forward to the front of the train, where they were immediately laid, or taken on trucks, if required, anchitect.

An Interesting Discovery.
A botanical aunouncement of interest and scientific importance has recently been made in the Proceedings of the Natural Science Association of Staten Island. It is the discovery of a peculiar and rare hybrid oak, whose affinities and exact parentage and status have puzzled botanists and led to very different opinions as to its character. It is the Quercus heterophylla of Michaux, commonly known as Bartram's oak, and so designated because the typical example grew on the farm of John Bartram near Philadelphia, where it had been recognized as early as 1750 as a singular and aberrant form.
Mr. Wm. T. Davis has made the striking observation of its presence in considerable numbers and in a variety of stages near Richwond Valley Station, Staten Island, "in a low, wet piece of woodland," where, he emarks, "nineteen oaks have so far been discovered, each tree having a sort of individuality."
The point of interest is this: The oaks are addicted to hybridization, and a glance among the oaks in Gray's Manual of the Botany of the Northern United States discloses a section wherein are grouped a number of
"anomalous or occasional, probably some or all of them hybrid forms." Here will be found the Quercus heterophylla, enumerated as "a state of Q. Phellas (the willow oak) with dilated and toothed or cut leaves." In the same paragraph its reference to a variety of the water oak (Q. aquatica) by De Candolle is quoted, while in a summary of the conflicting views of botanists relative to this perplexing tree, by Mr. A. Hollick, we find this assortment of guesses: "Pursh considered it as probably a hybrid. Nuttall thought it might be an anomalous variety of coccinea (scarlet oak). Barton says 'supposed to be a hybrid.' Torrey also considered it a hybird. Noll says 'doubtless a hybrid.' Meehan says that it partakes of the character of Q. Phellas (willow oak) and Q. imbricaria (laurel oak). Buckley says that the tree at Mt. Holly is 'in a thicket near several willow oaks, of which it is plainly one.' Leidy thought that a specimen which he had obtained from Burlington County, New Jersey, indicated a hybrid between Q. Phellas and Q. palustris. Englemann contended for its specific rauk at first, but finally came to the conclusion that it was a hybr:d between Q. Phellas and Q. tinctoria."
The value of Mr. Davis' discovery appears from this review of previousopinions, as the accessibility of the locality and the number of the specimens may lead to definite conclusions as to the precise place of this tree in botanical nomenclature.
The weight of evidence as furnished by Mr. Davis is that the Bartram's oak is a hybrid, from the great variation of the forms of the leaves, as oscillating from entire margined elliptical examples to wedge-shaped pinnatifid states, between which are a series, graduated, and connecting the extremes, of leaves irregu larly sinuous in outline and asymmetrically lobed on opposite sides. He also regards the willow oak $(Q$. Phellas) as certainly one parent, since a reversion to its characteristic willow leaf type is always obvious
among the foliage of the Bartram oak. The other parent is doubtful, but in Mr. Davis' note on the lo cality and its occupants. he says: " There are eightad ditional trees greatly like those just described, and each one, as has been remarked, shows individ ualcharacter, but a general resemblance in branching, foliage and acorns runs through them all. The leares are not
glossy on the upper surface. but in a few trees are slightly downy on their under side, along the mid-ribs The character and position of these oaks would indicate that Q. Phellas (willow oak), with Q. palustris bound oak). are the parents, and this latter tre
wood stands close to an equally big swamp oak, and a ypical heterophylla about six feet high is growing up within two or three yards of their trunks. This lit tle tree is several hundred feet away from the others of its kind:"
The leaves of these trees present an interesting diersity of shapes, and reveal their composite origin. Whereas the leaves of the willow oak are simple, entire margined, and of the willow leaf shape, the leaves of the other strains of oak, as the scarlet, swamp, or quercitron, which may presumably be intermingled in the Q. heterophylla, are lobed and pinnatifid. These diverse tendencies in the offspring produce an entertaining assortment of various forms, and are intrinsi cally valuable as a contribution to vegetable heredity.

Street Bridges.

A Frenchman who was awkward enough to allow himself to be run over in the boulevards, left by will 100,000 francs to the city of Paris for the purpose of building bridges over the streets at the most frequented and dangerous points. As no measure had ever been taken, the legitimate heirs of the deceased philanthropist sued the city recently to recover the money. This woke up the sleepers, and the common council have decided on building a specimen bridge over the boulevard at the breakneck corner of the Boulevard Montmartre. If five hundred people do not interfere with flve thousand conflicting opinions, Paris will be converted into a modern bridged Venice for the exhibition.
This plan of bridging a crowded thoroughfare was thoroughly tried in New York several years ago, by the erection of a foot bridge over Broadway at the junction of Fulton Street. But it proved a failure. The time and labor of climbing the stairs and the danger in descending proved to be greater difficulties to the dear people than the direct method with all its risks. So the bridge was taken down. It cost the city about $\$ 100,000$. If such a bridge were provided with comfortable cars and cable to carry people up, over, and down, it would doubtless be popular.

Danger of Fire from Iron Steam Pipes.

The nature of the fire danger of all heating apparatus where flues or pipes are laid through or bear woodwork seems to be misapprehended by many who might be supposed to be well informed upon such a subject. One editorial writer, addressing an audience of artisans, compares the methods by which wood is set on fire by steam or hot water pipes or hot air flues to "the drip of water falling always upon the same place," gradually wearing the hardest rock. "Thus," he adds, "a comparatively low degree of heat acting for years upon wood is able to first char, and then, under certain external influences, to set it aglow, and finally in flames." If his premise that "the temperature to which pipes and flues are raised is never high enough to set wood afire" is true-and it doubtless is not far away from verity-then the steadiness of the dripping would insure safety, no matter how long continued. Now, the manner in which a temperature too low to start rapid combustion in wood operates in originating a fire is by first reducing the oxide of iron (rust) to a metallic condition. This is possible only under certain external conditions, among them a dry atmosphere. Just as soon as the air is recharged with moisture, the reduced iron is liable to regain, at a bound, its lost oxygen, and in doing so to become red hot. That is the heat that sets the already tindered wood or paper ablaze. Where there is no rust there is no danger from fire with a less than scorching temperature in the pipe or flue. Hence the necessity of keeping steam or hot water fittings in good order:-The Sanitary News.

Electrical Fire Engine.

A recent invention is Prof. S. S. Wheeler's electrical fire engine. It is intended to be worked by the current of an electric light wire, which can be tapped for temporary service anywhere that it is wanted. Eacb engine will carry on a reel some 500 feet of insulated fine copper wires, bound together, cable fashion, so as to equal a No. 3 wire. for transmission of the current. As "it is a good deal easier to squirt electricity than to squirt water," the engine, it is intended, shall be placed near the fire and the electric connection made as is convenient. The powerful current of an arc light wire will not be required, that of the ordinary incandescent light circuit, which is much lower in intensity. being amply sufficient to run the motor of the engine. The great advantages claimed for the electric flre engine are that it can be instantaneously started up at full speed; that it is much lighter than a steam fire engine of equal power ; that it costs one-third less; that it is safer and easier of control; that it is norseless in- its operations; and that it is economical. Where there are no electric light wires in the street to be tapped, it will not be inpracticable to run it by means of storage batteries charged from a dynamo at the engin

