Srientifit ghmerican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weerly at

No. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. E. BEACH

TERMS FOR THE SCIENTIPIC AMEICICAN.

 Une copy, one year. for the U. S. or Canada..One cupy, six months, for the U. S. or Canada
One cupf, six months, for the U. S. or Canada............................. 150
One copy, one gear, to any foreign country belongingto Postal Union, 4 vev lemit by postal or express money order.
Australia and New Zealand.-Those who desire to receive the BCIENTIFIC AMERICAN. for a little over one gear, may remit $£ 1$ in current
Colonial bank notes. Address MUNN \& CO.. 3:1 Broadma

The Scientific American Supplement
io a distinct paper from the Scientipic ammican. THe supplemicnt
 With Scientipic amelican. Terms of subscription for Supplement, 85.0i a year. for U. S. and Canada. 86.00 a year to forelgn countries belongthrouk heut the country.
will beincil lates.-The Scientific american and SUpplemint seven dollars.
The sufest wa
rexistered letter
registered letter
A uatralia
.
Supplement will be New Zealand.-The Scirntific american and rent Colonial bank notes.

NEW YORK, SATURDAY, OCTOBER 6, 1888.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 666.
For the Week Euding October 6, 1888.

11. ARCHEEOLOGY.- Evidences of the Antiquity of Man in Eastern

iI. ARCRITECTURE.-History of the Dwelling.-M. Gurnier's work
at the 1878 exposition, and what he provoses for the comink one.-chs.- 31 illustration

,

VIII. MECHANICAL ENGINEERING.-Improved GaA Motor for
Streer hailway. The Connelly motor and ite adaplation to atreet r. MISCECT,AN EOUS.-An A ncient Geographer - Jobann Schone

HOW BEST TO AVOD COLLISION AT BEA.

The recent collision between the steamers Thingvalla and Geiser, the latter being lost, has opened anew in England the discussions regarding lights and signals. The principal objections to such codes of signals as have, as yet, been devised is that, while they give the course being held with admirable promptitude, they do not and cannot give the exact parallel upon which the ship is advancing, if there be any wind, and it is principally under such conditions that danger menaces. Thus, if the signal weaning a stranger is advancing from E. by N. should come over the port bow, the wind being abeam or quartering, the information would be valueless, and indeed misleading, for, should the helm be put a-port, the ship so heeding might only go out of her way to meet the stranger, while, had she heard and heeded no signal, and held her course, she would have run free and clear. Capt. Colomb and Admiral De Horsey have argued the electric side-light question in public letters pro and con. The Admiral has faith in this system because the lights can be easily regulated in intensity to suit the weather. Another authority proposes electric lights with what he calls a "holo phote" reflector, the same to be put on the bridge for the use of the watch officer. An account says: The handle by which this light can be moved is to be regulated absolutely by the position of the helm. When the helm is moved, a detent is released and the ray of light sweeps over the water, giving the same signal to a passing vessel as the driver of a vehicle gives with his hand. When the light has completed its sweep, it is to be automatically shut out.

colored light trials with the insane.

The experiments with colored lights in the treatment of the insane made recently at Alessandria, Italy, are being much discussed by the medical faculty, though getting little credence; the cures, if cures were really made, being attributed to unusual treatment and painstaking attention on the part of the wedical staff because of the color trials rather than to anything in the theory itself. In the evidence transmitted by Dr. Ponza, he says rooms were selected with as many windows as possible, the walls of the rooms being painted the same color as the window panes. A patient suffering from melancholia, who would not eat, was placed in a room with bright red walls and windows. In three hours he became quite cheerful, and asked for food. Another lunatic, who always kept his hands over his mouth to keep out air and nourishment, was placed in the same room, and the next day was much better and te with a hearty appetite.
A violent maniac was placed in a blue room, and became quiet in an hour. Another patient, after spending a whole day in a violet colored room, was completely cured. American and English medical authorities seem to regard these cures as effects rather than causes of the treatment, induced, they argue, not because the light was colored, but because it was a novel sensation, waking the patients to forget their inclinations, as pebbles put into the ear of a balky horse will cause him to forget his pranks; a sudden bath or shock might have the same transitory effect.

Manufacture of Light withont Heat.

Prof. Oliver J. Lodge has been endeavoring to manufacture light by direct electric action without the intervention of heat, utilizing for the purpose Maxwell's theory that light is really an electric disturbance or
vibration. The weans adopted is the oscillatory discharge of a Leyden jar, whose rate of vibration has been made as high as 1,000 million complete vibrations per second. The waves so obtained are about three yards long, and are essentially light in every particular except that they are unable to affect the retina. To do this they must be shortened to the hundredthousandth of an inch. All that has yet been accomplished, therefore, is the artificial production of direct electrical radiation, differing in no respect from the waves of light except in the one matter of length. The electrical waves travel through space with the same speed as light, and are refracted and absorbed by material substances according to the same laws.
We only need to be able to generate waves of any desired length in order to entirely revolutionize our present best systems of obtaining artificial light by help of steam engines and dynamos, which is a most wasteful and empirical process.

In a paper given in Nuture, Dr. Lodge further dis usses the subject as follows
The conclusions at which we have arrived, that light is an electrical disturbance, and that light waves are excited by electric oscillations, must ultimately, and very shortly, have a practical import.

Our present syatems of making light artificially are wastefal and ineffective. We want a certain range of oscillation, between 7,000 and 4,000 billion vibrations per second; no other is useful to us, because no other has any effect on our retina; but we do not know how to produce vibrations of this rate. We can produce a definite vibration of one or two hundred or thousand per second; in other words, we can excite a pure tone
of definite pitch, and we can command any desired
range of such tones continuously by weans of bellows and a key board. We can also (though the fact is less well known) excite momentarily definite ethereal vibra tions of some millions per second, as I have at length explained; but we do not at present seem to know how to maintain this rate quite continuously. To get much faster rates of vibration than this we have to fall back upon atoms. We know how to make atoms vibrate it is done by what we call "heating" the substance and if we could deal with individual atoms unhampered by others, it is possible that we might get a pure and simple mode of vibration from them. It is possible, but unlikely; for atoms, even when isolated, have a nultitude of modes of vibration special to themselves of which only a few are of practical use to us, and we do not know how to excite some without also the others However, we do not at present even deal with indi vidual atoms; we treat them crowded together in a compact inass, so that their modes of vibration are really infinite.
We take a lump of matter, say a carbon filament or a piece of quicklime, and by raising its temperature we impress upon its atoms higher and higher modes of vibration, not transmuting the lower into the higher, but superposing the higher upon the lower, until at ength we get such rates of vibration as our retina is constructed for, and we are satisfied. But how waste ful and indirect and empirical is the process. We want a small range of rapid vibrations, and we know no better than to wake the whole series leading up to them It is as though, in order to sound some little shrill octave of pipes in an organ, we were obliged to depress every key and every pedal, and to blow a young hurri cane.
I have purposely selected as examples the more perect methods of obtaining artificial light, wherein the waste radiation is only useless, and not noxious. But the old-fashioned plan was cruder even than this; it consisted simply in setting something burning whereby not only the fuel but the air was consumed, whereby also a most powerful radiation was produced, in the waste waves of which we were content to sit stewing, for the sake of the minute, almost infinitesi al, fraction of it which enabled us to see.
Every one knows now, however, that combustion is not a pleasant or healthy mode of obtaining light ; but verybody does not realize that neither is incandescence satisfactory and unwasteful method which is likely o be practiced for more than a few decades, or, perhaps, a century.
Look at the furnaces and boilers of a great steam engine driving a group of dynamos, and estimate the energy expended; and then look at the incandescent flaments of the lamps excited by them, and estimate how much of their radiated energy is of real service to the eye. It will be as the energy of a pitch pipe to an entire orchestra.
It is not too much to say that a boy turning a handle could, if his energy were properly directed, produce quite as much real light as is produced by all this mass of mechanism and consumption of material.
There might, perhaps, be something contrary to the laws of nature in thus hoping to get and utilize some specific kind of radiation without the rest, but Lord Ravleigh has shown in a short communication to the British Association, at York, that itis not so, and that, therefore, we have a right to try to do it.
We do not yet know how it is true, but it is one of he things we have got to learn.
Any one looking at a common glow worm must be struck with the fact that not by ordinary combustion, nor yet on the steam engine and dynamo principle, is that easy light produced. Very little waste radiation is there from phosphorescent things in general. Light of the kind able to affect the retina is directly emitted, and for this, for even a large supply of this, a modicum of energy suffices.
Solar radiation consists of waves of all sizes, it is true; but then solar radiation has innumerable things to do besides making things visible. The whole of its energy is useful. In artificial lighting nothine but light is desired ; when heat is wanted it is best obtained separately, by combustion. And so soon as we clearly recognize that light is an electrical vibration, so soon shall we begin to beat about for some mode of exciting and maintaining an electrical vibration of any required degree of rapidity. When this has been accourplished, the problem of artificial lighting will have been solved.

Removal or Rust.

A method of removing rust from iron consists in immersing the articles in a bath consisting of a nearly saturated solution of chloride of tin. The length of time during which the objects are allowed to remain in the bath depends on the thickness of the coating of rust ; but in ordinary cases twelve to twenty-four hours is sufficient The solution ought rot to contain a great excess of acid if the iron itself is not to be attacked. On taking them from the bath, the articles are rinsed in water and afterward in ammonia. The iron, when thus treated, has the appearance of dull silver; but a

The Waste of Anthracite and $\begin{gathered}\text { the supply. }\end{gathered}$

The statistics of coal production, which we publish in our usual market report, show that during the wonth of August the shipments of anthracite from the Pennsylvania mines to market amounted to 4,097,563 gross tons, which is the largest anthracite output ever made in one month, and is at the rate of $49,000,000$ tons a year.
During the eight months of the present year, the shipments of anthracite to market have amounted to $23,619,291$ tons, being $1,755,495$ tons in excess of the shipments during the corresponding period in 1887. During the months of September, October, November, and December, 1887, the shipments amounted to $12,777,232$ tons, and as we shall certainly largely exceed that amount this year, it appears probable that we shall send to market this year $37 \frac{1}{2}$ or 38 million tons of anthracite.
If we include the coal sold and used at the mines, say 6 per cent of the shipments, the grand total output for the year will probably amount to $40,000,000$ gross tons.

The average waste of anthracite in mining and preparation for market has been carefully estimated from many reliable data by the Geological Survey of Pennsylvania, as follows

Or only about one-third of the coal goes to market; if therefore we produce $40,000,000$ tons this year, it represents the exhaustion of $120,000,000$ tons of our available supply, and this does not now much, if at all, exceed $9,000.000,000$ tons.
At the present rate of production and present percentage of waste in mining, our entire supply of anthracite coal will last only 75 years.
Thisstatement is not based on any mere guess, but is founded on reliable data, and it is so startling in its signifcance that it should certainly attract the attention of the managers of our great coal companies, and even of the government of the State of Pennsylvania. It is not claimed that we have yet reached our maximum production, and every increase means that the coal will be worked out in proportionately less time than here stated.
Long before the supply has been exhausted, the demand for anthracite will have exceeded the supply, and prices will be limited only by the prices of other fuels; and as cheap fuel is the very foundation of industrial prosperity, it is not difficult to imagine the resulting effect on the industries of a large part of this country.
The present enormous, disgraceful, and unnecessary waste in mining anthracite should be stopped, and if the interests of the great coal companies are not sufficient to impel them to do this. then the govern ment of the State, which is the guardian of the citizens interests, should intervene to save these from the dis astrous consequences of the spendthrift policy of those who now monopolize our invaluable supplies of this fuel.-Eng. and Min. Jour.

Uegetable Cows.

Several natural orders of the vegetable kingdom include plants that are characterized by the secretion of a fluid closely resembling milk in appearance and consistency, and a familiar example of these is to be seen in our common milkweed (Asclepias cornuti) which is well known to everybody. In some plants, this milky fluid is of the most venomous nature; in others, it possesses active medicinal virtues; in others, it yields a product (such as India rubber and gutta percha) of the highest importance to the arts and industries; and, in others still, it proves of value as a human aliment. Since the same general properties characterize the plants of each natural family, it seems an anomaly that, in the same order, we should find the species of one genus producing a lactescent
fluid of a highly poisonous nature and those of anotaer yielding one that is entirely innocuous. Yet such is offten the case, and we have a striking example of
it in the bread fruit order, the Artocarpaceæ, which, on thk one hand, includes the celebrated upas tree of Java, which, when pierced, exudes a wilky juice containinf an acrid virulent poison (antiarin), the smallest quantify of which will kill the largest animal, and, on the fothre, the famous Brosimum utili of South
America, which yields a copious supply of rich, wholesome wiilk, of as good a quality as that from the cow. Tlixure are several other instances in the vegetable kingdom of such an association, in the same natural order, of plants that produce a noxious lactescent juice with, others which yield a wholesorne be designated as "vkgetable cows." To speak only of the latter class, tho wost remarkable example is the species of Brosimu n just mentioned, which was dis.
covered and made/known by the celebrated traveler Humboldt. This free forms extensive forests on the mountains near the town of Coriaco, and elsewhere along the sea coalst of Venezuela-growing to upward
of one hundred feet in height, with a trunk six or eight feet in diameter, and branchless for the first sixty or seventy feet of its height. It is popularly known as the cow tree, Palo de Vaea, or Arbol de Leche. "Its milk, which is obtained by making ncisions in the trunk, so closely resembles the wilk of the cow, both in appearance and quality, that it is commonly used as an article of food by the inhabitants of the places where the tree is abundant. Unlike
nany other vegetable wilks, it is perfectly wholesome many other vegetable milks, it is perfectly wholesome
and very nourishing, possessing an agreeable taste, like that of sweet cream, and a pleasant balsamic odor, its only unpleasant quality being a slight amount of tickiness. The chemical analysis of this wilk has shown it to possess a composition closely resembling some animal substances, and, like animal milk, it quickly forms a yellow, cheesy scum upon its surface, and, after a few days' exposure to the atmosphere, turns sour and putrefies. It contains upward of
thirty per cent of a resinous substance called galactin by chemists.: (Treas. of Botany.) Speaking of this tree, Humboldt says: "They [the natives] profess to recognize, from the color and thickness of the foliage, the trunks that yield the most juice, as the herdsman distinguishes, from external signs, a good milch cow. Amidst the great number of curious phenomena that I have observed in the course of my travels, I confess there are few that have made so powerful an impression on me as the aspect of the cow tree. A few drops of vegetable juice recall to our winds all the powerfulness and fecundity of nature. On the barren flank of a rock grows a tree with coriaceous and dry leaves. Its large woody roots can scarcely penetrate into the stone. For several months in the year, not a single shower moistens its foliage. Its branches appear dead and dried, but when the trunk is pierced, there flows from it a sweet and nourishing milk. It is at the rising of the sun that this vegetable fountain is most abundant. The negroes and natives are then seen hastening from all quarters, furnished with large bowls to receive the milk, which grows yellow and thickens at the surface. Some empty the bowls under the tree itself, others carry the juice hone to their children."
In the Dogbane order, the Apocynace't, which includes plants that are mostly of a venomous nature and possess an exceedingly acrid and drastic juice, we have a second example of a tree that secretes a
wholesome, milk-like fluid. This is the Tabernomontana utilis, the cow tree of Demerara, or hya-hya of the natives. This tree grows in abundance in the forests of British Guiana, and its bark, when tapped, yields a copious supply of thick, sweet milk, resembling that of the cow in appearance, but rather sticky from the presence of caoutchouc. This milk mixes freely with water, is of a pleasant flavor, and the natives employ it as a refreshing beverage.
Two "cow trees" are found in the order Sapotaceæ, which embraces numerous plants valuable for their succulent fruits, such as the marmalade, star apple, etc. One of these is the Mimusops elata, called by the natives massarandaba or aprain, and which Professor Orton, in the $A n d e s$ and the Amazons, describes as one of the noblest trees of the forests of Para. It stands from 180 to 200 feet in height, is 20 feet in circumference, and is crowned with a vast dome of foliage. The milk yielded by the bark has the consistency of cream, and is used for tea, coffee, and custards. It hardens by exposure, so as to resemble gutta percha, which, indeed, is the product of a Malaisian tree belonging to the same natural order. The other tree is the Mimusops balata, or bully tree, of English, French, and Dutch Guiana. The milk of this species is sometimes employed with tea or coffee, instead of cow's wilk, but has the disadvantage of hardening very rapidly upon exposure to the air.

The natural order Asclepiadaceæ consists of plants that are almost always milky, and the milk is usually acrid and bitter, and always to be suspected, yet one of the plants of the family, Gymnema lactiferum, the cow plant of Ceylon, called by the natives kiriaghuna, yields a milk which the Cingalese make use of as food.
Another example of a "cow tree" belonging to a dangerous natural order, the Euphorbiaceæ, which embraces plants having acrid and purgative juices, is the Euphorbia balsamifera, or Tabayba dolce, of the Canaries. Notwithstanding the fact that the plants of his genus have juices that possess very active medicinal qualities, and are in some cases so venomous that they are used as arrow poisons, the juice of the species under consideration is innocuous, and, according to Leopold von Buch, is similar to sweet milk, and is eaten as a delicacy after being thickened into a jelly. Still another "cow tree" is found in the order Clusiaceæ or Guttiferæ, which embraces plants that secrete an acrid, purgative, yellow gum resin, such as gawboge. This tree is the Clusia galactodendron, a native of Venezuela, where it is known as Palo de Vaca. It has a thick bark, covered with rough tubercles, and its internal tissue becomes red when exposed to the cisions In extracting the milk, the inhabitants make in

These cuts are said to be made only before full noon, it being imagined that the wilk flows more reely then than at any other time. One tree will yield a quart in an hour. The milk is freely used by all, especially by children, although it has a somewhat astringent taste.
In the order Moracea, which includes the mulberry and fig, there are several species of Ficus that are known as cow trees, and the milky fluid of which is bland and used as a beverage, although in most of the pecies of the genus the juice is exceedingly acrid.

Fall Cleaning Up.

The Manufacturers' Gazette suggests to its readers hat now is a capital time to prepare for winter, both nside of the mill and around the outside premises. Taking advantage of the cool, dry, and clear days to repaint sash, clean windows, and paint up your wooden buildings will be infinitely better than to leave things all demoralized for winter storms to beat upon. Now that the days are visibly shortening, it will soon be that daylight will be greatly retarded by dirty windows. Put in the odd panes of glass; do a little whitewashing or painting; in fact, clean up thoroughly. Make the mill as cheery and comfortable as possible for the help during the dark wintry days. Have your circulation piping carefully looked over, and all leaky valves and joints packed, to prevent unnecessary waste of fuel Patch up those holes and cracks in the brickwork and floors. See that all outside doors are in working order and weatherproof. Perhaps the roof will bear a little investigation and renewing in spots.
These are all little things, but they require attention t the proper time, for if allowed to go loose they will count up in the aggregation of shiftlessness.
Out in the yard we may have a pile of scrap iron, odd pieces of lumber, and what not, which may be re quired during the winter. Gather this stuff all together and cover it up with a board roof if possible; if not, use old drier canvas. Anything is better than to have it snowed under and hunted for some night with a lamp and shovel with the thermometer around zero. Odd wachinery, like pulleys, gears, or pieces of shaft, should be blocked up off the ground, as when not so cared for hey settle into the earth, and, if not frozen down, will become badly rusted at the ground contact. Piping and fittings especially should be housed, as they are so liable to damage by lying loose outside.

The above organization began its first triennial meeting in Washington, D. C., on the afternoon of September 18, the business of the assemblage filling up pretty well the remainder of the week. The attendance at first included 200 members, which at the late sessions was considerably increased. Dr. John S. Billings, the eminent sanitarian, was elected president. The papers were read before eleven sections, each sec tion representing a body of specialists. The great number of papers thus disposed of makes even a recapitulation of their titles an impossibility. One, however, way be noted as being of sadly increased interest at the present moment. Major G. M. Sternberg read a paper upon "Recent Investigations Relating to the Etiology of Yellow Fever." He reviewed the germ investigations of Drs. Freire, Finlay, and Gibier, and an nounced his belief that the specific microbe of yellow fever had not yet been found. Major Sternberg is still engaged in his researches, but gave no promise that an effectual yellow fever prophylactic would beever found.

Electric street Cars in New York City.
Electric traction cars, in the place of horse cars, began making trips in the public service on the Fourth Avenue line, New York City, on September 17, the Julien storage battery system being employed. The battery for a car consists of 144 cells, made to slide under the seats from the outside on trays. The general construction of the Julien battery, and the method of charging it, was given in the Scientific AmeriCAN of May 7, 1887. Each truck carries a motor capable of propelling four cars, to guard against danger of a breakdown, and the battery as furnished to the car is designed to afford sufficient power to drive it thirty to forty miles with an ordinary load. The same motor that propels the car furnishes the light to supersede the oil lamps heretofore used. The electric cars are two feet longer than the horse cars on the same line, which, it is said, the company intend to change into electric cars, should the new system prove to be what is hoped for in practical use for city travel.

The idea of a nation with the wealth and mechanical skill of the United States having to go abroad for its guns for warfare is ridiculous. Sporting arms, equal in workmanship to any manufactured in the world, are made in this country, and there is no reason why the heavier ordnance should not also be made here. There is a bill pending before Congress to appropriate ten willions a year for this purpose. If the bill passes, it will open an extensive field to American manu' facturers.-Stoves and Hardware.

