G GIENTIFIC A MIERIGKN

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.
Vol. $\underset{[\text { [NEW SERIEs.] }}{\text { VIII.-No. 24.] }}$
NEW YORK, JUNE 16, 1888.
[ $\$ 3.00$ per Year,


THE GREAT TELESCOPE OF THE LICK OBSERVATORY.-(From photograph by H E. Matthews, Secretary of Lick Observatory.)-[See p. 373.]

## รrientifir gesmmican.

ESTABLISHED 1845.

## MUNN \& CO., Editors and Proprietors.

 published weekly atNo. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S. or Canada.
One copt, six month, for the U.
One or Canada
 Australian and New Zealand.-Those who desire to receive the
SciENTIFIC AMERICAN.forelittle over one year, mas remit sio in current
Colonial bank notes. Address mUNN \& CO., 361 Broadway, corner of Franklin Street, New York.

The Scientifc American Supplement

## is a distinct paper from the ScirntipIC AM RRICAN. THE SUPPLEMENT is issued weekly, Kvery number contains 16 octavo pakes. uniform in size

 Gilonbined Roites.-The SCIENTIFIC AMERICAN and SUPPLEMENT
Gill be sent for one year, to any address in U. S. or Canada, on receipt of
seven dollars.



NEW YORK, SATURDAY, JUNE 16, 1888.


TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

## NO. 650

For the Week Ending June 16, 1888.
Price $\mathbf{1 0}$ cents. For sale by all newsdealers.

 BIOGRAPHY.-Caleb Cope. - inustrations. 1. BIOGRAPHY.-Caleb Cope.-Obituary notice of the president of
the Pennsylvania Horticultural society.............................

V. BOTAN Y.-Evolution in the Plant Kingdom.-By JOHN M. CoUL-
TER.-A plea for evolution drawn from the vegetable kingdom....

 I. CIVIL ENGINEERING.-The New Port of Havre--Detailed acThe Try Viaduct.-The principal dimensions and panerail dot. 1035
of this structure. - Its construction and diffeulties in its building.. 10877 II. ELLECTRICITY.-New Automatic Fire Alarm.-Apparatus for
sounding an electric bell
on an increase of temperature. $-2 i l l u s-1$
 III. ETHNOLOG Y. - Distribution of the North American Indians.-
-Recent work of the U. S. Geological Survey, including a system-
atic study of the subject.. X. MECHANIIAL FNGINEERIG.-The Chalk Age of Mechanical
Engineering.-By J.F. HELLOWAY, of New York. -A vivid pic-
ture of the engineering practices of days gone by, and lives of the ture of the engineering practices or, ays ${ }^{2}$ gone bry. and lives of the the
old-time aprentices, and the contrat between former and mod-
ern engineering.
x. METALLURGYY- - Notes on American Foundry Iron.- An English XI. MINERALOGY.-Artificial Production of Pharmacolite.-A ne
mineral sythesis lately accomplished by M. DrFT.
Asbestos.-By FRANK ALFRKD ROGERS.

 The International GHagow Exhibition - A graphtc necount of
the exhibition in the Scoteh metropolis. -1 Illustration.

XIV. PHOTOGRAPHY.-Composite Portraiture.-Some highly in-
genious suggestions regarding the improvement in this class of





For a number of years the Massachusetts law prohib ited the manufacture of gas containing more than a defined percentage of carbonic oxide. As water gas under existing processes always contained more than this amount, the law amounted to a prohibition of all companies who would manufacture the new gas. A new bill has been recently passed by the legislature and signed by the governor, which places the matter in the hands of the gas commissioners of the State. They are permitted to license any existing company to make and sell water gas under such restrictions as to carbonic oxide as the commissioners may make.
A good story is told of one of the leading representatives of the coal gas interest. When the old law was in force, he appealed to the legislature to stop a new gas enterprise on the ground that it proposed to make water gas containing more than the legal percentage of carbonic oxide. The new company, however, had a process by which the carbonic oxide could be reduced to a very low limit. They at once met the issue raised by proposing to the legislature that it should enact a new law, placing the limit of carbonic oxide to be allowed at three per cent. As coal gas always contains more than this, the effect of such a law would be to close every gas works of any size in the State. This saw the point and wasobliged to fight for the toleration of some reasonable amount of the obnoxious gas.

## Devastation by Crickets.

Accounts are published of the devastation caused by. crickets in Algeria. The insects resemble but are not identical with either locustsor grasshoppers. Last year swarms of grasshoppers ravaged the colony. This year the crickets have taken their place. They spring like grasshoppers, but have a more rapid and sustained flight. They form clouds, which shut out the light of flight. They form clouds, which shut out the light of
the sun. When they alight on the ground, they destroy every trace of vegetation. They sometimes fall exhausted on the ground in such numbers as to cover it with a layer of dead bodies, from which pestilential exhalations arise. The correspondent of a Paris newspaper, in a letter from Algeria, published lately, says that the railway trains have been stopped by the insects between Constantine and Batna.
The method still employed to check the evil in the African possessions of France is the old and expensive one of digging long trenches at a right angle to the advancing swarms, and placing on the most distant side a sort of fence, formed by a web of cloth. The advancing insects strike against the cloth, fall into the pit, and are there covered with lime or mould. The Algerian authorities have spent 700,000 . in destroying them, and now contemplate a further expenditure of $1,000,000 f$. to complete the work.
It was recently stated that the English authorities in Cyprus had traced the locusts in that island to their breeding places, and had there to a great extent succeeded in destoying them in germ, before they became developed into the destructive swarms which periodically devastated that island. As yet the French do not appear to have introduced this method into Algeria.

## Age of Progress.

The Indian Spectator, published at Bombay, repeats what is so often referred to in our newspapers, that thisis a wonderful age as regards scientific discoveries. The telephone has become an old story, the microphone may soon be so. Recently we have had a number of important inventions. First, there is the happy method hit upon of so storing and shutting up water that it forces its way out at the exact moment it is most wanted. The especial merit of the mechanical arrangement here adopted is, that the fire which is to be extinguished itself liberates, as from a prison where it lay inert, the water that is needed to overpower it. One may vell wonder how such a simple plan did not for so many generations suggest itself to plan did not for so

There have been of late two notable inventions in connection with railways. One of them is destined to be of great practical good. When a train is in motion, a wagon or carriage is put in front a hundred yards or more in advance of the carriages. It is connected by wires with the carriages behind. If any accident happens on the way, this carriage in front, which is empty, bears the brunt, and at the same time communicates at once the danger to the train behind, and sets to work powerful brakes which check its speed. Only a few years ago nearly the whole of a railway train was precipitated headlong into a river from a bridge. The bridge was broken, but it was not known, hence the catastrophe. Similar calamities we have now the means of escaping. The other iuvention promises to enable us to send telegraphic messages while the train is in motion.
The art of photography is notat a standstill. Modes are discovered of reproducing one color after another of the original. Then, it may be so contrived now that the whole photographic apparatus can be carried in the pocket.
Indeed, this is an age of discoveries. It is not easy
to say how the face of the earth may be transformed in a few generations by virtue of the advances made in science and art. "How much to do, how little done," comes home to our hearts when we contemplate the slow, the extremely slow, rate at which we in this country (India) are burrowing-let alone originatingnew ideas.

## Filtration by Machinery.

At the meeting of the Society of Engineers on Monday, May 7-Mr. A. T. Walmisley (president) in the chair-a paper was read on "Filtration by Machinery," by Mr. Edward Perrett, Asso. M. Inst. C.E. The author first compared the processes of straining and filtering, and pointed out that in the latter process the mutual attraction of particles of matter, in addition to the straining action, causes the retention of the suspended material in a liquid passing through the filtering medium.
After describing the early experiments made by him in filtering Thames water through filter bags such as are used for the filtration of sugar, Mr. Perrett called attention to the danger of using animal charcoal for the filtration of drinking water. This material has the power of taking out matter in an infinitely fine state of division, and even in solution, the charcoal becoming so charged with such matter that nothing short of subjecting the charcoal to a red heat is sufficient to thoroughly clean it. An animal charcoal filter with any system of washing will, he said, gradually accumulate the very fine matter, which may germinate, and at length be carried through with the filtered water. A filter with a granular medium (such as crushed retort coke), designed by the author, may be effectually cleaned by an upward stream of compressed air occasionally applied. This causes an agitation of the material, and the attrition loosens the dirt, which a small current of water washes away.
At a water works in South America where these filters are used, 20,000 gallons of river water are filtered per hour, the floor space covered being 37 feet by 7 feet 6 inches, or an average rate of nearly 100 gallons per square foot of filtering surface per hour. The purification of water containing organic matter by contact with iron was mentioned.
The original method of using Professor Bischof's "spongy iron'" on a large scale was to mix the spongy ron with gravel, and to use this mixture as a filter bed, but it was found that the top surface became hard and impervious after a short time, and Mr. William Anderson introduced a machine to supersede these spongy iron filter beds. His revolving purifier causes ordinary iron borings to be mixed with the water as it passes through the machine, the water being afterward filtered through ordinary sand beds.
For the filtration of very muddy water for manufacturing purposes, sponge is used by the author. The machine consists of a cylindrical casing, in which sponge is compressed between two diaphragms, the lower diaphragm being movable, and attached to a piston rod, which passes through the top cover. To clean the sponge an up and down motion is given to the lower diaphragm or piston, thus alternately compressing and releasing the sponge. These filters will render Thames water in London clean enough for boiler feeding or other manufacturing purposes, at the rate of about 100 gallons per square foot of surface per.hour. The precipitate resulting from the processes known as "softening" water is now generally extracted by filtration.
The material used for this purpose is the filter cloth referred to at the commencement of the paper, as the chalk deposit may accumulate to a considerable thickness before it becomes impervious. In this case the deposit is easily removed, and the author finds that simple external jets of water are sufficient for the purpose.

## Condensed Literature.

The tendency of the times, remarks the Norwich Courier, is toward condensation. We have condensed beef, a small portion of which, dissolved in hot water, gives one a draught containing as much nourishment as a whole beefsteak. We also have condensed milk, and condensed food of other kinds, which contain a maximum amount of the essential quality within a minimum amount of space. How far this tendency toward condensation will eventually carry men in the matter of food, it is difficult to predict. Perhaps the time will come when the art of extracting and condensing the active principle or essence of comestibles will be so advanced that one may be able to obtain in a small pellet as much refreshment and nourishment as he now obtains in a whole meal. Then, all the time now consumed by the good housewives in preparing breakfast, dinner, and supper, and by the business members of the family in going to and from and eating their meals, will be saved. There will be no roasting over the kitchen stove, no trouble washing dishes, no worry over a varied bill of fare, no agitation over broken china, etc. A person will carry a few food pills in his pocket, and when he grows hungry he will take one and swallow his whole meal at once. Perhaps.

Gegraphical Distribution of our Birds.
The subject of geographical distribution is at present one of considerable interest to ornithologists, inasmuch as there has been comparatively little accomplished, although much work has been done. We are able to tell with a certain degree of accuracy in what part of North America each species may be found, and with most of our Eastern birds in just what localities they occur: but with a large part of the Western species the exact section or sections of country which they inhabit are still a matter of query. This is due to they inhabit are still a matter of query. This is due to
the fact that by far the larger part of the ornithologithe fact that by far the larger part of the ornithologi-
cal world is confined to eastern United States, and the birds of the West in consequence have received less attention.
To illustrate, take the A. O. U. check list, and open to any of the Western species, i. e., Strickland's woodpecker (Dryobates stricklandi); the habitat given is : "Southern Arizona, south into New Mexico." This, as may be seen, is very vague and incomplete data. On going to Arizona or New Mexico for collecting purposes, one would have nothing whatever by which to be guided, as the species desired might be anywhere within a given area, or perhaps no nearer than fifty or a hundred miles, and still answer the description given in the check list. Or take the case of the violet-green swallow (Tachycineta thalassina); on consulting the " list" again, we shall find: "Western United States, from the eastern base of the Rocky Mountains to the Pacific, south to Guatemala."
It is in such cases as these that the so-called "local lists" are of such value, as with these arranged in proper order, one may turn at once to the locality he intends visiting, or the one nearest, and learn what species he may expect to find ; or if desirous of securing some particular bird, can with a few moments' ing some particular bird, can with a few moments
search find a locality in which that species is to be found. These local lists are being constantly published, nearly every issue of the various papers devoted to the study of birds contains one or more, but still more are wanted, and will be for a long time to come. It would hardly be safe to say just how many from each State would be needed to compile a good ornithological directory. One from each county at least would be indispensable, and in some cases, where the counties are dispensable, and in some cases, where the counties are
extremely large and embrace varied portions of territory, two or even more might be needed to complete the data.

There are to-day in North America some hundreds of ornithologists, both professional and amateur, but the combined efforts of these and many more are needed before anything like such a work could be compiled. The same ignorance, only to a greater extent, prevails as to the distribution during the breeding season. A large part of the fauna retires to the Canadian provinces to rear its young, and here, owing to the scarcity of men with scientific training, very little work is done. Several competent scientists, prominent among whom is Mr. Montague Chamberlain, of St. John, N. B., are doing what they can to work up the Canadian fauna, but in a territory of such work up the Canadian fauna, but in a territory of such
vastness and so thinly settled, it is evident that this vastness and so thinly settled, it is evident that this
part of the country at least will for a long time to come remain comparatively unworked.
It is in this work that the amateur can be of so much assistance, and can do so much effective work. Let each person interested in the study of birds make a list of those passing through that locality each spring and fall, and of those remaining there to breed, retaining it for several years for the purpose of making additions for several years for the purpose of making additions
and corrections, and then, when he thinks he has and corrections, and then, when he thinks he has
compiled a pretty thorough list, send it to some good medium for publication. Such records, if carefully compiled, will, as I have said, greatly aid in the compilation of ornithological charts.
It may be of interest to some to know that the North American fauna is divided andsubdivided into several groups, many of which, if not all, overlap each other to an appreciable extent, and just where and how far this conflict occurs is one of the most important and
interesting subjects in the whole study of distribution. interesting subjects in the whole
These divisions are as follows:


These are the main divisions; they of course can be, and are, divided further for the sake of convenienceinto local faunas, such as the New England fauna, fauna of Long Island, fauna of the Gulf States, etc., but these
*The sub-tropical fauna properly has no place in the North American,
but in the present article it is included for the purpose of illustration.
but in the present article it is included for the purpose of illustration.
$\dagger$ It might be well to add that the southern part of Florida is decidedly
It might be well to add that the southern part of Florida is decidedly
ropical in its fauna, and that this tendency is felt along nearly the entire Gulf coast.
$\ddagger$ By Canadian fauna is meant that of all the British provinces.
are purely optional, and made only for describing the species found in certain localities. It will be readily seen that adjoining each other as they do, many species of each will, as I have said, encroach upon the territory of the other ; and while this is noticeable in every case, it is astorishingly prominent with some.
For instance, it may be a source of surprise to know that the Canadian fauna is found in the Alleghany Mountains as far south as the Carolinas, while the Eastern fauna of the United States extends in turn into that of the Canadian, only not to so great a distance.
The Mississippi Valley fauna follows up the Ohio and Susquehanna rivers, and infringes on the Eastern Susquehanna rivers, and infringes on the Eastern
fauna, while a number of rare semi-tropical birds have fauna, while a number of rare semi-tropica
been taken in Texas and the Gulf States.
It will thus be seen how important and indispensable a large army of workers in this field is; no one, two, three, or hundred men can ever accomplish it, and unless all are willing to strive and contribute their mite, it practically never will be completed.
The study of the sea birds is undoubtedly the most difficult department in the whole field, as many of the species so nearly resemble each other that to distinguish them while flying is almost impossible, while to secure them for identification ranks next. Large numbers of the gulls and terns annually pass up the rivers and frequent the inland lakes, thus including themselves in the category of these particular regions, while many of the land birds visit and breed on the islands that are the homes of this race, and as a consequence.are classed among the sea island dwellers as well as among the land. Occurrences of interest are never lacking, as one is apt at any time to secure a species new to a locality, possibly extending its range some distance beyond any previous record. One such instance will serve to illustrate. Some time ago a specimen of the evening grosbeak (Coccothraustes vespertina) was taken near Elmira, N. Y. Its capture extended the geographical range some hundreds of miles east. A big hue and cry was made by a certain gentleman who termed it useless and wanton slaughter, which, however, was not the case, as it benefited science to the degree I have named.

No one interested in this pursuit can afford to neglect making a list of the birds in their vicinity and comparing it with those from other localities, as not only is an incentive to work thus gained, but valuable information is added to the store of knowledge already acquired.

## Glazes for Porcelain Ware.

MM. Lauth and Dutailly have recently communicated to the French Chemical Society the results of their investigations on the red glazes which are produced on porcelain by means of copper and its salts. The color produced in this manner is of a much more permanent nature and of a far superior tint than that which is obtained when oxide of iron is used for the same purpose. This red color, when used for decorative work on ancient porcelain, is often accompanied with a blue coloring matter beneath the surface of the glaze. It appears that the secret attached to the production of these colors was known only to the Chinese until recently, and that the red, known as Tsi-houng, or sang de bouf, could not be imitated by the French at the porcelain manufactory at Sevres. In 1952 MM . Ebelmen and Salvetat endeavored to reproduce these copper colors in France by making careful analyses of fragments of Chinese porcelain colored in this manner, and then imitating, in the composition of the glaze and clay employed, the Chinese specimens. The results of these earlier experiments are now in the ceramic museum at Sevres, and are the first examples of the kind produced in Europe.
Other French chemists have since then ttempted to improve on the first trials, and the problem has also been attacked by H. ©eger, of the Berlin Porzellan-Fabrik and by H. Bunzli, Krummnus, in Austria. MM. Lauth and Dutailly have established by their experiments that the maximum temperature which the Chinese red glazes can stand without losing their color approaches to that used for baking the new Sevres porcelain. By successively associating all the compounds capable of entering into the formation of a colorless glaze with oxide of copper, they have come to the following conclusions: That in the same series of glazes, those which produce the finest red color with copper compounds have the greatest amount of silica present, and that in a series of glazes of approximately the same degree of acidity, the best results are obtained when there is a large proportion of alkalies and a small percentage of alumina. They have further noticed that if the alkaline metals be increased in relation to the alkaline earths present, a finer red is produced, but at the same time the liability to break is increased. By employing boracic acid or borates this inconvenience may, in some measure, be prevented. Lime, magnesia, various fluorides, and lead and iron oxides have also been tried; but the results obtained by their use have not proved satisfactory.
A very good red glaze can be produced when zinc ox-
de and baryta are the bases present in the glaze. The copper can be introduced into the glaze in different
ways. Oxalate of copper, simply mixed and not fused with the melt, gives good results; but if previously fused with the glaze, very satisfactory colors are produced. The quantity of copper salt employed depends on the time required for baking the porcelain, and also on the temperature of the furnace. Five per cent is the quantity which is recommended as the most suit able to use, and the addition of a small quantity of tịn oxide is advantageous. The glaze which has given the best results has the following composition :

| Pegmatite. | $31 \cdot 17$ |
| :---: | :---: |
| Sand. | $36 \cdot 37$ |
| Fused borax | $12 \cdot 98$ |
| Dry carbonate of soda. | 4.76 |
| Barium carbonate | 10:39 |
| Zinc oxide. | 433 |
| Corresponding to- |  |
| Silica. | 6102 |
| Alumina. | $5 \cdot 85$ |
| Alkaline oxides. | 10\%2 |
| Baryta.. | $8 \cdot 42$ |
| Zinc oxide. | 451 |
| Boric ac | 9.48 |

This glaze has a degree of acidity represented by the number $5 \% 39$, that of the French glaze, No. 1, being $5 \cdot 14$. The bases are in the proportion which corresponds to the formula :
$\mathrm{Al}_{2} \mathrm{O}_{3}, 3 \mathrm{NaKO}, \mathrm{BaO}, \mathrm{ZnO}$.
By using this glaze with a similar one containing lime, MM. Lauth and Dutailly have succeeded in obtaining a great variety of colors on the same material, and in producing some effects on porcelain which have not hitherto been achieved.

The New Justice of the Supreme Ceurt from an
Anthropological Point of View.
The appointment of Mr. Justice Lamar to a seat upon the bench of the Supreme Court of the United States marks an era in the history of our country. Every one recognizes this as true politically, but I speak of it anthropologically. Mr. Justice Lamar is said to be what is called in French " visuaire"-that is, mental impressions are received. upon his brain with greater facility through the eye than through the ear. One who receives these impressions best through the ear is called an "auditaire." The "visuaire" understands the thought best by seeing the printed page, while the "auditaire" receives his best impression by hearing. In the Supreme Court the arguments of counsel are, of course, oral, and how Mr. Justice Laof counsel are, of course, oral, and how Mr. Justice La-
mar, with this peculiarity of mental organization, will adapt himself to his new position remains to be seen.
These differences in human mental organization are well known to anthropologists. As some men can understand better when they see, and others when they hear, so some can think better when they speak than when they write, while others are the contrary. Governor Corwin, of Ohio, was a notable illustration. Whether in the Senate, in the House of Representatives, at the bar, or on the stump, as an orator he was equaled by few and excelled by none. He thought well and clearly when on his feet. Amid all his wit and humor he was a most consummate logician, and could carry on the thread of an abstruse argument and support it by most cogent reasoning. But as governor or cabinet officer, his state papers were not above the or cabinary. Taking a pen in his hand, his thoughts seemed to scatter, and his writing was commonplace. Addressing the multitude, his thoughts seemed to crystallize into most beautiful forms, and he spake as one inspired. The causes of these differences have never been discovered. They are suggested as a theme for the student-biologist or anthropologist-as instructive as they are interesting.-Thos. Wilson, in American Naturalist.

In view of the above, it might be well for the Senate to send over to the Smithsonian Institution and make a few anthropological inquiries concerning the new candidate for the Chief Justiceship, Mr. Fuller, of Illinois : Is he an "auditaire" or a " visuaire"?

## Compressed Gas.

It has been urged that the use of compressed gas for lighting cars is attended with the danger of the gas cyploding in the event of a collision. The imaginary nature of this danger was shown by the recent accident on the Philadelphia \& Reading, where an escape of compressed gas from a leaky hose simply burnt for a few moments without any explosion. Experience in Germany has been of a similar nature, and a recent collision near Birkenhead, England, between two trains lit with compressed gas was unaccompanied by any explosion. At the time of the collision between the Hoylake and Mersey tunnel trains, the gas in the latter was alight. The gas cylinders of the smashed coaches were taken from the debris and tested to a pressure of 150 lb . per sq. in., and they were found to be entirely uninjured beyond a few severe dents. The gas fittings of the remaining portion of both trains had not suffered in the least through the collision, and, with the exception of those in the smashed cars, not a single lamp glass was broken in either train.

AN IMPROVED CHIMNEY COWL AND VENTILATOR. A cowl or ventilator constructed to fit upon the top of a chimney or ventilating flue, and prevent down currents from entering the pipes, is illustrated herewith, and has been patented by Mr. John D. Cashill, of Princeton, N. J. Its lower section is connected to the upper section by side pipes or flues outside of the

cashilds chimney cowl and ventilator.
main body, providing a free passage for smoke and air from the bottom section to the top of the cowl, as shown by the arrows. The lower section is closed at the top, above the lower openings into the side pipes, and on each of the sides of the upper section is a hinged door opening to the outside air. Above the upper connections of the side pipes with the cowl, and partially closing the pipes, are deflecting plates, which serve to direct currents of air which may enter at the top past the pipe openings, and centrally down to an outlet by way of one of the hinged doors at the sides. There is an outwardly deflecting plate opposite each hinged door, the door to the windward always being closed by the outside air pressure on that side when the wind is blowing, while the opposite one opens freely, to allow


RUSHTON'S LOCKING STEERING GEAX.
of the escape of any air that may be cirawn in at the top, and prevent down draught.

## AN IMPROVED SHINGLING GAUGE.

A gauge which is designed to enable a shingler to lay a large number of shingles without changing his position on the roof is illustrated herewith, and has been patented by Mr. McGuire Slane, of La Cinta, Territory of New Mexico. The body of the gauge is an angled bar having rearwardly extending arms with a series of apertures, through which are passed screws to secure another bar at the desired distance from the first bar, such distance representing the space between the lower ends of the successive rows of shingles. At the junction of the arms with the main bar are ears between


SLANE'S SHINGLING GAJGR.
which are pivoted levers, as shown in the simall figure, the inner end of each lever being forked to receive a pin, $A$, these pins to be driven in to fix the gauge in position, while the outer end of the lever, $B$, is made in a form suitable to receive the blow of a hammer, whereby the pin, $A$, will be withdrawn when the position of the gauge is to be changed. The distance apart of the several rows of shingles is readily regulated by means of the different apertures in the arms, through which screws are passed to fix the position of the rear bar of the gauge, and two taps of a hammer are all that is necessary to remove the gauge and fix it in posi tion again for laying a new row of shingles.

The Electric Light in Medical Investigations. The electric light is getting to play an important part in medical investigations. With a little "pea light" attached to the end of a slender rod, Sir Morell Mackenzie examines the throat of the German Emperor. The little battery that supplies the electricity hangs around the surgeon's neck. These little electric lights are becoming daily of more practical use. By their aid the surgeon pokes and peeks into places he otherwise the surgeon pokes and peeks into places he otherwise
would have to manipulate in "by the feel," and achieves results heretofore impossible.

## A DEVICE FOR LOCKING STEERING GEAR.

An invention providing steering gear for canoes and light sailing boats, which may be locked in any desired position, is illustrated herewith, and has been patented by Mr. John H. Rushton, of Canton, N. Y. A socket adapted to be attached to the deck of the boat is provided on its periphery with a series of teeth, the interior of the socket being screw-threaded, and fitted with a head having a threaded portion. The head carries horizontal arms with eyes at their extremities, which are connected by cords with levers attached to the rudder post. The head also has vertical ears between which is pivoted the flange of a tapered socket to receive the end of the tiller, there being integral with the flange a downwardly projecting arm adapted to engage the teeth on the periphery of the socket fixed to the deck. A double spring is arranged to bear on a shoulder on the lower part of the tiller socket in such way as to raise the tiller into the position shown in dotted lines whenever it is released by the steersman, the downward projection of the flange at the rear then engaging the teeth on the periphery of the socket fixed to the deck, and locking the tiller and rudder in position, the tiller being designed to move freely in either direction when held down to the position shown in full lines in the illustration.

## BINNS' PATENT BANDING SPINDLES.

. The illustration shows a method for banding spindles, invented and recently patented by Mr. Leedham Binns, of the Binns' Patent Band Co., 5th and Berks Sts., Philadelphia. The drawing sufficiently indicates the nature and operation of the invention. The claim made for it is as follows :
"It takes 50 per cent less power to drive the spindles. This means a large item in coal, wear and tear on boilers, engines, shafting, belting and connections." "A firm with 80,000 spindles banded on this plan will save about 300 horse power; allowing 3 pounds of coal per horse power per hour, would save over 1,200 tons 'of coal per annum, more or less, according to speed of spindles. It is impossible for a band to slip on the cylinder.
"There is double the amount of band contact given to each spindle. It requires less than half weight of banding to drive the spindles.
"It drives the spindles more perfectly and up to speed. It spins and twists the yarn more evenly. It requires less oil for lubrication. less wear and tear on the spindles and connections, and the highest rate of speed possible caribe obtained."
Test spindles banded on this plan are rimning at 27,000 revolutions per minutic $;$ ppinning cotton at 17,000 per minute. The royalty asked is 5 cents per spindle, for full term of patent, or 3 cents per spindle per annum, using without contract.
For further information, apply to the Binns' Patent Band Company, head office, Fifth and Berks Streets, Philadelphia, Pa., U. S. A.-Textile Record.

## AN IMPROVED FENCE AND FENCE POST

An invention relating to wire fences, and more particularly to an improved form of post therefor, has been patented by Mr. George H : Guile, of Watertown, N. Y., and is illustrated herewith, the small figure showing the manner of attaching the fence wire to the post. The post is preferably made hollow, and tapering upwardly, its upper open end being closed by a knob or head, while at suitable intervals from top to bottom are annular grooves around its periphery, suitable for the running wires to lie therein against the post. The bottom of the post has a screw-threaded portion by which it screws into the socket of an enlarged upper portion or head of an involute helical or corkscrew-shaped point, this head having polygonal sides for the engagement of a wrench to force the screw into the ground, and the screw diminishing in size to ward its point, so that it will not loosen the surround
ing earth, but firmly and closely embed itself therein. The running wires are held or tied to the post by strips of wire or other flexible material, of band or loop form, the grooves maintaining the wire, in looped form, from any up and down slide. It is obvious that such a fence can be rapidly and easily set up, and, should the posi-

guile's metallic fence and fence post.
tion of the posts be affected by frost, they can be readily readjusted without disengaging the wires.

IMPROVED RAILWAY SWITCH STAND AND SIGNAL.
A simple and positive device for operating a signal automatically as the switch is moved is illustrated herewith, and has been patented by Mr. Nathaniel W, Boyd, of Steelton, Pa. The apparatus is mounted on single tie or sleeper to provide against uneven settling, and may be set up on either side of the track, or with either side presented to the track, all the principal operative portions, as shown in the sectional views, being inclosed in a tight case, to exclude dirt, snow, ice and other obstructions. In the bottom of the casing are spaced ribs and a friction roller, upon which slides freely a racked bar, which projects through slots and


BOYD'S RAILWAY SWITCH STAND AND SIGNAL.
is connected with the switch bar. Through an aperture in the side of the casing projects a horizontal rock shaft having attached to its outer end a weighted hand lever, sliding on and guided by a seginental bar, near the extremities of which are apertures to receive a padlock, by which the lever may be locked to prevent its being raised or the operative parts of the device manipulated. Upon the inner end of the shaft is a segmental spur gear, meshing with the teeth of the racked bar, and a segmental bevel pinion meshing with a bevel pinion on a vertical signal shaft provided with a four-bladed semaphore and a signal lamp, the colored sides of the lantern corresponding with the colored wings of the day signal. In operation, when the lever makes a one-half revolution, the signal shaft is given but a one-quarter turn.


BINNS' PATENT BANDING SPINDLES.

## The First Yankee Engine.

In the biography and diary of Manasseh Cutler, LL.D., of Ipswich, Mass., just issued, is given a description of what is probably the first practical stationary steam engine used in the United States. It appears in the diary of Dr. Cutler as written when the impression was fresh in his mind. It may be called a "Yankee steam engine,' having been made under the direction of a Rhode Island man and containing improvements upon its English prototypes. The diarist was on a chaise journey to New York, and his entry is of the date of June 1.., 1787. He says
"To go to the furnace and engine was nearly eight miles out of my way; but my curiosity was so much excited by the description of so singular a machine, the only one in America, that I could not deny myself the pleasure of viewing it. I arrived at the ore beds (iron ore) at 12 o'clock. The engine was at work raising water from a well 80 feet deep. The iron flue is $21 / 2$ feet wide by 6 feet long, with a square hearth at the mouth, secured from fire by large, thick iron plates. On the back part of the flue is a winding funnel, which passed into a chimney on the back part of the building.
" Above the flue is placed a wooden boiler, 6 feet in diameter, which is kept constantly full of water when the engine is in motion. The boiler rises above the first story of the building, much in the form of the lar cisterns used in distilleries, where it receives, at the top, the condensing cylinder, $21 / 2$ feet in diameter, and which is made of plated iron.
" From the cylinder a large worm passes, with many windings, down to the boiler. The valve that passes into this cylinder is more than 2 feet in diameter, and rises and descends by means of an iron rod, made fast to one end of a large beam. Around the top of the boiler are numerous leaden pipes-some connected with the condenser and some not-furnished with stop cocks for admitting or excluding air or water, as necessary in working the machine; but they are too numerous and complicated to admit of any description from a mere point of view.
"A large reservoir of water is placed in the third loft of the house, constantly affording water to the works


DESIGN FOR A STORE AND STABLE ADJOINING.*
"The immense weight of the beam, the cast iron wheels, large chains, and other weighty parts of the works occasion a most tremendous noise and trembling of the large building in which it is erected when the machine is in motion. By the sides of the well from which the water is drawn are two other wells, 70 feet deep. These are sunk down in the bed of the ore, and in these are the workmen, ten or twelve in number, who are digging ore.
"The large beam is a massive piece of timber, nearly 4 feet in diameter and 20 feetlong, being two verylarge oak timbers nicely forged together. It moves on a large iron bolt in the center, like the beams of a scale, and has two arching timbers at each end, forming the segments of a circle, along which two chains of a prodigious size play as the beam moves.
"One of these chains lead to the piston or valve of the condenser, and the other, at the opposite end, to the pumps in the well. There are four cold water pipes, one feeding pipe, and one venting pipe. By the same motion of the beam which raises the water out of the well, all these pipes open or close by means of stop cocks'or valves, as the design of them require.
"The ore is raised in three large buck ets, which hold about one ton weight, let down and drawn up by large chains, car-
flue consumes two cords of wood in twenty-four hours. *This engraving represents a beautiful private residence, erected last year, at the corner of Sixth Avenue and 119th Street, in this city, and the illustration is taken from the July, 1887, number of the Architects and
Builders Edition of the Scientific American. The design for the store and stable appeared in the June, 1887, number of the same publication, and also in the Sanitary Engineer. The arrangement of the store and stable together will suggest to the country merchant a degree of convenience which but a few are accustomed to, and the general reader will accord to the architect much and deserved credit for producing such a picturesque and well adapted design for so useful and, at the same time, inexpensive structure. In this connection, we beg to call the attention of any reader of the Scientric Amerrcan who is about to erect any kind Architects and Builders Edition of the Scientific American, engravings and specifications of almost every kind of a structure, from a cheap rustic well honse to a church edifice costing many thousands of dollars. Thirty-two numbers have been published, and single copies, or the entire number, may be had at the offlce of this paper and of all news dealers. Price 25 cents each number. -Ed.
ried from the well to a large capstan, which is con stantly turned.by an ox. As one bucket rises another descends. These wells are kept dry by the water continually drawing off into the well where the pumps are fixed, and the pumps keep the water below the height where the men work.
"This curious machine was made under the direction of Mr. Joseph Brown, of Providence, and is a standing proof of the abilities of the able philosopher. The in vention was not new, but he has made many valuable improvements in simplifying and making the working of it more convenient above what has been done in Europe. It has cost upward of $£ 1,000$ sterling."-Bos ton Àdoertiser.

The largest railroad station is St. Pancras, London, i 700 ft . long, 243 wide, 100 high, covering 10 acres.


RESIDENCE CORNER OF 119TH STREET AND SIXTH AVENUE, NEW YORK.*
wall of the well, so that the steps serve as braces therefor. A railing is provided for each side of this spiral stairway, to facilitate ascent and descent, and the entire well or tower is constructed independent of the walls of the building, being designed to stand if the building should fall.

## A Floating Sawmill

Along the bayous and lagoons of Florida grows some of the finest timber in the South, much of it in places considered entirely inaccessible until J. L. Maul \& Son hit upon the plan of constructing a floating sawmill. This idea they carried into execution, and their mammoth mill, which now lies off the banks of Burton \& Harrison's hammock, near Palatka, is, according to the Southern Lumberman, a marvel of mechanical ingenuity. It has a length of eighty and abreadth of forty feet, and is so solidly built that the motion of the machinery has no more effect upon it than if it were built upon the solid land. Although it stands five feet high out of the water, its draught is only about a foot and a half, which permits it to be taken into the shallowest lagoons, where timber could not be floated. It is equipped with the latest machinery, planer, box header, shingle saws, and a fine forty horse power engine and boiler. On the hurricane deck is the cabin and office for the proprietor, while the cook house where the men board, is in a corner of the main deck, which is otherwise free for the piling of lumber, the machinery being all below it. This floating mill has so far proved eminently successful, exceeding the expectations of the proprietors in this respect, and is probably the pioneer of numerons craft of the same kind.

THE WHITE MOUNTAIN HAMMOCK CHAIR.
A strong and simple hammock chair, designed for use in the house, or on the lawn or in camp, is shown in the accompanying illustrations, the smaller figure representing it suspended in a stand, as adapted for use in places where the usual mode of suspending it cannot be followed. Its construction is such that it can be readily balanced in all positions, without needing fastenings to keep it in place, and the foot rest can be adjusted to suit the tallest or shortest persons. The seat is inade of strong canvas, and the chair will easily support the heaviest person; while it is so light that an in-

[^0]ith so light that an in ts ind removed from place to place so that the occupant may always choose a resting place in the shade, while it can be quickly taken


## A SELF-ADJUSTING HAMMOCK CHAIR.

apart and folded in a compact, portable package for transportation. The Alford \& Berkele Co., of No. 77 Chambers Street, New York City, are the manufacturers' agents, and will supply any additional infor mation desired.

The Gramophone.
At a recent meeting of the Franklin Institute, Philadelphia, Mr. Emile Berliner, of Washington, read a paper on his lately invented apparatus for recording and reproducing musical sounds and speech, called the "gramophone." Mr. Berliner gave a historical sketch of the progress of invention in this field and a detailed description of his own method and apparatus. 'The speaker illustrated his paper with the aid of the lantern and by the exhibition of the apparatus. He demonstrated its capabilities by recording on one of his prepared zinc plates several songs and speeches, etching the plate, and reproducing the songs and words then and there. Several etched record plates, prepared previous to the meeting, were likewise presented, and the reproducing apparatus faithfully emitted the songs and spoken words recorded upon them. The reproduction was loud enough to be distinctly audible all over the ecture room. The music could be easily recognized Speech, though not so clearly rendered, was for the most part intelligible.

## AN IMPROVED HOOF EXPANDER.

A device adapted to be placed within the hoofs of horses, inside the shoes, to prevent the contraction of the hoofs and to expand them, is illustrated herewith, and has been patented by Mr. Lawrence Monahan, Jr., of Morris Plains, N. J. It has a thin head, adapted to be received between the toe and the shoe, a pair of spring legs fixed to the head and arranged to be seated on opposite sides of the frog, with laterally projecting prongs to be forced into the sides of the heel by the tension of the spring legs. Instead of making hoof ex-


MONAHAN'S HOOF EXPANDER.
panders in various sizes to fit different hoofs, as heretofore, the device covered by this invention can be readily adjusted to suit a hoof of any size, the legs, with their respective spring curls, forming two separate sections, on the inner extremities of which are reverse toothed clutch disks, made to interlock with each other, and having central pivot holes with a pivot bolt having a clamp nut on its threaded end. The expander is applied by introducing the spring curls between the toe of the hoof and the shoe, when the legs are sprung to allow the prongs to enter the sides of the heel, and the clamp nut is screwed up to lock the two clutch disks together and hold the pronged legs in position.

## AN IMPROVED WINDOW VENTILATOR

A guard and sash rest, to be applied on the lower portion of a window casing, enabling the lower sash to be supported at such height as will give efficient veni. lation through the then separated sash rails, has been patented by Mr. Charles R. Long, of Louisville, Ky., and is. illustrated herewith, the arrows indicating the incoming air currents. A pair of weather strips or sections are adapted to rest by their bottom edges on the edge of the window casing, just inside of its grooved sashway, one of these sections having an outwardly extended rib or strip, with dovetailed tongues and grooves designed to engage corresponding dovetailed tongues and grooves in the other section, and permit the longitudinal sliding of one strip upon the other, for extension or contraction, to correspond with the widths of various windows. This strip extends into the vertical plane of the sash, and serves when in position as a support for the sash, the upper edge of both weather strips extending above the rest-strip. Lying against the outer face of the weather strips at their end portions, and projecting slightly beyond the ends, blocks about the width of the sash groove are adjustably attached, to permit of being raised or lowered sufficiently to bring their lower edges to the bottom of the grooved sashway when the weather strips are resting on the edge thereof, such adjustinent being effected by thumb screws. By still further lowering these end blocks in relation to the weather strips, the latter may be held to support the sash and leave a space along the bottom edge of the strips through which air may enter.


THE THIRTY-SIX INCH EQUATORIAL TELESCOPE OF THE LICK OBSERVATORY.
by james e. kerler.
The great telescope of the Lick Observatory was mounted in the south dome on Mt. Hamilton in the early part of the present year, and is now, so far as the work of the builder is concerned, practically complated. There still remains the adjustment of all its complicated details, which properly devolves upon the astronomers who are to use the instrument; and the gradual perfecting of which will doubtless extend over a period of many weeks or even months.
The history of this great undertaking, from the conception of the original idea in the restless brain of James Lick to the completion of the actual instrument in brass and steel on the summit of Mt. Hamilton, is so well known that I shall not further revert to it, but confine the present article to a description of the telescope and the machinery necessary for its operation, as they now stand in the dome of the observatory.

The pier of the telescope is a rectangular cast iron column weighing 20 tons, built up of four sections rigidly bolted together. The thickness of the iron is about $11 / 4$ inches. The lower section, which at the floor level is 9 by 5 feet, expands into a broad base, 16 feet long and 10 feet wide, resting upon the solid masonry foundation which forms the tomb of James Lick. This casting weighs 5 tons, and is the heaviest single piece hauled to the summit in the construction of the observatory. On top of the pier is a balcony, surrounding the massive head piece which forms the support for the polar axis. The upper section of the pier, 4 by 8 feet at the top, contains the driving clock. A light iron spiral staircase, running from the base of the pier on the south to the balcony, gives access to the clock room and machinery above, and adds greatly to the appearance' of the mounting.

The weight of the pier is distributed over a number of heavy steel screws in the base, which afford means for the exact adjustment of the polar axis, but it is possible that, after this adjustment is perfected, the base will be set in cement and the pier permanently fixed in position.
The telescope is intended to be moved by an assistant stationed on the balcony which surrounds the top of the pier. In the specifications for the construction of the mounting, most of the following mechanical movements or conveniences are called for
An observer at the eye end can :

1. Clamp in declination.
2. Give slow motion in declination.
-3. Read the declination circle (two verniers).
3. Clamp in right ascension.
4. Give slow motion in right ascension.
5. Stop or start the clock.
6. Read the right ascension circle (one microscope).

An assistant on the balcony can :
8. Clamp in declination.
9. Give quick motion in declination.
10. Give slow motion in declination.
11. Clamp in right ascension.
12. Give quick motion in right ascension.
13. Give slow motion in right ascension.
13. Give slow motion in rig
14. Stop or start the clock.
15. Read the right ascension circle (two microscopes).
16. Read a dial showing the approximate declination.
The arrangement of the various devices by which these movements are effected was left to the makers, Warner \& Swasey, who designed the eutire mounting, with the exception of the eye end, which was made essentially from plans prepared by Professor Langley and Professor Holden. The telescope canalso be moved quickly in the ordinary way by the observer at the eye end, although, as the whole train of gearing extending to the balcony must then be set in motion, this cannot be done as easily as if the quick motions had not been provided. A pressure of 10 lb . on the spokes of the quick motion wheel on the balcony will move the telescope in right ascension; a pressure of 20 lb . is required for the motion in declination. The telescope can be reversed, or the same star brought into the field on opposite sides of the pier, in a little over two minutes.
The polar axis is a finely finished shaft of steel, 12 inches in diameter and 10 feet long, weighing $2,800 \mathrm{lb}$. It is pierced centrally by a 6 inch hole, through which passes a shaft for communicating the motions in declination to the telescope from the balcony. The polar axis turns in bearings of Babbitt metal, but the greater part of the weight on its upper end (some 14 tons) is supported by a collar containing hard steel rollers encircling the axis just outside of the upper bearing, and carried by a lever which leads down into the hollow head piece and of the axis is turned to a flat surface, and the thrust of about 8 tons is taken by two rows of hard steel balls rolling in concentric grooves. To the upper end.of the axis is bolted the cast iron cylindrical case, 9 feet in length, which contains the bearings of the declination axis.
The declination axis is 10 feet long and 10 inches in
diameter, and is also made of steel. To one end is
bolted the cast iron central section of the telescope bolted the cast iron central section of the telescope nation coarse circle, and carries indexes which point out the approximate declination. The coarse circle is fixed to the declination axis case, and supports the rod which carries the weights for counterpoising the tube. This rod is made of a brass tube shrunk on to a steel core, and the weights, which are in the form of circular disks, travel on a thread cut in the brass. Each disk is 2 feet in diameter and weighs 240 lb . Eight of these disks are required to counterpoise the telescope.
As the indexes of the coarse circle cannot always be conveniently read from the balcony, a dial is fixed to the sleeve of the declination axis where it can always be seen by the assistant, and its pointer shows the declination of the telescope equally with the coarse circle.
The bearing of the declination axis toward the telescope is relieved of the weight of the tube and its attachments (about $41 / 2$ tons) by a double counterpoise lever, one end of which carries a collar with steel rollers, like that on the polar axis, the other an annular iron casting weighing 500 lb ., which surrounds the sleeve of the declination axis just inside the coarse circle. The steel rollers embrace the axis close to the telescope tube, and as the counterpoise levers are portion of the pressure on the inner bearing in every position of the telescope.
The center of motion of the telescope, or intersectio of the polar and declination axes, is 37 feet 10 inches above the masonry foundation. The sight line of the telescope is $51 / 2$ feet from the center of motion, and the end of the rod for counterpoising the tube 12 feet.
The tube is made of hard steel plates riveted together. It was shipped in four sections (besides the cast iron central section), which are connected by bolts through flanges at their extremities. The plates near the middie of the tube are $\frac{8}{16}$ inch thick, and the thickness of the sheets diminishes toward the ends, where it is $1 / 8$ inch. The tube is 52 feet long, 4 feet in diameter. in the middle, and tapers to a little over 3 feet at the ends. In the shops of the makers it was tested by placing a ton on each end when supported in the middle, and in other ways, the greatest deflection produced being about one-eighth of an inch. The inside of the tube is well blackened and provided with numerous diaphragms, which can be removed when it necessary to work in the interior. It was a curious sight during the erection of the instrument to see a number of painters and other workmen twerging from
the end of the tube, like humble-bees swarming out of the end of the tube, like humble-bees swarming out of hollow stalk.
The object glass, by Alvan Clark \& Sons, is secured to a flange on the outer end of the tube in the usual manner. Its clear aperture is 36 inches, and the distance of the focal plane from the back surface of the flint lens is 56 feet. The lenses are $61 / 2$ inches apart, and the total thickness of glass traversed by a ray of light is about $21 / 4$ inches. The weight of the objective in its cell is 530 lb . An ingenious machine was and photographic lens.
The tail piece at the eye end of the telescope is sur rounded by a revolving jacket, provided with position circle, clamp, and slow motion screws, for carrying the spectroscope and other accessory instruments. Clamps on oppositesides of the jacket receive two hollow brass rods 6 feet long and 3 inches in diameter, and any apparatus attached to these can be rotated easily and yet firmly a,bout the axis of the telescope.
The draw tube at the eye end is 8 inches in diameter, and is focused by a wheel surrounding and concentric with the tube. This wheel acts upon three screws, parallel to the telescope axis, which move the draw tube in or out, and allow the heavy micrometer or other instrument to be adjusted to the proper focus with great ease and accuracy. The eye end is surrounded by a steel ring 39 inches in diameter, to which lead all the clamps, slow motions, and other contrivances operated by the observer. The spokes of the right ascension wheels are notched, so that they can be distinguished from the declination wheels in the dark.
There are three finders of $23 / 4,4$ and 6 inches aperture,
and in addition to these, brackets to which the objec tive and tached when a finder of great power is desired. The makers are providing a double slide micrometer eyepiece for this or the 6 inch finder, which will enable the great telescope to. be pointed at a faint object by
means of any neighboring bright star-a contrivance means of any neighboring bright star-a call
especially valuable for photographic work.
The three microscopes for reading the finely divided ircles from the eye end (two for declination and one for right ascension) also pass through this ring. By turning a switch close to the eyepiece of the correspondng microscope, the circle to be read is illuminated by an incandescent electric lamp. Attached to the ring are also a small sidereal clock, a telegraph key for re-
cording the time of an observation, and an electric switch for starting or stopping the driving clock.
A cable containing nine wires for the electric lights,
switches, and key leads from the pier to the eye end. It was not considered advisable to introduce the complicated contact apparatus which would be required to make the proper connections through wheels on the axes, and a simple cable is employed, but two safety plugs are inserted where it crosses between moving parts, and their parts can be easily reinserted in case they should draw when the telescope is inadvertently turned too far in one direction.
The driving clock in the top section of the pier is, on a large scale, essentially the same as the clocks employed by Warner \& Swasey on their smaller equatorials and chronographs, except that it has an electric control, by which its rate is kept in agreement with that of a standard astronomical clock. One of the arbors which turns in one minute is converted into a chronograph, and connected with the system of electric circuits at the switch board in the long hall of the observatory. The electric control is operated by the relay points of this chronngraph, so that any clock recording on the chronograph regulates the driving clock of the telescope. The clock can thus be controlled equally well on either sidereal or mean solar time.
The equipment for photographic work is very complete. The photographic corrector is a meniscus of crown glass, 33 inches in clear aperture, and weighing in its cell 150 lb . When in use it is placed in front of the visual objective, and the focus of the combination thus formed is about 10 feet above the eye end. At this point a large aperture is cut in the telescope tube, giving access to a plate holder capable of taking a dry plate 20 inches square or any smaller size, and provided with all the necessary adjustments. An image of the moon formed here is about $51 / 8$ inches in diameter. Instead of a dry plate, a board holding an enlarging lens can be inserted in the plate holder, and a magnified image of a planet projected into a small box camera crewed to the draw tube at the eye end.
The system of counterpoising differs considerably rom that used for small instruments. On account of the size of all the parts, it would be very troublesome to readjust the balance by shifting the position of the counterpoises when any change of weight is made. The telescope therefore always carries its maximum load, and when an accessory instrument is added, its equivalent in weight is taken off at the same place.
The most important of the accessory instruments are a filar micrometer by Fauth \& Co. and a large spectroscope by Brashear, both admirable specimens of the instrument maker's art.
A few words about the surroundings of the telescope may be in place here. The steel dome, 75 feet 4 inches in diameter, was made by the Union Iron Works of San Francisco. , The weight of its moving parts is 100 tons. It is rotated on the plan devised by Captain Floyd and Mr. Fraser, by an endless wire rope which passes around the circumference of the dome, over
guiding pulleys, and around a grooved wheel turned by a hydraulic motor in the basement. The dome can be turned completely around in nine minutes.
The slit for observing is $91 / 2$ feet wide. It is closed by two steel shutters weighing 15 tons, which are opened by an endless rope hanging inside the upper gallery. A pull of 5 lb . is sufficient to move the shut-

The hydraulic elevating floor weighs 26 tons, is $611 / 2$ feet in diameter, and is movable between fixed galleries through a range of $161 / 2$ feet. It is operated by four telescoping hydraulic rams, which have replaced the motors formerly employed for the purpose, their motion having been found inconveniently slow. The motors are retained, however, and can be connected in place of the rams whenever desired. By means of the rams, the floor can be raised in a little less than ten minutes, and lowered in four, with an expenditure of 300 gallons of water. The floor is counterpoised by eight heavy blocks of iron, which slide in vertical columns and relieve the rams of all but two tons of the weight to be lifted. The waste water from the rams and motors runs into a reservoir forty feet below the level of the observatory, whence it is pumped by a windmill back into the high service reservoir which supplies the pressure.
Two small hand wheels on the elevating floor control the hydraulic machinery in the basement. The direction of the motion imparted to the machinery is determined by the direction in which the wheels are turned, the rapidity by the number of turns given to them, thus securing a perfect control. The dome continues to turn ás long as its wheel is displaced from the normal position; but in order to avoid accidents to the telescope, the mechanism of the other wheel is so contrived that the floor rises or falls only when the wheel is turning, and stops when the wheel is stopped.
The interior of the dome is beautiful and impressive. The walls are of California redwood, handsomely finished with a dead surface to prevent annoying reflections. The elevating floor and galleries are laid in narrow concentric rings, with ornamental borders of walnut and cherry. The dome overhead is painted pale pea green, the edges of the girders and intercos-
appearance of airiness and lightness to the structure which is in harmony with its movable character

The somber black with which the great instrument in the center is painted, relieved from absolute deadness by the polished brass work of the fittings, increases the ponderous aspect of the telescope and asserts the dignity of its purpose. I have always been interested in observing the impression made by the interior of the dome on the many visitors who come to the observatory. Even the habitually frivolous become thoughtful when they enter the presence of the great telescope.
It is as yet much too soon to attempt any judgment as to the success with which this instrument will meet the different requirements which have been laid down for it. The great size which makes it most valuable for one class of work renders it unsuitable for apother. But few observations have been made; no photographs have been taken, except for correcting the figure of the lens; but the glass has been tested officially by Prof. Newcomb, and pronounced by him and by the Clarks themselves to be as near to perfection as the art of the optician can attain, while the mounting has been inspected officially by Prof. Newcomb and Mr. Burnham, unofficially by Mr. Brashear, Mr.

## SPECTROSCOPE FOR THE LICK OBSERVATORY.

There has recently been constructed at, and shipped from, the astronomical instrument works of Mr. John A. Brashear, Allegheny City, Pa., a spectroscope of unusual power and completeness. It was forwarded to its ultimate destination, Lick Observatory, Mt. Hamilton, California, there to be employed in astronomical research in connection with the great telescope. The contract for the spectroscope, which was let in December, 1886, called for an instrument of the highest capabilities, and for adaptation to the pursuit of two special studies. These were : 1, the study of the physical constitution of the stars, and, 2 , the important study of stellar motion in the line of sight. To conduct the latter study requires mechanical adjustment of the greatest delicacy. The spectroscope in question is of the compound order, $i$. e., possessed of both prisms and gratings. Of prisms, the instrument includes in its equipment three varieties. Of gratings, it contains one of the largest and most dispersive ever made, showing 46,000 parallel lines, ruled by a diamond splinter upon speculum metal, and so closely placed as to number 14,438 to the linear inch. This number is regarded as the best for general work. The ruling was done by Professor Roland, of the Johns Hopkins Uni-
pass through prisms, as the observer desires. Through the use of a prism, a single spectrum is producedif the prism is of glass. With the grating, a multiple spectrum is obtained-a result of the highest importance, in that the separation of the dark lines is so much greater that these lines-the indices of the nature of the remote body-can more readily be identi fied and their significance interpreted. An additiona advantage in the use of the grating is the production of a normal spectrum. With the prism the spectra show a compression or "crowding up" at the red end. By means of the observing telescope that forms a part of the Brashear instrument, the first, second, third, or fourth spectrum can be taken up and studied. This powerful instrument will be rigidly attached to the Lick telescope by means of steel projections at the eye end of the larger instrument. Every arrangement has been made for the most delicate adjustment, and for the collimation of all optical parts. Micrometers are employed for reading with the greatest degree of accuracy, and to the $1^{\prime \prime}$ of arc, and by the use of delicate and accurate mechanism, the relative qualities of the two spectra-that produced artificially and that from a celestial body-can be studied most satisfac torily. This spectroscope has been tested in the


A A. Steel support rocis on end of telescope. B. Obeerving telescope, 221/2 in. focns, 21/ in. aperture. C. Collimator. D. Reversion attachment, containing a Christie half prism and reversion prism. E. Reversion micrometer. F. Prism and ref raction grating table. G. Graduated circle und vernier. H H. Counterpoises. J. Electrical comparison attachment

Saegmuller, and others, and has met with their entire approval.
The only actual work which has been attempted is a series of micrometric measurements of the satellites of Mars, made by myself during the past opposition whenever the work of construction would allow; but these observations, although made under the most unavorable circumstances with an imperfectly adjusted instrument, promise success in this important field of work, while the brightness with which these ordinarily difficult objects appear in the great telescope attests the extraordinary light-gathering power of its objec tive. Enough has been shown, however, to demon strate its undoubted fulfillment of the condition im posed in the trust deed of James Lick, that of being superior to and more powerful than any.telescope ever yet made."

ONE of our contemporaries rightly observes that radical changes in the science of steam engineering have not been numerous in the last quarter of a cen tury, but improvements in the details of construction and operation have been many and of high utility. How important this progress has been in its econo mical results is indicated by a statement recently made that railway trains in England are now driven at an average speed 14 per cent higher than twenty years ago, with but little more than half the quantity of coal.
versity, Baltimore, the plates being made by Mr. Brashear. The power conferred by this grating upon the spectroscope is equivalent to that of at least fifty prisms-assuming it to be possible for that number to be used at once. The office of this vital portion of the instrument is the dispersion of light, thus enabling the observer to define the nature of its source. For the purpose of comparing the spectra of celestial objects with those of known elements (in combustion), a "comparison attachment" forms part of this spectrocope. By its use, and with the aid of the electric current, can be obtained spectra of all gases or metals, which spectra, by means of a totally reflecting prism, can be sent into the spectroscope and there displayed, superimposed on a spectrum of a star or other celestial body. By means of a device invented by Professor J. E. Keeler, of the Lick Observatory, the two spectra can be placed in such exact relations with each other, and these relations and their absolute coincidence or displacements measured so accurately, that the study of stellar spectra, it is confidently expected, will be greatly advanced. The action of this instrument upon light may here be briefly outlined. The ray, proceeding from some infinitely remote body under contemplation, through the 36 inch lens of the Lick telescope, falls upon the slit of the collimator of the spectroscope, thence spreading in a beam that falls upon the lens of the collimator, to emerge therefrom in parallel rays that fall upon the grating, or
solar spectrym with splendid results, the great $B$ group coming goft with remarkable clearness and sharpness.

## How to Use Glue

Wor glue to be properly effective it requires to penetrate the pores of the wood ; and the more a body of glue penetrates the wood, the more substantial the joint will remain. Glues that take the longest to dry are to be perferred to those that dry quickly, the slow drying being always the strongest, other things being equal. For general use, no method gives such good results as the following: Break the glue up small, put it into an iron kettle, cover the glue with water, and allow it to soak twelve hours. After soaking, boil until done. Then pour it into an air tight box, leave the cover off until cold, then cover up tight. As glue is required, cut out a portion and melt in the usual way. Expose no more of the made glue to the atmosphere for any length of time than is necessary, as the atmosphere is very destructive to made glue. Never heat made glue in a pot that is subject to the direct heat of the fire or of a lamp. All such methods of heating glue cannot be condemned in terms too severe. Do not use thick glue for joints or veneering. In all cases work it well into the wood, in a similar manner to what painters do with paint. Glue both surfaces of your work, except in cases of veneering. Never glue hot wood, as the hot wood will absorb all the water in the glue too suddenly and leave only a very little residue.

## A DWARF ARMADILLO.

In South America, in the stony regions of Mendoza and San Luis, lives a strange little armadillo, discovered in 1824 by Harlan. The colonists have given this singular animal various names. In one place it is called Juan calado, "John the pointed," on account of its pointed snout, and elsewhere it is the pichiciego, the "little blind one," for it is supposed that, like the mole, whose form and habits it possesses, it must be blind. The scientists of the region call it the cuirassed mole and the Chilian mole. Naturalists have baptized it Chlamydophorus, a word which means " wearer of a mantle," and to this generic name they have added the specific epithet of truncatus, for, in fact, the animal appears to have lost the posterior extremity of its body. There are armadillos of all sizes, from the giant Priodontus, of Paraguay whose length exceeds five feet, to the nine banded spe cies, which is about eighteen inches long; but there is none smaller than the truncated chlamydophorus, the largest specimens of which do not ex ceed five inches in length. In our engraving this latter is shown of naturalsize. Among all the members of this family of armored animals there ar Cortainly some that are better protected. Many have a com pleter shield, recalling those armors of overlapping plates formerly worn in the lists in fighting on foot.

The truncated chlamydo phorus is lightly armed. Its short head, which is strongly convex behind, terminates in front like a sharp cone, and is covered above by a portion of the carapax that extends over the entire back.

This armor is a solid bony plate (with polygonal di visions) in the shape of a rounded shield, having in the center of its posterior end an aperture, through which emerges a sochort tail with an entlarged extremity. The rest of the body, with the exception of the tail, the sole of the feet, the chin, and the snout, which are naked, is covered with long, soft, fine, yellowish fur. The short, stout legs are remarkably adapted for dig ging, especially the fore ones the feet of which are armed with five large and strongly curved claws. The hind legs, which are not so strong, have likewise five toes to the foot, but the claws are not so strong; and are obtuse, straight, and flat, while those of the fore feet, in the form of a scythe blade, and sharp on the external edge, increase in size from the second toe to the external one, which latter is provided with a wide, flat claw.
The dentition is really that of an armadillo-eight to ten pairs of teeth to each jaw, with neither incisors nor canines. The molars, which are covered with enamel have no roots and are hollow in the lower half. The one in the center of each row is the largest; the others diminish in size to each extremity. The mouth, which is very small, opens beneath the pointed snout. The lat ter, which is cartilaginous, recalls that of a hog in miniature. The tongue is long, fleshy, and covered with papillæ.
To consider it more closely, the carapax is of a horny consistency, of a whitish or dirty yellow color, quite thick, and consequently not very flexible; but the bending of the body is favored by the manner in which the bands are articulated. In fact, each band is united to its neighbor by a membrane that permits of a certain extension, so that this cuirass, formed of intricated seg ments, does not prevent the animal from rolling itself up into a ball. The dorsal carapax is formed of twenty four transversc bands, each composed of seven or eight scales, then of fifteen to seventeen, and eighteen to twenty-four, in measure as they approach the posterior region, the body progressively widening from the shoulders to the pelvis. These scales are irregular and
tubercular in the anterior region and regular and rectangular in the posterior

The armor that covers the extremity and forms a right angle with the rest of the body is inflexible, and consists of five or six concentric rows of scales arranged in a semicircle, and each of them being square or loz-enge-shaped. The upper and largest row is made up of twenty scales, and the smallest consists of but six. At this point the tail emerges, and is attached to the armor of the rump by a membrane. This armor is united with the pelvis and firmly connected with its apophyses; but the dorsal portion does not adhere so firmly to the back of the animal, the plates being attached to the body only along the spine, through a membrane. The frontal region of the carapax is firmly attached to the cranium, and, further behind, the plate


A DWARF ARMADILLO.-(NATURAL SIZE.)
are fixed by two scales to projecting eminences over the eyes. The immovable part of the cephalic carapax is formed of two transverse rows of four plates each, and of three others of five plates.
The animal's eyes are very small, and are partially covered by the hairs of the face. There are no ears. The auditory canal opens in a narrow orifice surrounded by a cutaneous fold.
It is not yet known with certainty what the animal's habits are. Doubtless, like other armadillos, it lives upon insects and worms, and perhaps also upon the tender roots and bulbs that it finds in the course of its underground burrowing. It is a nocturnal animal, seeking desert and uncultivated places.
According to Goering, the traces that this singular animal leaves upon the ground are characteristic. Since, in walking, it drags its feet instead of lifting them, it leaves on the ground two continuous furrows that are readily recognized. The entrance to the bur-
ow has, too, a special conformation. On coming out the animal throws to the right and left the earth that incommodes him, and probably sweeps it with his paws. This earth forms a hillock on each side, and between these is a passageway. No other South American mammal has such a habit.
The truncated chlamydophorus is far from being well known. It appears to be nowhere common, and, as the natives make no use of it, they do not hunt for it. The skeleton of the animal exhibits remarkable pecu liarities. The pelvis is strong, and the legs, which are robust, with flattened femurs and humerus, show by the insertion-apophyses the power of the muscles that cause them to act. This remarkable genus is separated from the armadillos by a great number of features. The chlamydophorus (says Oscar Schmidt, in a recent pub lication), which inhabits the regions near La Plata, differs so much from the armadillo (Dasyphus), properly so called, despite the appearance of relationship, that between these two genera there must have been quite a series of transition forms whose evolu tion required no less than several geological periods. The German scientist, who is a warm partisan of Darwin's doctrines, thinks that it is necessary to go back to the tertiary period to evolve the chlamydophorus from the armadillo.
Carl Vogt remarks that by the strongconformation of its limbs, and other peculiarities of its skeleton, the animal under consideration nore closely approaches the extinct gigantic animals of the group of megatheriums and allied formsthan does any other living edentate. $-L a$ NTature.

## E Trial of the Maxim Gun.

A portion of the official report of the Austrian war office on the trial of the Maxim gun has been issued. From this it would appear that the preliminary trials of last July established the superiority of the Maxim system over all others, both as regards rapidity of fire and ease of manipulation, and thersupon the Austrian government ordered exhaustive experiments to be made, which included tests for range and accuracy at distances from 200 meters to 1,575 meters, and tests for strength and durability. The results showed that the accuracy of the Maxim gun is superior either to the twobarrel Gardiner or the fivebarrel Nordenfelt. For testing durability, series. of 334 rounds, fired consecutively, were almost exclusively used, and an average speed of ten rounds per second was obtained, not only with the greatest elevation and greatest depression, but also when traversing the gun laterally through the greatest angle that the mounting would allow. In all, 13,504 rounds were fired, and the report states that, on the whole. the gun behaved extremely well, the loading and firing mechanism operated faultlessly, and, if certain reserve parts are supplied, and the buffer spring made stronger, the durability of the weapon would be guaranteed under all circumstances. 'After 6,356 rounds had been fired, the weapon was tried for accuracy, at a target 2 meters by 3.6 meters, at 600 meters range, and an excellent diagram obtained. The 11 millimeter rifle cartridge (model of 1877) was used, and trials of the barrel with English Henry rifling did not show any advantage over that of the Werndl barrel. The report is signed by Colonel H. Huffizky.

## Removal of old Varnish.

A Mr. Myer has just patented, in Germany, a composition for removing old varnish from objects. It is obtained by mixing 5 parts of 36 per cent silicate of potash, one of 40 per cent soda lye, and one of sal ammoniac (bydrochlorate of ammonia).

## Beef, Blood, and Bones.

Hammond, Ind., would not be much of a place without that great cattle slaughtering establishment, the Hammond Packing Company. This firm, on an average, kill a thousand head of cattle per day, six days in the week. This mighty procession of animals surges forward, accompanied by the sound of the trampling hoofs, hoarse bellowings, and tossing heads of the massive beasts doomed to die for the nutrition of mankind. The scene outside the packing house is, in one respect, instructive and suggestive. Shambling around in pens outside the packing house, the uneasy creatures are kept waiting for certain barred gates to be opened and apparent liberty regained. Beside these pens a small streak of dense-looking liquid trickles lazily to a broad stream of water in the distance. Between these cattle and the muddy stresea stands one huge connecting link, and that is the great, solidlooking slaughter or packing house. The beasts march in at one end of it, and of all that mass of beef, blood, and bones, nothing is thrown away or wasted, except that little, muddy stream, which is the geometrical difference between the slaughter house and the cattle -the useless residue of a great industry.
The Union Stock Yards Company, of Chicago, occupy 360 acres of land; the Hammond Company owns 90 acres in and around its works.
Let us follow the different operations of killing and dressing under the tutelage of S. F. Fogg, superintendent. Dinner is over, lunch cans are placed aside, brawny arms are bared, and gleaming knives are hastily resharpened. Boys with long poles go to the pens, open the gates and drive the required number of steers to small inclosures, right close to the butchering shop. From this inclosure they are driven along a narrow

Presently, doors divide the cattle into small pens, and there they stand in a dumb state of visibly nervous apprehension. A strong, active young man climbs up and walks on boards by the side of the tops of these pens. He carries a long-handled hammer, commonly known as a poleax. Stepping up to the first pen, the imprisoned steer looks upward with large, terrified, rolling eyes, as if suddenly conscious of danger. Too late. The vigorous arms skillfully swing, and the next minute the hammer crashes on the head of the beast between the eyes and horns; stretching it senseless on the ground with a dull thud. On and on goes the slaughterer, never halaing or hesitating, and the lane of live stock, in a remarkably short time, is a lane of stunned carcasses, ready for skinning and dressing. The butchers' assistants now open the inside doors, and, attaching a strong iron chain to a hind leg, rapid machinery drags the animals from the pens, which are speedily reoccupied by other batches. The skinning is a wonderful example of regular, well directed labor, earh man having his specially appointed work and doing nothing else. First comes the "sticker," who cuts the throat and collects the blood in shallow wide, circular pans. Then who attack the front foot skins the head, next men who attack the front foot,
hind foot, belly skin, leg worker, men on sides pullhind foot, belly skin, leg worker, men on sides pull-
ing out the caul, men cutting hams, chopping briskets, cleaning out throat, man rubbing right hand side, man on left hand side, man who catches the film, backer, one who splits, emptying cattle of nucleus of fronts, man to drop hide, splitter of necks and trimmer of inside, trimmer on outside, finishing up with five washers to carefully cleanse the quivering beef with clean water, and pass it to cool places ready to be moved to the immense refrigerators, where it
hangs for 48 hours before being loaded into the icecooled freight cars. Thence it is rushed to cities in America and to steamers, waiting to be conveyed across the Atlantic.
Let us see, now, about the parts not used as beef. The steer is hanging by a leg to a strong iron chain, and the hide strippers are busy. It is the rule in all packing houses for special men to skin special parts of the hides, and this is one reason why packer hides are so strictly alike in trim and take off, and why the tanners are usually willing to pay a cent per pound more for these hides than for those taken off in the country towns. The hide, then, is thrown into the hide cellar, a cool, pleasant place in the Hammond house, 250 feet wide by about 300 feet long, with another one in pro gress of building. The first thing the cellar men do is to sort the branded and unbranded green hides into separate piles, and it is remarkable how expertly and
rapidly this is done by the old hands. Next comes rapidly this is done by the old hands. Next comes
the salting and packing away in piles. Coarse Syracuse salt is used in preference to all other kinds. It takes about three weeks in summer and four weeks in winter to thoroughly cure hides, although when tanners are in a hurry a little less time is given by mutual agreement and by using necessary precautions. Hides containing four grubs and under, if satisfactory in other respects, are classed as No. 1's. No. 2's have five grubs and over, and are sold for one cent per pound
less than No.1. This is the regular rule; also, all cut hides go as No. 2.
H. C. Tillinghast \& Co., of Chicago, who have en-
tire control of the Hammond hides, have these hides swept clean of salt, and then allow to purchasers a tare of $13 / 4$ pounds per hide on winter kill and $11 / 2$ pounds on summer hides. Butt-branded steers are picked out of native cattle, most of which sort are found in receipts from Nebraska. Texas steers are not selected for brands, as these cattle are so universally afflicted in this respect. Texans are grubbed for No. 1 and No. 2, same as native hides. The system of grubbing is an ingenious and time-saving arrangement, mutually accepted by seller and buyer. When a tanner orders hides, about twenty are taken at random from each car load, when made up, and selected for grubs. Suppose, out of these twenty steers, five are found to have five or more grubs, this makes them No. 2's, and the twenty hides then stand at a rate of twenty-five per cent No. 2 and 75 per cent No. 1. If this percentage is considered a fair representation by the experienced men looking after the interests of packer and tanner, they agree to call the car load of hides (say 600 ) as 25 per cent No. 2 and 75 per cent No. 1. If either party objects, a second batch of twenty is sorted by the tanner, who may chance to find ten No. 2 hides, or 50 per cent of the lot. If the packer thinks this is hardly as it should be, a third score of hides are picked over, and, whatever the result, it is accepted as a finality. This seems to be a kind of lottery arrangement, but it does a way with the need for scratching and examining all of the 600 hides for the car load, and each car load is separately thus sampled. It is estimated that these green hides shrink in weight 20 to 24 per cent after being cured. H. C. Tillinghast goes to Hammond from Chicago every day, and personally directs the whole hide business of the Hammond company, to which is also added 350 to 400 hides per day, sent from their slaughter house at Omaha, Neb.
Returning to the skinned beast, we find a swarm of human bees taking away the different parts for different purposes. The first run of the blood from the cut throat of the animal is collected in round, shallow pens, which are trucked. to cool shelves, where coagulation soon follows, and then the albumen is dried and sold to button manufacturers, to be speedily made up for the use of the unsuspecting public, who are thus blood stained, as it were, in a highly artistic fashion. Coagulated cattle blood is also used by calico printers for dyeing turkey red, and in the preparation of red liquor for printers' work. Dried blood serves to clarify wines, sirups, and other thick solutions. In Scandinavia it is made into akind of good bread for the poor. Doccattle blood in cases of pulmonary diseases.
From the heads are carefully taken small pieces of meat, which go to the sausage factory. The horns find ready sale to comb and knife haft makers, being softened by heat and moulded into numerous articles. The guts, after scrupulous cleansing, are packed in tierces and shipped to dealers in sausage casings. Tripe is a nutritious and cheap food, and it is produced from the animals' stomachs, which are cleaned, boiled, scraped, and placed in kegs for consumption. Tripe is sometimes pickled, according to the demand from buyers. The legs are steamed for what glue they conbuyers. The legs are steamed for what glue they con-
tain, and also to soften the hoof, from which is extracted the celebrated neat's foot oil, which is valuable for keeping shoes soft and waterproof. These hoofs are finally ground up and sold to fertilizers. The shin bones, after being boiled, are in request for knife handles, being shipped to Europe. The Sheffeld manufacturers in England convert these shin bones into handles for spoons and knives, backs for tooth and nail brushes. The jaw bones are sawed in two, in order to extract every possible vestige of glue from them. To go to the other end of the animal, even the extreme portion of the tail is cut off and sold to the manufacturers of curled hair.
The bladders, when dried and prepared, form useful coverings for the transportation of glazier's putty, for oilmen, druggists, etc., and are valuable for placing over the jars in which the careful housewife lays away her preserves and pickles. The kidneys, liver, and lights are sold fresh to surrounding butchers' stores, or
sent in refrigerator cars to distant points. The sent in refrigerator cars to distant points. The
tongues are cunningly curled, put into air tight cans, and find their way to many a village at home and abroad, where they are useful for picnics and cold collations.
Hot tanks are great levelers, and every scrap of sinews, loose bones, or small rough pieces is boiled down to threads and fragments, and the liquor, when drawn off and cooled, produces glue or other available material. Even the dirt and residue at the bottom of the tank is sold as "tankage" for fertilizing, and refuse blood is eagerly collected and turned to account in refineries.
Now we come to the utilization of the fat. Oleonargarine has outlived a good deal of the abuse to which it was subjected when first introduced to a people suffering under imitations of everything except air, fire, and water. It is now a cheap and acceptable article of food, and, if honestly made, a satisfactory addition to diet. The oleomargarine department of the Hammond packing house is conducted similarly to
dairy, though it isn't one. No cows are to be seen pressing their fragrant noses against rustic gates. No bustling farmer's wife is there with red, bared arms, directing trim, plump dairy maids. Even the surreptitious cat is missed, and there is no sound of the watch dog's honest bark, which Byron declared it was "sweet to hear." Oleomargarine is made as follows: The caul and best parts of the fat of the cattle are boiled down to a thin, transparent oil. Fresh milk is brought every morning to the packing house for mixing with this beef oil. The milk and oil are poured into the churn together, and a little pure prime lard is added to cause the mixture to fiow more easily from the churn, which is driven rapidly by machinery till the yellow globules separate. This semi-liquid mass drains into a large ice cooler for a short time. Then these globules are taken and kneaded together carefully, drained, and the mass is salted by special machinery with good, clean, English dairy salt. The oleomargarine is colored by common annatto seeds, as used in all dairies, and thus prepared is put into clean white linen cloths by neat-looking girls, and, as ready for sale, is difficult to distinguish from real butter in taste or color. It retails at 15 cents per pound. 40,000 pounds perday of oleomargarine is made at Hammond, Ind. After the first boiling of the beef fat, the residue is wrapped in thin linen cloths and placed under hydraulic pressure, which forces out the remainder of the oil. Before pressure the fat passes through "hashers," which render the after process more effective. fat, after being under the hydraulic machine, comes out quite white and firm, and is called stearine, a well known article used by candle makers and tanners. Tallow is made by boiling the rough pieces of fat. The ox tail meat and bones constitute the chief lux uries obtained from cattle. Each car of beef carries a certain number of tails, which are mostly bought by the hotel keepers. Prior to 1685 , the London butchers sent the tails to the tanners with the hides, and even during the past 20 years the min employed in English tanneries used to find these tails in the hides and take them as useful perquisites. French refugees 200 years ago taught the world to utilize this valuable and nu tritious food. Even the udder from a young dry cow when nicely corned and boiled, is very good eating The ox gall is used for liniments, for the mixing of paints, cleaning clothes, carpets, etc.
The Hammond company carry a steady stock of 150,000 tons of ice, in two large ice houses. They cu and store from the Cahomet River. About 600 men and boys are employed, and work progresses year by xear in that small, busy town, free from labor troubles or anything tending to disturb the good feeling between emplo ers and employes.-Shoe and Leather Reporter.

## Will This be a Hot Summer

The impression seems to prevail, pretty generally, that we are to have a hot summer throughout the country.
The Indiana Pharmacist predicates it upon the following theory, which has been advanced by others: The weather seems to run in cycles of about seven years, that is, when we have a hot summer, it is always fol lowed by a cold one, and it takes about seven years to reach another equally hot. It will be remembered by many that the summer of 1867 was very hot, and so dry that during August the grass crumbled under the feet when trod upon. The summer of 1868 was noted for its coolness, the thermometer very seldow getting above $85^{\circ}$, and we did not reach the top wave of thermality again until 1874 , when it was extremely hot. The following summer was cold to a remarkable de gree. From then on the summers grew gradually warmer until 1881, which was excessively hot and very dry, no rain falling for over nine weeks, and there were more surstrokes that summer than there has been in all the summers since.
The summer of 1882 was quite cold, a few flakes of snow fell on the morning of July 4, followed by hail in the afternoon, and during the rest of the month and through the month of August the temperature was so low that overcoats were necessary for comfort, particularly at night. The summers since 1882 have grown warmer and warmer, and last summer was a mode rately hot one, but unless all signs fail, the coming summer will be the climax of the cycle, and a hot, dry season may be expected. So far this spring the sigus have been against the theory here advanced, but possibly the coolness of the spring may be succeeded by regular old scorching summer whose temperature will rival sheol for hotness.

## Torpedo Fired by Lightning.

A letter from a special correspondent with the Italian forces in Abyssinia contains an account of an explosion of a torpedo by lightning. The torpedo consisted of a glass bottle charged with powder and scrap iron, fitted with a detonator to which a wire was attached. Several of these were scattered for purposes of defense in front of the battery of guns, the discharging wires being at the battery. It was found, so it is said, that lightning passing adong the wire had produceă the explosion.-Electrical Review.

## SPIRALLY WELDED TUBING.

At the recent meeting of the American Institute of Mining Engineers, Boston, Mr. James C. Bayles read a paper on the above subject, an abstract of which we give from Engineering:
According to the first process described, namely, that adopted by the Spiral Weld Tube Company, of Orange, New Jersey, the tubing is made from strips of steel or iron skelp, which are wound spirally and heated along the overlapping edges, the welding being accomplished by hammering. The tube made is of uniform diameter, and its length is optional, being only limited by convenience of handling and transporting. The sizes range from 4 in . to 30 in ., and it was stated this could be increased to any required size. Of the thickness of metal, the lightest used was No. 29 iron, and the heaviest No. 14 steel.
The metal is slit in widths varying with the desired diameter of the pipe-thus for 6 in. pipe 6 in., 8 in., 10 in ., or 12 in . skelp is used. Of course, the widest possible skelp makes the pipe more rapidly. Using 8 in . skelp, $8 \cdot 175 \mathrm{in}$. is added at each revolution in a 6 in. pipe, and with 12 in . skelp 14.59 in . In practice, it has been found more convenient to use 6 in ., 12 in ., 18 in ., and 24 in . for the width of the skelp, and in the case of long pipes the ends are united by lap welding.
A ribbon 49 ft . long, for instance, is used in making a 30 ft . pipe 6 in . in diameter. In welding, the sheets are so placed as to have a $1 / 2$ in. lap. They are alemped in this position, and the heat is applied above and below from $m o v a b l e$ furnaces along the seams; then a vertical hammer a vertical hammer acting against an anvil with a re ciprocating mo tion makes the weld, the whole process occupying about a minute to about a minute to tion cross sec ion. Pressure rolls sinooth out
any inequality in any inequality in
the hot metal, and the latter is triumed by rotary shears. In case of a defective weld or failure of the shears to act in the proper line, the weld is cut by a shear suspended by acounter balance when not in use, and a new weld is made.
The pipe ma chine prover-of which we give a perspective view on. the present page-occupies about 3 ft . by 6 ft . of floor space One end of th ribbon of skelp is placed upon a guide table, which set at an angle varying with the width of the skelp and the diameter of pipe into which it is to be made. The metal is carried into the machine between feed rolls geared together and actuated by a ratchet, giving them an intermittent rotation, and a rate of feed variable between $1 / 8 \mathrm{in}$. and $5 / 8 \mathrm{in}$. at each impulse, at the pleasure of the operator. The ratchet then carries the metal to the forming jaws, which bend it to the desired curvature.
The guide table for the skelp is adjustable to any desired angle, and this is one essential feature of the machine ; another consists in the rolls which pass the skelp forward, a process so arranged that it moves when the hammer is raised and stops at its fall. There is also an adjustable former to shape the metal to its proper diameter, and finally the movable furnaces, and the hammer and anvil. No mandrel is used in this process, but the pipe is held in place by a pipe mould, and rotates inside of it as the stock is fed in. The anvil is quite heavy and steel faced, but the hammer is light and strikes about 160 blows to the minute. The lever and notched sector seen at the side of the engraving regulate the feed. The heating furnace heats both edges of the skelp at once, and is kept a few inches in advance of the point where the welding is being made. The heating is effected by one or two blowpipes of water gas and air, two being found to work better than one, as they heat the metal more rapidly, and admit of a faster rate of feeding. The speed varies with the thickness of the metal fed, and the relation of the width of the skelp to the diameter of the pipe. The presen
average is about 1 ft . per minute, although more rapid progress is expected. One strong feature of this process is that it requires but little skilled labor. After the pipe is finished it is treated with asphalt, and after testing is ready for sale. Another method of making spirally arranged pipe was described as being employed by the Providence Steam Engine Cowpany. Two ribbons are used which lie over a mandrel, the ribbons overlapping for half their width, so that the pipe consists of two thicknesses. These are not welded, but soldered together by means of a bath into which the mandrel dips as it revolves, thus putting a thin coating of solder on the strips, which are at once soldered together by the pressure of the winding.

## New Petroleum Engine.

Interesting reports have been presented on Messrs. Priestman's engine by Sir William Thomson, F.R.SS. L. \& E., LL.D., M. Inst. C. E., Sir Samuel Canning, M.Inst.C.E., Boverton Redwood, Esq., F.I.C., F.C.S., and by Messrs. H. Alabaster, Gatehouse \& Co.
Sir William Thomson says : I have inspected Priestman's petroleum engines (made under Priestman's, Humes', and Eteve's patents), at their works, Holderness Foundry, Hull, where I found six engines all working with common petroleum, of gravity about 800. In one shop I saw a 4 horse power petroleum engine doing ordinary duty in a perfectly satisfactory gine doing ordinary duty in a perfectly satisfactory
manner, I am informed, in place of a semi-portable


The result was that the engine ran with very admirable regularity at from 158 to 160 revolutions, doing 6.43 horse power on the brake. The quantity of oil used was very exactly 11 pints, being at the rate of 1.71 pints per hour per brake horse power,* or 1.69 lb . per hour per brake horse power, which seems to be remarkably good economy, considering the great difficulties which had to be overcome in using the combustion of oil directly as a motor. It must be noted that these results refer to the horse power of work actually done externally by the engine, and not merely to "indicated horse power," which in the steam engine, and still more in the gas engine, falls short of true horse power by a large difference.
Messrs. Priestman's engine, unlike one upon another system to which my attention has been called, does not use only the lighter portion of the oil, leaving a large residuum which cannot be utilized, but has the great advantage of consuming the whole of the oil put into the cistern, which I verified by careful examination of the working of the engines which I tested. Messrs. Priestinan's engines are simple in construction, and there are few working parts liable to get out of order. By a new and effective mode of regulating the supply of vapor to the cylinder, combustion so perfect is obtained that deposit of carbon in the cylinder and passages is most satisfactorily obviated, as I have myself verified by careful examinacharge adnitted into the cylinder, instead of cutting off the supply, the explosion takes place with great - regularity, thus securing steady running with or without load, and with varied loads, which, judging from my own experience of the irregular running of gas engines running at anything less than full load, is a very important advantage. Some of Messrs. Priestman's engines are fitted with a combined circulating water tank and water tank and the necessity of having a separate tank with overhead piping, which in ing, cases is objectionable. The piston requires no oilin?, as the vapor admitted into the cylinder lubricates it sufficiently. As this engine has all the advan tages of a gas en-

## CHINE FOR MAKING SPIRALLY WELDED TUBES.

 engine and boiler, which has now been entirely dis- gine, without being dependent ongas works and a gaspensed with for some months past.
Another shop, containing lathes, etc., is being driven another engine supplied by the makers to Messrs. Richardson Brothers, of Newcastle, which I had preiously inspected in Newcastle, and found working very satisfactorily. A small double cylinder engine has been mounted upon $\Omega$. truck, which is worked on a temporary line of rails, in order to show the adaptation of a petroleum engine for locomotive purposes, on tramways, and in my opinion there is a great future for this engine in that important direction. I was shown a launch in progress, designed for being driven by petroleum, the engines for which were also in by pe
The exemption from boiler and "getting up steam," and from need for. fresh water supply for the boiler, and the smallness of the weight of the fuel in proportion to duty done in Messrs. Priestman's petroleum engines, and the convenience for stowing the oil in tanks in the bottom of the boat, give what seem to me important advantages to these engines in comparison with steam engines for launches and small steamers in many places, and for varied applications. I made careful tests on a 6 horse power engine. After seeing it started and stopped several times, and kept running on the brake for an hour at $71 / 4$ horse power, and for two hours at 6 horse power, without measuring the oil, gave it exactly an hour's run with the brake loaded slightly more than for 6 horse power, and with arrangements to measure the oil accurately.
supply, it is available for many important applications from which the gas engine is precluded.

## Succi, the Fasting Man.

The Accademia Medico-Fisica of Florence has just iven a diploma to Signor Succi, on the occasion of his having completed his thirty days' fast. The document uns as follows :
"We, the undersigned, do certify that Signor Giovanni Succi, of Cesenatico, in the Romagna, African traveler and explorer, has completed at Florence a fast of thirty days-from the midnight of the 1st to the midnight of the 31st of March of this year-subjecting himself to all the regulations imposed by the Committee of Surveillance created $a d$ hoc, and o all the scientific observations of the commission nominated by this Academy, the results of which will be made publici juris at as early a date as possible. We further declare that by his courageous experiment, and by his scrupulous fulfillment of every moral pledge undertaken by him toward us, Signor Succi has deserved well of science." Then follow the signatures of Professor Angiolo Filippi, President of the Committee of Surveillance, and of Dr. Vincenzo Crapolo, his secretary, of Professor Luigi Luciani, President of the Academy, and the secretary of its proceedings, Dr. Aurelio Bianchi.-Lancet.

## engineering invention.

Heating railway cars forms the subject of a patent which has been issued to Mr. Carter S.
Townley, of Gainesville, Texas. A pipe opening to the Townley, of Gainesville, Texas. A pipe opening to the
air in front of the locomotive passes through the steam air in tron of the boiler, and is thence connected by proper
spate couplings with heating drum in the car fioors, similiar connections being also made with chambers containing
calcined line or other chemicals, to dry and heat the calcined line or other chemicals, to dry and heat the
air, the current of which is aided by an injector enterair, the current of which is aided by an in.
ing the pipe as it pasese through the boiler.

## AGRICULTURAL INVENTION.

A hillside cultivator has been patented by Mr. Edgar C. Wiley, of Independence, Va. Combined with a central beam are side beams having a
pivotal and sliding connection therewith, with other pivotal and sliding connection therewith, with other justed to throw one share in front and the other to the rear, and vice versa, that the frout plow may be kept on the lower side, the second plow filling the furrow of the first.

## miscellaneous inventions.

A churn has been patented by Cyrus M. and Etta E. Dickey, of New Garden, Ohio. This nvention covers a simple and inexpensive rocking churn, which may be operated easily and will bring the
butter quickly, while it is not liable to get out of order, and may be conveniently and thoroughly cleansed.
A fire escape has been patented by Mr. Wiliam block, light and strong, and adapted to, be quickly and securely
attached to any form of support, being made preferably of steel wire, the invention covering various novel features of construction and the combination of parts.
A covering for pipes, boilers, etc., has been patented by Mr. William M. Suhr, of Brooklyn,
N. Y. It consists of a filling of asbestos flber mineral wool, or similar non combustible material, inclosed in an asbestos paper covering, lined with a wire netting, being designed to prevent loss of heat and to rende buildings fre-proof.
A utensil head for canes, etc., has been patented by Mesers. Moritz Stiebritz and Adolph Miller, of Schuetzen Park, N. Y. It consists of a bos for matches, with an outside lid and inner cover, and a also adapted to hold a mirror or photograph on its inne face.

A collection box has been patented by Mr. Ferdinand A. Kittell, of Hollidaysburg, Pa. It
has an upper tilting bottom, a lower bottom, and a has an upper tilting bottom, a lower bottom, and a
rotary supporting handie adapted to upset the tilting rotary supporting handle adapted to upset the tilting
bottom, the arrangement being such that each deposit made in the box may be separately inspected by the oliector.
A device for loading vehicles has been patented by Mr. William B. Dolsen, of Moberly, Mo. This invention coversa novel combination and arrangement of parts in a hoisting apparatas arranged in com utilized in lifting and placing'the load in farm o mercantile wagons,
A grain cleaning cylinder has been patented by Mr. William P. Clifford, of Ottumwa,
Iowa. It consists of an upper and lower section, the former being of shorter radius, and forming longitudinal inlet and dischargè openings, in combination with a beater, and other novel features, whereby the grain can be subjected to any required amount of cleaning.
A can filling machine has been patented by Mr. Conrad Seimel, of Brooklyn, N. Y. It is especially adapted for flling cans to contain Pariig greei especiany anded fors alling the cans rapiaidy and shak-
and similar powders,
ing down the contents in such manner that the dust ing down the contents in such manner that the dust
will be prevented from escaping, while the cans will be made of uniform weight.
A bell cord attachment specially adapt da for use in street cars has been patented by $\mathbf{M r}$ George W. Naylor, of Jersey City, N. J. The inven-
tion consiets principally in pivoting a lever to the window frame and securing one end of the lever to the bell cord in a novel way, whereby the bell cord may be readily and easily manipulated from the seat.
A coin controlled height measuring machine has been patented by Mr. Charles R. Williams of Newark, N. Y. It is made with a vertically sliding pointer to be moved up or down by a person desiring to
determine his height, with a plate held in front of the determine his height, with a plate held in front of the a given size and weight.
An ink mill has been patented by Mr T. Ruddiman Johnston, of Edinburgh, Scotland. Thi invention. covers a novel construction whereby the for cleaning purposes, and the amount of attendance necessary is reduced, while a better grinding of the ink

A temperature regulator for incuba cors has been patented by Mr. John $\mathbf{W}$. Hile, of Valley Falls, Kansas. The invention consists in the arrangement of metal platees coupled together around the inner
sides of the incubator walls or drawers, whereby the damper or vent will be operated by the slightest varia tions of temperature within the chamber.
A ditcher and grader has been patented by Mr. James M. Holland, of Mount Pleasant, Iowa.
This invention covers a novel form of implement in which the ditching blade or shovel is reversible, and so connected to the wagon or vehicle to whieh it is engaged that it will be free to conform to the contour o
the ground over which it is drawi.
A mast hoop has been patented by Mr. Charles S. Mott, of Patchogue, N. Y. It consists
of two semicicruluar wooden sections and two outer metallic band sections, the two sections hinged to-
gether and provided at their ends with a slotted socket
and a catch, for the ready connection or separation of
the hoop sections without injuring the strength or effciency of the hoop
A groove cutting tool has been patented by Mr. William H. Parry, of New York City. It is for gaining stair stringers and similar purposes, and
consists of a holdmg shank, a cylindrical head, and consists of a holdnng shank, a cylindrical head, and
groove cutters having side cutting edges and inclined bottom cutting edges projecting from the outer end of piece of steel.
A mechanical movement has been paented by Mr. Marmaduke B. Kellogg, of San Francisco, Cal. The invention covers a device or machine for confortingreciprocating intorotary motion, and is designed for the piston rods and cross heads of engines and multiply the stroke without decreasing, the power trans. mitted.
A steam shoveling device has been patented by Mr. Andrew Meyers, of Port Arthur, Ontario, pivoted inclined way, in connection with a hoisting apparatus, a slide being connected to the lower end of the inclined way and operated from the hoisting apparatus, he machine being specially designed for economically anding coal.
A window blind fastener has been patented by Mr. William Simmonds, of Yonkers, N. Y Each blind has the ordinary spring fastener, in connec-
tion with a staple driven into the window sill, and tion with a staple driven into the window sill, and
there is used therewith a cheap and convenient fastenthere is used therewith a cheap and convenient fasten-
ing device placed loosely upon each staple, whereby ing device placed loosely.upon each staple, whereby
the blinds may be locked in closed position or held partially open.

## SCIENTIFIC AMERICAN

BUILDING EDITION
JUNE NUMBER.-(No. 32.)

## table of contents.

. Elegant plate in colors of a beautiful dwelling at Tuxiedo Park, N. J., with floor plans, sh
details, etc., James Brown Lord, architect.
. Plate in colors of two dwellings costing two thousand two hundred dollars and two thousand four details, etc.
3. A cottage of fied stone and wood, perspective and fioor plans.
. Perspective and floor plans for a seaside cottage, cost about flve thousand dollars.
5. Sketch of a residence at Minneapolis, Minn.
. Perspective view of a sman suburban or seaside cottage
dollars.
Sketch of the
Kenwood, III.
Plans and perspective view for a cottage costing complete, one thousand and fifty dollars.
A cottage on Prospect Ave. and 165th Street, New thousand dollars.
10. Floor plans and perspective view for a residence of moderate cost.
Grand Stairway of the St. Lazare Station, Paris. Half page engraving.
Tomb in the cemetery of Beville, H. P. Nenot, Full page of illustrations of North St. Paul, MinnePage engraving of the new City Hall, Holyoke, Mass.
15. Design for a porter's lodge at North Andover, Villa. Penmaenmayr Building Estate, North Wales. Wm. Dawes, archite
17. Sketch
tect.
tect.
Engraving of the new Consolidated Stock and troleum Exchang, Broadway and Exchange Place, New York.
19. The Tower of Babel, according to Father Kircher. Two engravings.
Miscellaneous contents: Moses as a sanitarian.-To tell the age of a horse.-The ventilation of thea-weather.-Originality in architecture.-Painting and varnishing floors.-The Architect and Bailder. -Proceedings of the National Association of Builders.-Senator Stanford's $\$ 100,000$ tomb.Italian marble. - Masonry and cement. - Temple of Jupiter Olympius.-Hoase painting.-Sale of ready
made plans.-The Tower of Babel, two engravmade plans.-The Tower of Babel, two engrav tilating buildings, illustrated.-A new boiler for tilating buildings, illustrated.-A new boiler for
steam or hot water heating, illustrated.-The Paragon self-feed rip saw, illustrated.-Gypsum paint. -The Humphrey Pony hand elevator, illustrated. Electrical supplies.-Permanency of colorin paint.
Mineral wool.-A burglar proof sash lock and Mineral wool.-A bur
The Scientific American Architects and Builders dition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to abont
two hundred ordinary book pages ; forming, practically, a large and splendid Magazne of ArchitrcTURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting
examples of Modern Architectural Construction and examples of Mo
allied subjects.
The Fullness
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation an newsdealers. of any Architect
all newsdealers.

MUNN \& CO., Publisariss,
$\mathfrak{P u s i n e s s}$ and $\mathfrak{P e}^{2}$ ersonal.
The charge for Insertion under thrs head is one Dolar
a line for eachi neertion; about eight words to a line a line jor eachi nnertion; about tight words to a tine
Advertisements must be recived at pubbication oftice as early as Thursday norning to appear in next issue.

Ernest W. Naylor, coneulting engineer. Plans and estimates for hydraulic flanging and forging presess,
pumping enkines and accumalutors, cranes and cap pumping engines and accumulators, cranes and cap-
stans, Bessemer and steel plant, hydraulic riveting plant. stans, Bessemer and steel plant, hydraurc
Offles J. \& K., 149 Broad way, New York.

## Wanted-A hydraulic

John M. Horr, fret sawyer. North Dana, Mass.
Wanted-Competent machinists on lathes and plan-
ers. The Pond Machine Tool Co., Grant Ave ${ }^{\text {ers. }} \mathrm{J}$.
Going soon to Europe, for some time. Will attend to business and nenotiations for inventors and others, to
obtain technical lnformation on all maters int rusted, etc. Part of travellink expenses required. Address R. H. York P. o. box 395.
The best Coffe roasters, coolers, stoners, separators, peaberry machines: also rice and macaroni mexebiner are built by The Hungerford $\mathrm{C}_{0}$., 99 Cortlandt Street Now York.
Safety water columns. Cheaper than explosions or surned boilers.
Co., Cleveland, 0
Steam Pipe Covering, Sectional and Plastic. Write

The Diamond
Chicaako, Ill., (end Prospecting Co., 74 and 76 W . Lake St
For the speciflc purpose for which they are designed the batteries manufactured by the

1723 Chestnut street, Phaluadelphia, Pa.,
For the latest improved diamond prospecting drills, address the M. C. Bullock MIg. Co., 138 Jackson St.
Chicaano. Il. Nickel $\mathbf{P}$
 Agents of the new Dip Lacquer Kristaline. Complete outat for plating, etc. Hanson, Van Winkle $\&$ Co
ark, N. $J$. and 92 and 94 Liberty St., New York.
Perforated metala of all kinds for all parposes. The The Railrood Gazette, handsomely illustrated, pub
 copies free. Send for catalogue of railroad books. The Knowles Steam Pump Works, 113 Federal
St., Boston, and 93 Liberty St., New York, have just issued $\begin{aligned} & \text { new coatalogue, in which are many, neve jand im- }\end{aligned}$

Link Betting and Wheels. Link Belt M. Co., Chicago. Iron Planer, Lathe, Drill, and other machine tools of Preseses \& Dies. Ferracute Mach. Co Bridgeton
Supplement Catalogue.-Pereons in purenit of infor astion of any spocial engineoring, meochanical. or scion-
tilic subject, can have catalogue of contents of the sciINTIFIC AMERICAN SUPPLEMENT sent to them free The SOPPLLEMENT Contains lengthy articles embracing
the $\begin{aligned} & \text { mole } \\ & \text { ranke of enzineering, mechanics, and physical }\end{aligned}$ the whole range of engineering, mechanics, and physica
cience. Address Munn \& Co. Publishers, New York. The Holly Manufacturing Co., of Lockport, N. Y., will send their pamphlet, deseribling water works ma inery,
Improved fine tools for mechanics-Manufactured by
L. s . Starrett, Athol, Mass. Send stamp for full list.
L. S. Starrett, Athol, Mass. Send stamp for full list.
Lockwood's Dictonary of Terms used in the practic Lockwood's Dictionary of Terms used in the practice of Mechanical Mngineering, embracing those current in
the drawing ofice, pattern shop, foundry, itting, turning, smith's and boiler shop, etc., , oomprisising overer 6,000
defnittons.
ditted by in oreman patternmaker Price, \&sc0. For eale by Munn \& Co., 381 Broedway, New
York. York.
Comblnatlon Piliers, Gas Pilers, Wire Cutters, Wrench and Sorem irver
Hartuord, Conn.

We are sole manufacturers of the Fibrous Asbestos
Remorable Pipe and Boiler Coverings. We make pure asbegtos koods of all kinds. The Chalmers-Spence $\mathrm{Co}_{\text {, }}$ 419 and 45 East 8th Street, New York.
The Improved Hydraulic Jacks, Punches, and Tub
Expanders.
R. Dudgeon, 24 Columbia St., New York. Friction Clutch Pulleys. D. Frisbie \& Co., N.Y. city Tight and Slack Barrel Machinery a apecialty. John
Greenwood $\&$ Co , Rochester, N.X. See illus. adv, p.2s. driven punches and Double and single and steam driven pun
shears. Over 30 sizes. See ills. adv., paze sos.
Pedestal tenoner. All kinds woodworking machinery. Ax handle and spoke lathes. Railway cuttingoff sa machines. Rollstone Machine Co., Fitchburg, Mass. Duplex Steam Pumps. Volker \& Felthousen Co., But FF-Send for rew and complete catalogue of Scientific and other Books for sare by Munn
New York. Free on application.

## NEW BOOKS AND PUBLICATIONS.

The Painthr's Encyclopedia. By T. Richardson. Pp. 427. Price \$2. While the title of this' book' 'is, perhaps, rather too ambitious, it may be said of it that it contains a goodly
amount and great variety of information touching wide range of subjects in the find to whitich it it isdevoted. All topics are treated in the plainest possible style, quite within' the comprehension of any workman or amateur, and they embrace plain and artistic painting,
with details of practice in coach, carriage, with details of practice in coach, carriage, railway car,
hoouse, sign, and oinamental painting, including grain-
ng, marbling, staining, varnishing, polishing, gilding,
ronzing etc, with hints touching nearly all kinds of work in whicha brush, pencil, or palette is used.
The Magic Lantern. London and New
York: Ward, Lock $\&$ Co. Pp. 150. Price ${ }^{\text {\$1. }}$
A "practiced hand" has, in this manual, not only described the construction and management of the magic anteru, but tells how to produce many beautiful and eurs. Among ight effect, storm effect, rainbow effect, fountain effect, cascade effect, etc.

Send for new and complete catalogue of Scientifc and other Books for sale by Munn
way, New York. Free on application.

## 

HINTS TO CORRESPONDENTS.

(1) McK.-Core sand is not made by mixing. For valves use a grade of moulding sand
slightly coarser than is used for outside or flasks. Mix lightyy coarser than is used for outside or flasks. Mix
with a little sour beer or very thin mucilage-no nore than will make the cores dry hard enough to handie. You can blow out the cores by dipping the castings in water before they are cold. Mixtures for valve. hould be copper 16 ounces, tin 1 ounce, zine $1 / 2$ ounce,
lead $1 / 2$ ounce.
(2) M. E. M. asks how to measure a miner's inch of water. A. A minur's inch of water is
the quantity of water that will flow through a hole 1 he quantity of water that will flow through a hole 1
nch square in a 2 inch plank, the top of the hole to inch square in a 2 inch plank, the top of the hole 10
be 6 inchese below the surface of the water in the race or flume. This is what is meant by head. If the top the hole is but 4 inches below the surface, you get miner's inch is 11 sisf gallons (United States) per
(3) L. J. S. asks: 1. Will a share tree be injured by having electric light wires in contact with its branches? A. A. Insulated wires will do no arm. Naked arc light wires may burn leaves and n the growth. 2 When the sun and moon are in conanction, will a body weigh less on the side of the earth nearest them than on the opposite side? A. Yes,
heoretically, but the amount is too small for ordinary heoretically, but the amount is too small for ordinary
(4) F. H. C.-Horse clippers are usually on the shears principle, and should be sharpened
in the same way that shears are sharpened, by grinding in the same way tha
the bevel edge only.
(5) W. B. asks how egg yolks are ried, and for what used. Also, where a market could be found. A. The yolks are separated from the white part and then dried in any convenient receptacle at a
gentle heat. The article is made quite largely in Chicago, but is more expensive than the foreign article. dis used in the fine leather manufacture and other inwhen the price of eggs is high or they are scarce.
(6) J. P. M. asks : Can I cast a brass or anper nut on a square thread screw three-quarters netal which does not stand well? A. You can, if no nore than 11 inches in length of thread, without the metal seriously binding. Wash the screw with fine clay and heatit it as hot as convenient before putting in
the mould. Gently hammer the nut if posibile to help
(7) L. B. A. asks: 1. Is there any way o waterproof a cloth apron? For waterproofng fabrics
see'the articles on that subject in Scriñric Amerr see the articles on that subject in SciENTIFIC AMERI-
cAN Surpiement, Nos. 58 and 317. 2.1 Is there anycAN Supplement, Nos. 58 and 317.2 . 1 is chere any-
thing that I can put into milk that is changed a la little sour) to sweeten it? A. Add a mall quantity of fnely powdered salt. 3. Is there anythng that I cian use in por curd or milk to give my cheese a nice flavor? A.
my
ane Cheese may be flavored with herbs, or
herbs, such a thyme, sage, and the like.
(8) C. B. H. asks how to cut a Turkey or stone intwo. A. You can saw it with asndand water teeth, or quicker with a copper blade and emery and water.
(9) J. P. W. asks: What can I mix with talc to cause it to adhere after grinding the talc or fire brick? A. Use clay, as pure as can be had. Burn as other bricks.
(10) . G. C. asks: 1. What pressure would it take to sink a hollow ball that contained 231 in. in water? A. It will take as much pressure as the
ball displaces in weight of water ( $8: 35$ pounds for 231 cubic inches). 2. In a vessel 2311 in. deep, which is illed with water, what would the pressure be on one inch of surface at the bottom: A. The pressure due to $23 \frac{1}{10}$ in. in depth is 0.883 pounds per square inch. 3 . What pressure would it take to compress one cubic foot
of air into $2 / 3$, into $9 / 4$, into $1 / 2$, or into $1 / 4$ cubic foot? $A$ Compresiing air to $\neq 10 \mathrm{lb}$., $2 / 3=12 / 2 \mathrm{lb}$., $1 / 2=15 \mathrm{lb}$., $1 / 4$
$=30 \mathrm{lb}$. pressure. 4. Can water be compressed $A$.
Water is only slightly compressible under high pres-
(11) F. E. DeC. asks : 1. What can be used to repolish a piano? A. Dissolve 4 oz. orange
shell in one quart of 95 per cent alcohol ; to this add shell in one quart of 95 per cent alcohol; to this add
one quart of linseed oil and one pint turpentine; when one quart of linseed oil and one pint turpentine; when
mixed add 4 oz . of sulpharic ether and 4 oz . of aqna mmonia; mix thoroughly and well before using which it is applied until the polish appears. Such jobs require no little skill, as well as a good deal. of hard work. Most amatears will stop work where a good polisher really only commences. 2. Is there anything
that will bring back the color of marble, which has that will bring back the color of marble, which has
been stained with vinegar? A. If the marble is white been stained with vinegar? A. If the marble is white,
coat it with gim arabic and expose it to the san. When it peels off. wash with water, or make a paste with let it dry on, and next day scour it off with soft soad The luster can be restored by rubbing with a 4
(12) E. C. R. asks: The best woy to mix plumbagol so"as to produce a bright and lasting
polish on stoves and not cause disagreeable odor. A. The common liquid stove polish consists of black lead 1 lb ., water 4 oz. , tarpentine 4 oz ., and sugar oz. Mix thoroughly. It is not very lasting, nor ha it a very agreeable odor, but it is
thing yet found for the purpose.
(13) J. H. R. desires a recipe for a blood purifier, one that will cure acne and eruptions breaking out on the face. A. Take 2 parts of sulphur
and 1 part of cream tartar and mix it with sufficient and 1 part of cream tartar and mix it with sufficient too stiff. Take one tablespoonful daily.
(14) G G. B. asks how to make a good mucilage, without using gum arabic. A. Take gum dextrine 2 parts; water 5 parts ; acetic aci
solve by aid of heat and 1 part of alcohol.
(15) W. F. B. asks the formula for making a cement that the brass sign makers use fo filling the letters on brass signs. A. Mix asphaltum, and'then fill in the spaces, and finally clean the edges with turpentine.
(16) J. B. J. desires a formula for making glue used on edges of writing paper tablets to
hold sheets together. A. Use either (1) white glue, refined glycerine, acetic acid, and coloring material; (2) common glue with 5 per cent glycerine; or (3) $3 / 4 \mathrm{oz}$ crude gatta percha dissolved in carbon disulphide to the consistence of mucilage. The materials used in
making this glue or cement are of a low grade com making this glue or cement are of a low grade com mercially, so th
(17) G. H. J. asks if there is any sub stance that will remove printer's ink from paper, with
out disfiguring the paper. A. Place a thick pad of white blotting paper beneath the sheet of paper which wool, gently rubbing Finally apply white cotto wool, gently rubbing. Finally apply white blotting fresh ether and repeat until all-stains disappear. Do this away from a light.
(18) J. A. P. writes : In printing with ordinary gold size and bronze powder, upon soft
leather, the print after several weeks becomes discolored and broken op, apparently by reason of the size sinking into the leather. Can you give a formula for a size which can be used on a printing press, and will dry on the surface of the leather without penetrating it? Or can you suggest a transparent flexible varnish that I can put on the leather before printing, something that is absolutely proof against the gold size, and will re main so. A. An "olive size" is made which may an
pwer your purpose. When our printers have work of this kind to do they use ordinary gold size, but alwa give it two impressions. That is print the job in size and let it lie overnight and dry. In the morning ran it through the press again. The leather will absorb the first printing, but the second will remain on the surface. A little of the white of egg mixed with the size
second printing, will make it dry very rapidly.
(19) J. C.-The plant is the English plantain or rib grass (Plantago lancedlata). It is a
common and widely distributed weed. It has no value xcept as a pasture for cattle, and not much value fo
(20) F. V. B.-Your fluid extracts are spoiled, and there is no remedy in the case. The cause of the change. you mention is not known. Write to the
manufacturer, who, for the sake of his reputation, manufacturer, who, for the sake of his repatation,
would doubtless substitate fresh extracts for the would doubt
spoiled ones.
(21) H. S.-The plant is the common mallow (Malva sylvestris). The leaves and flowers are chiefly used in fomentations, cataplasm
(22) H. R. E. asks concerning / the process for the manufacture of yellow ocher into paint
also for preparing ksolin or china clay for the, trade. which it is largely, cased. A. Ocher is dried by heat ground into powder and made into paint by mixing with oil. Then
mentioned.
(23) J. D. asks: What are the ingreients composed of for making metallic paints, such as surface? How to grade, to make them hard or soft? A They are made in varying proportions of tin, lead, bis
muth, and antimony, those that are the hardest are of muth, and antimony, those that are the hardest are of lead me
silver.
(24) W. P. K. asks : What should be mixed with ordinary printer's ink to make it suitable
for printing etchings? A. Etcher's ink is similar to for printing etchings? A. Etcher's ink is similar to printer's, but more carefulls ground. It consists essen-
tially of linseed oil, varnish and lampblack. You can tially of linseed oil, varnish and lampblack. You can
buy it much more cheaply and probably of bette huy it much more cheaply and pro
(25) M. G. H. asks : How mirrors or looking glasses are made, and what the materials are,
nd how prepareds A. A large, perfectly flat stone able is provided, upon which is evenly spread a sheet of tin-foil, without a crack or flaw. This is covered niformly to the depth of $1 / 8$ inch with clean mercury. The plate of glass, perfectly cleansed from all grease and impurity, is floated on to the mercary carefully, so by loading it with weights, in order to squeeze out all mercury which remains fluid. After about 24 hours it s raised gently on its edges, and in a few weeks it is eady to frame.
(26) S. L. M. asks: 1. Directions for for soldering brass to means of ordinary solder rocess and tools, see a valuable treatise in Scientific Amricen Supplembnt, No. 20. 2. Also for making
magtic varnigh from gum mastic. A. Dissolve the gum mastic varnigh from gum mastic. A. Dissolve the gum
mastic in tarpentine enough to make it of the proper mastic in to
(2) H. A. M. writes : A distinguished clergyman says : "Astronomers have swept their tele-
scopes through the sky, and have found out that there copes through the sky, and have found out that there
ave been thirteen worlds, in the last two centuries, ave been thirteen worlds, in the last lwo centuries,
that have disappeared. At first they looked just like ther worlds. Tnen they got deeply red-they were on other worlds. Tnen they got deeply red-they were on
fire. Then they got ashen, showing they were burned
down. shes were scattered. And if the geologist be right in is prophecy, then our world is to go in the same way." Does not science teach us that the earth was once a molten mass, and that it has, for conntless ages been losing its heat, and is at the present time still in the cooling process? A. We believe that the clergyman reerred to does not profess to be a scientist, but is ever of destraction to sinners. Your question gives the dea most commonly entertained, but even at this time collision of the earth whath produce an oatburst of heat nd light similar to the star outbursts that have been bserved.
(28) W. H. S. asks : 1. Does choke borng a shot gan improve penetrations A. No; it pre-
vents too much scattering by drawing the charge toether at the instant of leaving the gun. 2. Is the nouth of the Mississippi River farther from the center of the earth than the source? A. Yes. 3. Woald the
Mississippi run toward the north or south if the earth Mississippi run toward the north or south if the earth
topped revolving on its axis? A. It would run north. stopped revolving on its axis? A. It would run north.
4. How can I mark steel tools? A. Coat thinly with beeswax, in which make the desired marking down to parts, to bite out the exposed surface of the steel while the wax protects the surrounding portion from the action of the acid.
(29) J. A. S. asks : 1. What is the best cabstance to keep gan barrels from rusting? A. You an keep gan barrelsfrom rusting only by care in keep-
ing and oiling with linseed oil. 2. Can gravel walks be practically treated so that they will not grow weeds? A. Asphalt, cold tar, and cement are good materials to mix with sand to make a layer that will not only keep the weeds out, but make a smooth and hard walk. Gravel walks generally have some soil inter-
aixed, which, with the fling of the gravel by use, ffords a foothold for the growth of weeds. 3. What is good care for colds? A. See Scientific American dpplement, No. 75, How to Cure a Bad Cold and Sore hroat. Also a valuable paper on Catching Cold, Sci
ntific American Supplement, No. 297. Also Quick cure for a Cold in the Head, Scientific American UPPLEment, Nos. 25 and 228.
(30) J. C. R. desires a formula for makgig red or strawberry coloring from carmine (or withat aniline) for coloring bottled soda pop. A. Boil ity of it. You can make it very dark originally and then dilute until you get the proper shade.
(31) G. J. H. writes : A discussion relaive to conductors of electricity has resulted in a wager to the effect that, a stream of water propelled from a ight wire, in an exposed part through which the elecfic wire, in an exposed part through which the elec son handling the nozzle, by the transmission of the nt is severe enough. Will you kindly decide in the ext issue of your valuable paper the above? A. The conductivity of water is so poor it is doubtful if a dangeroussh
(32) O. F. M. writes: We want to build tank of 3 inch pine plank to hold a wash of oil vitriol bout one-fifth vitriol, four-fifths water, for wool wash. We usaally pat these tanks together with three-quarter nch iron bolts, down through the wood, but find the cid will soon penetrate the wood and destroy the iron
olts. Is there any metal strong enough to hold the ank together that the vitriol will not affect, that is practical to use, and where can it be obtained? A. Copper very slowly attacked by sulphuric acid. You might nclose the iron bolts in pieces of lead pipe. The lead would regist the acid indefinitely.
J. M. asks : Would a copper lined mder used in a common well pump do the water any
irm for drinking? A. Probably not if it was kept full of water. If alternately dry and wet, it might imflll of water.
pair the water.
(34) A. B. J. asks how to remove book inder's varnish from leather, after it has been on three or four years. A. Try alcohol. It will dissolve the var-
iish. 2. How to treat egg glair to prevent it smelling. Use oil of cloves or some strong antiseptic with it.
(35) G. A. H. asks : 1. Will you kindly ive a cheap and effective process for bleaching coral?
. First wash well in very dilute hydrochloric acid in he proportion of one part of acid to thirty of water, then rinse well in water, then immerse in a anlate solu-
method of nickel plating wire and tin? A. See "Re-
cipe for Nickelizing without Electricity," in Scientiric cipe for Nickelizing without Electr
American Supplement, No. 191.
(36) F. M. J. asks : By what process are leached and rendered transparent A. Care is gener ally tuken to select good white horns, but they can b bleached by exposing to the fumes of burning sulphur rgely diluted with air.
(37) J. F. L. desires a simple process for making koumiss. A. Dissolve 4 ounces white sugar, in 1 gallon of skimmed milk and place in bottles of the ca-
pacity of 1 gallon, add 2 ounces of baker's yeast, or a pacity of 1 gallon, add 2 ounces of baker's yeast, or a
cake of compressed yeast, to each bottle; cork and tie cake of compressed yeast, to each bottle; cork and then set in a warm place until fermentation is well under way, and lay the bottles on their sides in a cool cellar. In three days fermentation will have pro condition.
(38) G. $\dot{W}$. W. asks how they mix rouge o make it into what is called hard rouge, also what the aciferent articles are and how mixed? A. Take of oxalic
apart, iron peroxide 15 parts, powdered rotte stone 20 parts, palm oil 60 parts, petrolatum 4 parts Pulverize the oxalic acia, and add the iron and rotte stone, mixing thoronghly, and sift to remove all grit, then add gradually the palm oil and petrolatum, incor
porating thoroughly.
(39) F. B. P. asks if there is any remedy hat will remove warts. A. Take a small piece of pot thicken it to stand in the open air until slakes, then thicken it to a paste with pulverized gum arabic Apply to the wart ontil it disappers Somot wate ever, are very obstinate, the warts seeming to com constantly for a period, and then suddenly diappear-
(40) H. N. H.-For making printers' ollers, see answer to query. No. 33, in Scientrfic
(41) J. H. asks : What was Queen Vicoria's maiden name? A. Guelph.
(42) J. H. C. writes : I wish to run two ncandescent Edison lamps. Will you kindly tell me the simplest and cheapest means by which I may attain
that end? A. A dynamo driven by steam or other power is lighting current.

## TO INVENTORS.

An experience of forty years, and the preparation of tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess un
equaled facilities for procuring patents everywhere. synopsis of the patent laws of the Onited States and all foreign countries may be had on application, and persons contemplating the securing of patents, either at home or abroad, are invited to write tc this. omice for prices,
which are low, in acoordance with the times and our extensive facilities for conducting the business. Address
MUNN \& CO.. office ScIENTIFIC AMRRICAN, 361 Broad MUNN \& CO.. of
way, New York.

## INDEX OF INVENTIONS

## which Letters Patent of the

United States were Granted
May 29, 1888,
AND EACH BEARING THAT DATE.
[See note at end of list about copies of these patents.]


. 383,65
${ }_{\$ 83,500}$ Electro-magnetic regiter, J. F. McLaughlin...... 388,583

ter. ..... 383,601
Die. See Pipe threading die.
Digker. See Potato digker.
Disinfectant, Dupre o He

Disinfectant, Dupre \& Hake...................... ..... | 383,559 |
| :--- |
| 38,704 |

Ditcher and grader, J. M. Holland

Door check, F. J. Herrick......... ..... | 383,104 |
| :--- |
| 383,574 |
| 383890 |
| 38,643 |
| 894 |

Door check, A. Johinson...
Door securer, G. G. Getty.
Draught attachment for wa ..... \%
Dress form, w. . H. KncPherso ..... 383,595
383,801
Dynamos, apparatus
current. P. Lang ..... 83,648
 ..... 353,657
Eccentric rod, P. Kirkev
Egg beater, D. Peters..
Electric battery, E. A.

| Electric circuit indicator, $\mathbf{O} . . .$. . Shallenberger..... 383,665 |
| :--- |
| lectric circuit |Eliectric circuit testing apparatus, A. D. Wheeler. 88,

Electric circuits, apparatus for detecting groundconnections in, O. B. Shallenberger... ......... 383.666
Electric currents,electrical indicator for alternat-
ing, O. B. Shallenberger...... ...............${ }_{963,662}$
Electric currents, indicating, $\mathbf{O}$. B. Shallenberger,
383,667 , ..... 388,672

distribution of, C. E. Fritts...................... ..... | 388.520 |
| :--- |
| 383,658 |

paratus for, 0. B. Shallenberger............... ..... 38,661

ley, Jr.................................. ..... | 383,832 |
| :--- |
| 388,688 |

lectric motors, governor for, R. H. Mather ..... 383,651
$\underset{\text { Morr }}{\text { Mectric }}$
$\underset{\text { Morr }}{\text { Mectric }}$ lectric smelling bottle, C. T. Brown. ..... 383,756
38,794
lectrical distribution, alternate current an
storage system of, H. M. Byllesby......383,62,lectrical distribution, combined alternate cu

|  |  |  | Wrdvertisement |
| :---: | :---: | :---: | :---: |
| Elilipoorraph, H. Bormann................283.096, 383 | m | Target traps, apparatus for springing, A. C. Dick |  |
| Embroideriny frame and stand, H. C. Ludwik. | Multiple switch boards, test circuit for, c. e. |  |  |
|  |  |  |  |
| Gas engine. |  |  |  |
| Envelope fastening, W. H. Hubbard.............. 388,642 |  |  |  |
| er, J. w. Osborne............................. 38,483 |  | T |  |
|  | Nut lock, w. B. Hohenshell | Tile machine, Puchta \& Hofmann ................. 388,591 |  |
| Eyeeklasses. W. S. Wells........... -.............. 383,604 | ${ }^{383,511}$ |  |  |
| Faucet, flitering, w. H. Sargent................ ... 88,993 |  |  |  |
| Feed cutter, G. F. Schmid....................... 383,44 - |  | Tool rack agricultural, F. A. Herrick.............. 388,527 |  |
| der, automatic shelf, W. M. Jewell (r) ......... ${ }^{10,0,333}$ | ${ }_{\text {Pad }}$ |  |  |
|  |  |  |  |
| C. Freese | Pa |  |  |
|  |  | Tran |  |
| Fir | Paper | Trap. |  |
|  | Paper box, B. Osborn | Tree protector, Newell \& Truck car J. C Barber |  |
| escape, , Brock .............................. |  | Tr |  |
| Fire escape, H. Reiners.......................... 388,49 | Paper holder, roll, H. N. King....... ............ 38,578 | Truck, turntable extension ladder, E. Adeock.... 888,681 |  |
| 385,763 | Pavement, C. H. Host................. ......... 38,528 | Truck, turntable extension lader, E. B. B. Preston.. 3888828 |  |
|  | ${ }^{\text {Preses }}$, preserving, C. . Lane....................... 38,331 |  |  |
| Match frame. | $\begin{aligned} & \text { Pie } \\ & \text { Pin. } \end{aligned}$ |  | AMEHCANSUPP BMENT, No. SH6. Price 10 cents. To |
| uit stoning machine, | Pipe moulding apparatus, McNeal \& Stineruck.... 883.54 | Twine holder, J. Hill........................... 38,573 |  |
|  |  |  | DELAFIELD'S PAT, 8AW CLAMP |
|  | Pine temperature of water in, E. A. Newman... 38.388 |  |  |
|  | Pipe wrench, J Rose |  |  |
| Galvanic battery. H. B. Cox...................... 38,706 | Piston and plunger, R. Tonke...................... 38,788 |  |  |
| anic |  |  |  |
|  |  |  |  |
|  |  |  |  |
| ments | Press. See Hydraulic shaping press. Match |  |  |
| inati | Pressure apparatus, hydro-pneumatic, T. Arthur. 888,429 |  |  |
| en |  |  |  |
|  |  |  |  |
| ${ }_{\mathrm{R}}^{\mathrm{fr}}$ |  | w |  |
|  |  |  |  |
| era |  |  |  |
|  |  |  |  |
|  |  |  | orc |
| Grain divideri, s. Ray ............ | soe Pants |  |  |
| Grain drying machine, centrifugal, F. Melkers- |  |  | $8$ |
|  |  |  |  |
|  | Pung |  |  |
| ns, mour | Pump. force, G. A. Carter......................... 283,703 | Wheel, s. v. Kennedy............ ................ 388,445 |  |
| Rendel....................... .... . ......... $8_{88,78}$ | Pump valve, C. F. Hoyt ... .............. ....... 38,811 | Wick, G. Munger................................ 38,882 |  |
| Guns, trigger mechanism for, B. R. Jolly.......... 3888814 |  |  |  |
| me fa |  | ventilutare. C . |  |
| Hand rest for bookkeepers, w |  | Wire cloth, H. Atkins. |  |
| Hanger. See Shaft hanger. | Rail chair, J. Qulnn, Jr........................... 388,765 |  |  |
| Harvester bundle carrier, 0. J. Foos............... 383,718 |  |  |  |
| reester, Clover seed, H. Hurfeind | ${ }^{\text {Ra}}$ |  | ${ }_{e r}^{\mathrm{s}-\mathrm{r}}$ |
| Search.................................. ...... 883,660 |  | Wrench. See Pipe wrenc. |  |
| rake, T. |  |  |  |
|  | \%a | ESI | $\mathrm{FST}$ |
|  |  |  |  |
| ane, spring, L. Bommer.......................88,54, 388,555 | Rake. |  |  |
|  |  |  |  |
| Tap holder. | Register. See Electro-magnetic register. Pool |  |  |
| Sop. | Regul | Watch charm, E. Terry $\qquad$ 18,356 |  |
|  |  | Whisk holder and match safe, J. F. Lockwood..... 18,9, |  |
| ing the, G. B. French...... | Retouching device, |  |  |
| ing the, , B. B. French..... |  |  | AIR COMPRESSOR |
| Horse | Roller. See Anti-friction roller. 1 |  |  |
| Horse power sweep, (4. w. Crane................. 388,438 |  | cal Company................................. 15.545 | Miningtunneling. .o.s |
|  | Rope grip or selvage strop, A. K. Wvans........... 383,803 | Beer, F. seels .............................................. 15.553 |  |
|  | Rudders, combined bearing and stufllig box for. | Beverakes, malt and carbonated, J. M. Donnelly. | RAND DEill co 23 Park Flage newy chit |
| Indicator. See Electric circuit indicator. Elec- |  | Champagne, E. Irroy............................... 15.535 |  |
|  |  | Reid, Murdoch \& Yischer...........15,57 to 15,549 |  |
| vell, E. J. Colbs......................................... 3838.5846 |  | Cigars, cigarattes, and smoking and chewing to- |  |
| Inseet trap, J. williams........................... 33,788 | Sawmill, w. Gowen............... ............... 388,41 |  |  |
| dilator |  | Dowle or. finely divided portions of feathers re- |  |
| ck. See Lifting jack. Lifting jack. | Sawmill carriages, automatic offset for, W. <br> Gowen <br> arriages, automatic offset for, $W$. $\qquad$ |  |  |
| ${ }_{\text {Jack. }}^{\text {J. }}$ See |  | Draughtsmen and engineers, certain supplies and |  |
| itting machine, Lampree \& Bugbee............ 3388817 |  |  | HE DETECTOR, |
| Lace pin or brooch, E. D. Ganter. |  |  |  |
|  | ${ }_{\text {r. }}^{\text {r. }}$ | hams, tickings, and al |  |
|  |  |  |  |
| Lamps, carbon conductor for, H. J. Von Metzradt | Scale, régistering and recording weighing, E. G. <br> Fisher $\qquad$ 383,451 | Ho |  |
| raps, eve |  | ed |  |
| Lamps, manufacture of flaments for electric in- | Screen, D. Wesemann ........................... 383.5 |  |  |
|  |  | Mealicine, cough, 3 . |  |
|  |  |  |  |
| nd roller, F. Grimes............................ 3838808 | Separator, s. stuart |  |  |
| artificia, A. Gault.......................... 3888.569 | ${ }_{\text {Sewi }}$ |  |  |
|  | Spragiue \& Peare |  | USER, 206 Broadway, New Yo |
| ting jack, L. J. Cre |  | Pens, gold, J. Foley. | E BATTERIES FOR ELEC- |
| 838,383 | Sheet metal vessel, F. A. Walsh................... 383,507 |  |  |
| ${ }^{333,322}$ | Shingling xauge, M. Slane. |  |  |
| $\underset{\substack{338,730 \\ 38345}}{ }$ | Luee | Remedy for diphtheria, A. Lagmann.................. 15.540 |  |
|  | sift | Sal |  |
|  | Sign, dru |  |  |
|  | $\int_{\text {skit }}^{\text {sikn }}$ | ing Company |  |
|  |  |  |  |
| shutle, J.C. Serreson..............................38374 | 383,50 | Soap for laundry and general purposes, hard, co- |  |
|  | Spr |  |  |
| pile fabric, F. Pearson......................15 338,83 | Sta |  |  |
|  | $\xrightarrow{\text { Sta }}$ |  |  |
| Manure distributer, s. H. Garst.................. 383,68929 | Steam engine, , . Ko Austin...................... 38,401 |  | Electric welding.-A Paper by |
|  | engine, concentric piston, Baker \& Huyck: 383.1 | Watch cases, Brooklyn Watch Case Company...... 15,5 |  |
|  |  |  |  |
| 21 |  | linings and outer |  |
| press or frame, G. W. Gates................ 383,722 |  |  |  |
| Willisms |  |  |  |
| at c |  |  |  |
| anic |  |  |  |
|  | flu |  |  |
|  |  |  |  |
|  |  |  |  |
| Meter. See Electric meter. Volt meter. |  | going |  |
|  |  |  |  |
|  |  |  |  |

## 

A New and Thoroughly Modern Book. The Most Complete and Valuable in any Language.

| Practical Treatise on the Manufacture of Raw Materials, Practice; compris ing the Machinery and Ut rious Processes of Manufacture. includi C. Deite, A. Engelhardt, Dr. C. Schaedler these subjects. By William T. Brannt Ed actical Treatise on Animal and Vegetable ceipt Book., lllustrated by about 163 engr rice $\$ 7.50$, by mail, free of <br> ld. <br> postage to any a arto, wiul the engravings of this valuable $b$ will furnish us with his address <br> ALSO RECENTLY PUBLIS Practical Treatise on Animal and Veg Lubricants, including Mineral Lubricatin engravings. 739 pages, 8 mvo . T. Brannt. 111 <br> $n$ illustrated circular of this book, 8 pages, $t$ <br> Practical Treatise on Petroleum. By B <br> $n$ illustrated circular of this book, 4 pages, 4 to The above or any of our Books sent by $n$ |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

(
Hydraulic Elevators WATER MOTORS. Send for Newt catalogue.
Tuerk Hydraulic Power Co. 12 Cortland St., Ne F York,

WOOL HAT MAKING. - FULL DEscription of the process.- Wrol washing, cardink and
formiag, settling, oumping and washing out, strect



## FOREIGN PATENTS

## THEIR COST REDUCED.

 foralmost every the smalentee in this country to secure a pa ent in Great Britain. where his rights are as well pro OTHER COUNTRIES.
on very reasonable terms in France, Belgtum, Germany Austria, Russia, Italy. Spain (the latter includes Cab Anstralia, and the other British Colonies.
publishers of The Scirntific AniniIon to establish foreign countries, and it has always been their aim to have the business of their c\%ents promptly and
is done and their interescs faithfully. guarded. A pamphlet containing a synopsis of the patent law
of all countries, including the cost tor each, and oth of all countries, including the cost tor each, and othe information useful to persons contemplating the pro
curing of patents abroad. may be had on application to
this offce, © (CO.. Editors and Proprietors of THE SCI ENTIFIC AMERICAN, cordialy invite all persons desiring
any information re ative to patents, or the registry of trade-marks. in this country or abroad. to call at thet
offices. 361 Broad way. Examination of inventions, con sultation, and advice free. Incuirles by mail promptly

Aḋdress.
MUNN \& CO.
Publishers and Patent Solieitors,
Branch Ofricrs: No. 622 and 64 F street, Pacific
GOLD MINING MACHINERY.
scription or some new mining plants constructed
Enomand for nse in the Trasval.
Wustrin nd
Hungar


## DERFEGTz্m~SPAPER




 GAS GNGINGS:
Best in princtple, workmanship; and materiale.
An unequaled small Motor sdapted to all uses.
 ese Engines are especially suited for Gasoline Gas for country use ECONOMIC GAS ENGINE COMPANY,

GLACIAL EPOCHS AND THEIR PE-


## Steam! Steam!

We build Automatic Engines from 2 to 200 H. P., A Large Lot of 2, 3 and 4-H. Engines

## B. W. PAYNE \& SONS,

Box 15,
SYSTEMS OF DISTRIBUTION OF Electricity. A lecture by Elihu. Thomson, delivered in
the Sibley
College course. The series, multiple arc. ser




PHTHISIS.-A PAPER BY DR. H.

GUILD \& GABRISON
 minks $=$


ROCK BREAKERS AND ORE CRUSHERS.

 COPELANDUNDBACON, A

Blake Crush
gents, NE

## - Bill ${ }^{2} \mathrm{YCL}$ <br>  

 FIRE-BRICK.-BY R. A. COOK, A.M




WW? Wew




 DISEASES OF DYNAMOS.-A PAPER



## FITGIITIESB

 PANAMA CANAL-A PAPER BY DR.


 CHEMYCAL AND ALLIED INDUS



IRRIGATING MACHINERY ON THE



## SCIENTIFIC BOOK

## CATALOQUE.

Our new catalogue containing over 100 pages, includ-
ing works on more than ffty diferent subect
ind


| PULLEYS, HANGERS, PROGRESS MAOHINE WORES, |
| :--- |
| FRICTION CLUTCHES. AL Parix Placon N. Y. |

ICE \& REFRIGERATING

LIGHTNING CONDUCTORS-DESURIP-


## 2nd Ress MACHINERY

 INV ENTORS and others desiring new articles manufac-
tured and introduced, address $P$. 0 . Box 86 , Cleveland, 0 .

Ttured and introduced, address P. O. Bor 8 86, Cleseland, 0.
CHE PENNA. DIAMOND DRILL \& MFG. CO.
BIRDSIBORO, PA., Builders of High Class BIRDSBORO, PAA., Builders of High Class
Steam Engines. Dianond Driling and General
Machinery. Flour Mill Rolls Ground and Groved
 POR SALE Stitam Propeller Fraclit, length

 RAILS FOR STREET RAIIROADS--


## USEFUL BOOKS.

RREIIPGUPRL BOORS. Useful, Beautiful, and Cheap.

To any person about to erect a dwelling house or sta-
e, either in the country or city or any builder wishing to examine the latest and best plans fora church, school
house, club house, or any other public building of high or low cost, should procure a complete set of the ARCHIThe information these volumes contain renders the orkalmost indispensable to the architect and builder. and the work suggestive and most useful. They contain ings of almost every class of building, with specificaFour bound volumes are now ready and may be obined, by mall, direct from the publishers or from any
ewsdealer. Price, 8.00 a volume. Stitched in paper ewsealer. Price, \$..00 a volume. Stitched in paper
overition price, per annum, $\$ 2.50$. Address

MUNN \& CO., Publishers, 361 Broadway, New York.

 hibiting beautiful coloratimns and posseesing great
stability ;



## 

men, of all classes, need good books in the line of
mene their respective callings. Our poss office department permits the transmission of books through the mails
at very smaill cost. A comprehensive catalogue of useful books by different authors, on more than fifty free circulation at the office of this paper. Subjects classifled with names of author. Persons desiring to them. Address,
MUNN \& CO., 361 Broadway, New York. MACHINERY PALACE OF THE PARIS


## The Scienificic American Puolchations for 1888.

The prices of the different publications in the United
States and Canada are as follows: Rates BY MAlL.
The Scientific American (weekly), one rear $\quad . \quad \$ 3.00$ The Scientiftc American ( (eekly), one rear
The Scientifc American Supplement (weekly), one $\quad \$ 3.00$
year. The Scientific American, Export Edition (monthly)
one year.
5.00 he Scientific American, Architects and Builders
Edition (monthly), one vear. COMBINED RATES. The Scientific American and Supplement, . - $\$ 8.00$
The Scientific American and Architects and Build- ${ }^{\text {ers Edition, }}$.
The Scientiffc America. . Supplement, and Arcil-
tects and Builders Edition. This includes postage, which w we pay. Remit by postal
or express money order, or draft to urder of MUNN \& CO., 361 Broadwav, New York. FIFTY YEARS' PROGRESS IN TELE

2020


Overman Wheel Co． Makers of Victor Cycles， BOSTON，MASS．
THE COPYING PAD．－HOW．TOMAKE and how to use；with an engraing．Practical directions
how oprepare the gelatine pad，aid alsothe antinink
by which the eopies are made ；how to apply the writen


 95 MILK ST．BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th 1877，No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for such unlawful use，and all the consequences thereof，and liable to suit therefor
 PATENTS．
 for Inventors
In this line of business they have had forty－ore vears＇
and
preptienc．

 them is done with


 MUNN \＆CO．，Solicitors of Patents， BRANCH OFFICES．－No．©22 and 62 F F Street，Pa－


Cas Engine ＂The Baldwin＂


THE GENERATION OF STEAM．－A





WEITMTER PATENT FURNACE BOILERS OF EVERY DESCRIPTION．
 IDE Antomatic Engines，Traction and Portable Engines ET以AM ROAD ROTIMRE： handictared by Foundry and machine Department，

Haxrisbure，Pa，U．S．A

## EI．VV．JOEINE＇

Established 1858.

## ASbEStOS Patented ROOFINQ


H．W．JOHNS MFG．CO．， 87 Maiden Lane，N．Y Chicago．Philadelphia．London．
 Sole Manuracturers of
sheathings，Builing Felts，Asbestos
隹 1＇iston－rod Packing rings，Gaskets，etc．

THE DEVELOPMENT OF THE MER





TO BUSINESS MEN．







361 Broadway，New York．


The Original Unrulamizized Packing．


ICE and REFRIGERATING MACHINES

 CHALLENGE ${ }^{E}$ ME R RYM GRINDING THE PHONOGRAPH．－A DETAILED


##  <br> 



ICE－HOUSE AND COLD ROOM．－BY R．


## Tエモ

## Suidutifix Gunciuxu

ESTABLISHED 1846.
The Most Popular Scientific Paper in the World． Only 83.00 a Yena，including Pastago．Weekly．
This widely circuln ted and splendidly IInastrated paper is pubilished weekly．Every number contains sir
teen pages of usetul information and a large number or original engravings of new inventions and discoveries． representing Engineering Works，Steam Machinery，
New Inventions，Novelties in Meehanics，Manutactorres
 Complete List of Patents each week．
Terms of Subscription．－One copy of the SCIEN YIFTC AMIRICAN will be sent for one year－ 52 numbers－
postage prepaid，to any subscriber in the United State or Cage prepala，to any subseriber in the United Statea
or Canada，on recelpt of three dullirra Dy the pub－ ishers，six mocths，\＆1．50；three months，\＆1．00．
Clubs．－Special rates for several name，and to Po Clubs．－Special rates for sever
Masters．Write for perticulars．
The safest way to remit is by Postayf Order．Draft，or Express Money Order．Money carefaly placed inside
of envelopes，securely sealed，and correctly addressed， seldom goes astray，but is at the sender＇s risk．Ad－
dress all letters and make all orders，drafte，etc．，pay－ able to MLUNN \＆CO．，

361 Broadway，New York． T音路
Scientific American Supplement．
This is a separate and distinct pubication from
THi SCIENTIFIC AmERICAN．but is uniform therewith in size，every number containing sixteen large pages full of engravings，many of which are taken from foreign
papers，and accompanied with translated descriptions． The Scientific American Supplement is published week $\mid \boldsymbol{y}$ ，and includes a very wide range of contents．It presents the most recent papers by eminent writers in all the principal departments of Science and the
Useful Arts，embracing Biology，Geology，Mineralogy， Useful Arts，embracing Biology，Geology，Mineralogy，
Natural History，Geokraphy，A rchæology Astronomy， Natural History，Geography，Archæology，Astronomy，
Chemistry，Electricity，Light．Heat，Mechanical Engi－ neering，Steam and Railway EngiDeering，Mining，
8hip Building，Marine Engineering，Photogruphy， －echnology，Manufacturing Industries，Sa工itary En my，Biography，Medicine，etc．A vast amonnt of fresh and valuable information obtainable in no other pub ilcation．
The most
The most important Ensineering Works，Mechanisms，
and Manufactures at home and abrosd are ilustrated and described in the SUPPIEEMENT．
Price for the SUPPLEMENT for the United States and Canada． 85.00 a year，or one copy of the 8cientific AM ERICAN and one copy of the SUPPLEMENE，both mailed
for one year for 87.00 ．Single copies 10 cents．Address and remit by postal order，express money order： MUNN \＆Co．， 361 Broadway，N．Y． Pablishers Scientific American．
Builders Edition．
THE SCIENTIFTC AMEERIOAN ARCHITRCTS＇AND BUILDERS EDITIoN is Issued monthly． $8 . .50$ a year． Single coples，
to about two bundred ordinary book pages ；forming a
large and splendid M a large and splendid Magazine ot A Architecture，rich－ ly adorned with elegant plates in colors，and with other
fine＇engravings；iHustrating the most interesting ex－ amples of modern Architectural Construction and allied subjects．
A special feature is the presentation in each number
of a variety of the latest and best plans for private resi dences．city ard country，including those of very mod erate cost as well as the more expensive．Drawings
perspective and in color are given，together with full Plans，Specifications，Sheets of Details，Estimates，etc． The elegance and cheapness of this inapnificent work have won for it the Largest Circulation of any
Architectaral publication in the world．Sold by al MUNN \＆CO．，Publishers，

361 Broadway，New York．
PRINTINTE INVKGS，
$\underset{T}{T}$


[^0]:    hamyock crair btand.

