taches to this edition, from the fact of the author's
death, in November last, after the completion of it death, in November, last, after the completion of its comprehensive view of the chemistry of to-day. The work has been much enlarged, and the elementary in lthe prosecution of many of the industries is here presented in a form to be readily comprehended by those?'not specially trained to such study. One of the prime recommendations of this edition of the Messrs. Blakiston is its very completeindex, while the type and printing are excellent.
The Flour Manufacture. By Fried-
rich Kick. Translated by H. H. P.
Powles. London: Crosby, Lockwood
$\&$ Co
\& Co. Price $\$ 10$.
This handsome volume, with 24 sheets of plates and
13 wood cuts, includes also a supplement by the same 113 wood cuts, includes also a supplement by the same author, with four plates and 54 wood cuts, on recent
progress in the flour manufacture. The first edition of the work was published in 1871, and it has since that period been accepted as a standard throughout Ger-
many, and in Austria Hungary especially, where scimany, and in Austria Hungary especially, where sci
entific milling was first) brought to its present high state, of development, the author taking particular pains to minutely describe the Austrian methods of high or middlings milling, which has since been largely adopted in England and this country. The book is
primarily written for millers and milling engineers, and primarily written for millers and milling engineers, and
cannot fail to be valuable alike to the young miller and cannot fail to be valuable alike to the young milher and
the most experienced, for the author is analytical in his methods of investigation, whlle setting forth only
what has been acknowledged to be best in mechani al what has been acknowledged to plates furnish detailed illustrations of a practice.
wide variety of machines, with plans for the co
tion of mills aud arrangement of the machinery.
Hudson's Tables. Vol. II. By John
R. Hudson, C.E. New York: John R. Hudson, C.E. New
Wiley \& Sons. Price $\$ 1$.

This is an engineer's manual for facilitating the calculation of the cubic contents of excavations and em bankments, piving additional tables, and in some in
stances different methods of computation from those presented by the same author in the first volume, published in 1884.
The Shoe and Leather Reporter Annual for 1888 is the title of a neat octavo volume o
more than 500 pages, nearly all of which are taken up more than 500 pages, nearly all of which are taken up
by a directory of the shoe and leather trades and thein collateral branches throughout the world. it is published by the paper whose name it bears, a journal and completeness in such a volume.
Any of the above books may be purchased throngh
this office. Send for new catalogue just published this offlee. Send for new catalogue just published
Address MUNN \& Co., 361 Broad way, New York.

HINTS TO CORRESPONDENTS.	
Names and Address must accompany all letters, or no attention will be paid thereto. This is for our information, and not for publication.	
References to former articles or answers should give date of paper and page or number of questio	
be repeated; correspondents will bear in mind sat	
though we endeavor to reply to all either by letter	
special Writeri Information on matters of	
expected without remuneration.	
Scientific American Sapplements referred to may be had at the office. Price 10 cents each	
Eiooks referred to promptly supplied on receipt of	
price. - Hinerals sent for examination should be distinct	

(1) A. W. K. desires a harmless remedy which will prevent hair from turning prematurely gray A. Nothing can prevent the hair from turning gray, any more than one can stop growing old. Sometimes, how
ever, the following mixture is used, which acts for ever, the following mixture is used, which acts for a
time. Scald black tea 2 ounces with 1 gallon of boiltime. Scald black tea 2 ounces with 1 gallon of boil-
ing water, strain, and add 3 ounces glycerine, tincture cantharides $1 / 2$ ounce, bay rum 1 quart. Mix well an
perfum
(2) F. M. D. asks : 1. What is used for putting on the bronzes that come in powder form? A.
Copal varnish is good. 2. What for applying gold Copal varnish is good. 2. What for applying gold
leaf? A. Gold size. Both of these articles can be
purchased of any dealer in paints.
(3) J. T. D. asks for a comprehensive work on navigation, comprising both ordinary compass and log navigation, and also by means of sextants, etc.?
A. We can supply you with Navigation and Nautical Astronomy, prepared for the use of the U. S. Nava
Academy by Profeseor J. H. Coffln, 52 illustrations Acade.
(4) S. W. desires a recipe for making a good cement for fixing rubber tires on bicycle wheels
A. Use a mixture of asphalt and gutta percha melted A. Use a mixture of asphalt and gutta percha melted
together. See formulas for cements in Scientific together. See formulas for ces.
Amerioan Supplement, No. 158.
(5) W. W. G. asks the relative cost of fuel for 12 horse boiler, figuring coal $\$ 5.50$ per ton, and
kerosene oil 120° test at 8 cents per gallon. A. Your coal is less than $1 / 4$ cent per pound, and the oil costs $11 / 4$
cents per pound. The evaporative power of oill $1 / 4$ cents per pound.
greater than coal.
(6) W. M. F. asks : 1. Will ordinary pig iron remelt, in ordinary foundry cupolas, stronge
than the original pig? If sa, why: A. In remelting than the original pig? If so, why? A. In remelting
iron, some of the gases thatare combined or mechani cally mixed with'new iron are given off, making the iron more compact and stronger than in new iron or
from the previous melting. 2. Very often, in tapping iron from the cdpola into the reservoir, and even after the iron is lying in it or being handled, numerous
sparks are thrown off quite high in the air, which burst
and fall in showers. A. The sparks are minute particles of iron thrown from the surface of the fluid metal by
the liberation or bursting of gas bubbles from below the liberation or bursting of gas bubbles from below
the surface. They are ignited and burn by coming in che surface. They are ignited and burn by coming in
contact with air in their flight. The gas bubbles contact with air in their filght. The gas bubbes
may be carbonic oxide, hydrogen, or other gases, and probably some air carried into the metal by the
stream of molten metal from the furnace. The nature stream of molten metal from the furaace. The nature in a fluid condition is a somewhat dispated point
(7) J. M. S. writes : I have a razor the steel of which is quite soft. It can be quickly honed, but loses its edge with very little use. Can you sug. gest anything that will harden it so that it will retain
its edge? A. We cannot. Razors are hardened thick its edge? A. We cannot. Razors are hared.
and ground thin, and cannot be rehardened.
(8) W. D. E. asks when the circular saw was first used in America for sawing lumber. A.
About 1802 such saws were first made here. They were About 1802 such saws were first made here. They were
adopted by the British Admiralty Board in 1804 , having been previously used by Brunel for making ships' blocks, but circular saws were in use in 1790 and before (9) F. P. H. asks: What will prevent
iron or steel which is constantly submerged in water ron or steel which is constantly submerged in water
from rusting? A. There is nothing lasting but good galvanizing. Asphalt varnish will be only a temporary protection. Boiled linseed oil and Prince's metallic fair preservative of iron surface under water. This is much used on ship work outside and inside.
(10) H. R. S. asks : About what would be the daily expense of a yacht, say one like Jay Gould's Atlanta? A. About $\$ 110$ per day and upward, apart from owner's private
guests and luxurious living.
(11) W. W. P.-Your skate runner canot be cemented or soldered to be reliable. A skillful orkman might braze the parts together with copper or
(12) H.-There was an error agram of the simple electric motor described in No.

which we mail for $\$ 3.50$. All kinds of batteries are de scribed in Supplement, Nos. 157, 158, and 159. 4. The
name and address of paper wholly treating on maname and address of paper wholly treating on ma
chinery. A. We do notknow of any paper treating of a wider variety of machinery than the Scientific
(17) C. E. P. asks : 1. Is there any metal easier to work than iron that coald be used as parts of heated considerably by strong currents? Could no plated with nickel, or if necessary iron? Would this protect it? As the mercury expands by heat generated by strong currente, and this must be taken into calculation, can you give any rule to find the amount of expansion for suy a rise of 25° or 50°, supposing tempera-
ture on starting to be about 75°, or that of an ordinary ture on starting to be about 75°, or that of an ordinary
room warmed? Will the mercury evaporate or become less in time under above conditiuns? A. Platinum and iron are the best metals we can recommend. Brass,
even if plated, will be liable from the least imperfection in the coating to be attacked by mercury. You will find tables of the coefflcient of expansion of mercury given in manuals of physics. The trouble is that practically the coeflicient varies with the nature of the inclosing
vessel, as this also expands and contracts. Mercury
(18) M. G. asks: 1. What would be the preservative effect of coal oil applied to wood, as pine
posts in the ground dipped or soaked in petroleum? A. posts in the ground dipped or soaked in petroleum? A.
Coal oil would not operate as well as distillatory or ta Coal on would not operate as well as distilatory or tar
products. It is not held in very high esteem ua a pre servative. 2. Is there any cheap substitute for white
lead? That is, a light colored earth paint equivalent to he dark red and brown earths or mineral paint? How of baryta, or the mineral barytes, is the favorite whit lead substitute. Lime would decompose the oil.
(19) W. A. asks : What paste is used in mounting a map on canvas? A. Any good flour paste
will answer, after which it is generally customary, but not necessary, to varnish the surface of the map.
(20) T. B. asks: 1. What is a gland? How do you pack one, and with what material? A box on the heads of engines, pumps, and other machinery that have piston to be kept tight. The box is packed
with various kinds of material furnished with various kinds of material furnished into yarn of square or round form, suitable in size for the open space under the gland; otherwise use twisted or
braided flax or cotton, of the proper braided flax or cotton, of the proper
s:ze. Wind it round the piston rod looses:ze. Wind it round the piston rod loose-
ly, pushing into the stuffing box until it is full, then push down the gland and it is full, then push down the gland and
tighten with the screw nuts. Grease the packing before putting it in. 2. What is the difference between an automatic cut-off and a plain cut-off? A. An auto-
diagram in here reproduced with corrections. Comlete whing drawing L. W. C. writes : I recently saw a matic cut-off is operated by the governor. Others are
connected directly with the cam, and the governor throttles the steam. 3. What is meant by lead? A. Lead is the width of opening of a steam port for t
admission of steam at the beginning of
(21) C. H. B. desires a method of bleach ing sponges after being used in surgical operations. A Soak in diluted hydrochloric acid 10 or 12 hours, then
wash with water and inmerse in a solution of hyposulphite of soda to which a small quantity of diluted hydrochloric acid has been added.
(22) F. W. desires a recipe for making a paste polish that will clean and polish brass, Ḣckel plate, copper, or any kind of metals. A. Take of oxalic stone 20 parts, palm oil 60 parts, and vaseline 4 parts Pulverize the ozalic acid and rouge and rotten stone mixing thoroughly, and sift to remove all grit, then add gradually the palm oil and vaseline, incorporatlng thoroughly.
(23) G.-Engines are rated and sold by theirnominal horse power, which does not designate
their real or indicated horse power. The latter may be double the nominal horse power
(24) W. H. S. Writes: You state that carbonate of potash prevents rust on iron or steel. Will
it injure the metal or not? I have never found anything that will preventa gun from rustingin ourclimate, long at a time. A. Ittis not injurious to the metal. It is of
no value for a gun that is handled or exposed to the no value for a gun that is handled or exposed to the
weather, but only suited to fimished work, as cutlery papered in a store
(25) H. B. asks : When a cannon would shoot a ball 15 miles distance, how high would the ball of powder? A. The elevation of the gun to make a 15 mile range is necessary to a solution of this problem.
Probably about 9 miles. (26) H. O. D. asks : What flux can I use to obtain a clean, perfect weld in copper, and at what heat must it be worked? A. 3 parts phosphate sodium, 1 part boracic acid; pulverize and mix. Sprinkle on
metal at red heat.
(27) A. M. asks whether a current water wheel could be successfully used or operated in the Missouri River. A. Current water wheels are only makeshifts, to be used when no other form can be
operated. They require floats anchored or other deoperated. They require fioats anchored or other de
vices to keep them at a proper immersion at all stages vices to keep them at a proper immersion at all stages
of the water. They are an ancient device, successful only on streams of little variation in flood level.
(38) J. L. C. asks : 1. Does a fatal shock of electricity produce rupture of physical tissue? A A fatal shock of electricity is generally accompanied by
some physical effect upon the animal tissues yet there seems to be no reason why it should not kill by a purely nervous shock without any physical injury. 2 Does electricity travel upon the external surface or through the internal body of a conductor, such as a
copper wire for instance? A. The entire substance of a copper wire for instance? A. The entire substance of copper wire for instance?
conductor conducts electricity. T.
(29) S. C.-You cannot braze a lug on the double barrel gun without injury to the gun. You
can solder it with pure tin and make a good job. Tin he cleaned surfaces with a copper, put them together, and heat the parts entil the tin melts, putting a little inon the edge of the joint to make a perfect filling. If inning. Hard solder is brass, and requires a high heat o melt it.
(30) D. H. S. asks : If a ball falls from a ertain point down on a spring, how far back will it the ball the highest? A. A rubber spring 18 probably the cheapest. A coiled steel spring is good, but diffcult to guide without friction. A volute spring of teel, with a center pad of steel for the ball to strike apon, is probably the most efficient. The ball may rearn within from seven to nine tenths of the distance allen through, according to the conditions of friction the air, friction of impact upon the spring and per-
(31) F. B. W. asks : 1. What is the most practical compound for safety match? A. Dip the plints in a paste composed of chlorate of potash 6 parts, sulphide of antimony 2 to 3 , glue weighed dry 1. he paste for the rubbing surface is amorphous phos-
phorus 10 ' parts, oxide of manganese or sulphide of ntimony 8 , glue 3 to 6 weighed dry. The ingredients must be thoroughly mixed, and care must be taken not to mix the chlorate of potash in the dry state with he other materials; it should be mixed frrst with glue issolved in warm water. The paste for the rubbing arface may be spread with a brush or spatula on the ide of the box. 2. Is there any chemical that takes re by blowing the breath on it? A. None that are
(32) W. P. asks (1) how the cheaper kinds of mucilage are made by compounding starch with sulphuric acid. A. The starch is first converted into dex-
trine or British gum, which is then soluble in water. trine or British gum, which. is then soluble in water.
The method is as follows: One part of starch is acted upon by $1 / 4$ part sulphuric acid and 2.8 parts water. The cid is mised with part of the water, and is starch poured upon the starch, and the misture is kept for ome time at $90^{\circ} \mathrm{C}$. The dextrint is then precipitated by alcohol from the clarifled solution. 2. There is an mported mucilage here containing a great quantity of me or other alkali. Can y on give its formula? A. You will have to have it analyzed. We do not know it ate of potash will make a very strongly sticking mue cilage. Can you tell me how the solution is made? A silicate of potash alone would be useless. See the arti le on "Water Glass," in Scientific American SupLement, No. 317.
(33) S. M. McK. asks how to make good rat class printer's inking rollers. A. Take of Cooper's lasses 2 gailons, glycerine 1 pint, Venice turpentine 2 ounces. Steep the glue in rain water until pliant and drain it well. Then melt it, but do not cook it, the glue pot being held in an outside pot in which water is kept boiling. Next put in the sirup and boil $\%$ of an hour stirring it occasionally, and skimming off impuritie tine a few minutes before pour alowly. Deduce increase the the the and pour slowly. Reduce or incr
becomes colder or warmer.

TO INVENTORS.

An experience of forty years, and the preparation of
more than one hundred thousand applications for pamore than one hundred thousand applications for pa-
tents at home and abroad, enable us to understand the tents at home and abroad, enable us to understand the
iaws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A syopsis of the patent laws of the United States and all
foreign countries may be had on application, and persons contemplating the securing of patents, either at home or
abroad, are invited to write to this office for prices, MUNN \& CO., offlce Scientific American, 861 Broad way, New York.

INDEX OF INVENTIONS

For wh ch Letters Patent of the

March 6, 1888,
AND EACR REARING THAT DATE
[See note at end of list about copies of these patents.]

Abacus, Clark \& Wren.................................... 378,866 Advertising apparatus, A. Duboce.............

Alarm. See Burglar alarm. Fire alarm.
Animal hitching device, J. Coyle.................... 379,103 Animal trap, Page \& Hardeman............................ 378,972 Animal trap, Walker \& Allsopp...................... 879,087 Axle, anti-friction, M. Ryan.................................. 378,978
Baa or satchel frame lock, A. Goertz............ 379.15 Bale tie. J. R. Davis. 378.874 Baling press, , J. M. Tay1or...................................... st99.186
Bar. See Splice bar.
Basting machine. T. C. Robinson.................... 378,905 Bath. See.Cabinet bath.
Battery. See Carbon batter. Bearink, propeller shaft, J. Richardson............. 378,975
Bed bottom, spring, J. D. Stuart 379.198 Bell, A. \& A. Iske..
 Bench. See Wash bench.
 78,890

Bit. See Bridle bit.
Blacking box hđider, G. P. Crazin.................. $5: 1,95$
Blaatin

		D. D.	
tier, ink, H. Heinke...	Ga	Dilot.	Karanagh.
ard. See Game board.			
		Railway switch stand lock, F. s. Mitchell............. 979,122	
			Spoon handles, ornumentation of. E. T. Schoon-
Boit heading die, F. Mutimer..................... 37,			
Boot or shoe sole, F. W. Munroe... 379,023	Glue stock, preparing, T. P. Mlllgan.............. 379,021		${ }^{\text {T }}$
Buot or shoe upper, T. Nally................... ${ }^{\text {S78,888 }}$			Tspe, f
Box. See Blacking box. Mire alarm siknal box.		Regulator. See Feed regulator. Windmill regu-	
Box for holing kummed letters, ete., \mathbf{H}. Wilison. 588,91			Rade marks.
ke. bee Car brake.	Hammers, nail holding attachment		a,
Buckle, Crippen \& King.......................... 579,00	Harrow, C. A. Perin............................ 379.079		
Buckle, E. N. Parker............................. 59,0,8	Harrow tooth holder, w. s. Lawrence............ 379,018	Ruler, combination, H. Goldsmith.... 378,928	Chocolate, manuractured, $\mathrm{H} . \mathrm{L}$. Pierce............. $15.280{ }^{\text {a }}$
Buckle, E. C. Whitmarsh.... 988,991		${ }^{0+4}$	
	cker, A. L. Courtright.... -................ 899,102	124	Cocolate, Webb's double
	Hea	de, A. House............................	Cocoa, eracked, \mathbf{H}
Bustle, \mathbf{c}. c	Hinge, B. s. Atwood.... 378,581	mill carriages, feed	Cocos shells, We
Bustle, F. M. Jefrers............................ 578,944	Hinge mortiser, J. M. Mathews.................. 379,76	Hofmuan..................................... 379,188	Cocoa, Wel Flour, Mar
${ }^{\text {379,000 }}$	Holdback, vehicle, H. w. Getman.............. 379,157		Frour, Ma
Button, s. Cottle................................ 387,923	Holder. See Blacking box holder. Cur holder.		Lotion for the eskin, L. A. Brikham.
Buttonhe			Medicine, for rellering eplieptic aim
Bntt		Screen. See Window screen.	Dr. s. A. Richmon
Cabinet bath, T. Wallis et al....................... 579,133	Hoor pad, H. L. Hubbard... 387888		Mealc
ar, W. K. David.	k	Serew clamp. J. Mooney 3 \%,8,36\%	Oll
Camera. See Photogra	Horn tip, H. A. Muller............................. 379,077	Se	de of zinc, dry and in oll, spelter, and sh
See Oll can.	Horseshoe nall, A. R. Muterspaugh.............. 378,235		
stopper, H. Selvage 378,81	Inhaler for chloroform, ete., J. W. Battershall... 372,M2		
Candlestick, H. E. Lewis. \qquad 379,171	Inkstand, R. P.	Sewing machine binder guide, T. C. Robinson..... 378,904	
Car brake, electric railway, W. M. Schlesinger.... 378,980			p. J. C. Davi
Car brake, electric railway, W. M. Schlesinger.... 378,980 Car counling, F. J. McQueen....................... 379,177	Ironing machine, wilson \& Binder................ 978,924		
Car heater, D. Connell........................... 379,	Jewelry, pln and atte	ship siknal, electric, J. W. Dooles................ 378,876	Wood wool and wood wod wadiliug, P. Hartmano
	,	shoe, J.	
	Jugs, tea pots, etc... metal lid for, w. storer........ 379,184	Shiw stand or case s. S.c.	A Printed copy of the specification and drawing of
s by electrical energy, apparatus for the pro-			
sy electrical energy, apparatus for pulsion of, A. H. Bauer	Key. See Telegraph key. kiln. See Brick kill. W	Sled J T Scott \qquad 379,130	th
a, cabler	Lamp burner, C. R. Harris..................... ... 379.110	sleikh knee, E. King............................. 379.170	
	Lamp, car, C. L. Betts....... -............ 388.885		
	Lamp extingulshe	Soldering tool, Wagandt \& Hull.... 379,141	
	Lamp shade holder	- So	
Carbon battery, G. E. Terrell.......................... s78,943	Lamps, supporting crane for electric, L. J. Wing.. 888,918 Land roller, J. B. Belcher............................ 878.916	Spectacles, combination, B. Erause................... s78,985	each. If complicated, the cost will be alitle more. For
rier. See Cash and packnge carrier.	Lantern, Kells \& Follett......................... 378,889		tull instructions address Munn \& Co., 361 Broadway,
tridge shells, machine for trimming, P. Butler 3	Last, A. S. Adler		
Cash and package carrier. Thomas \& Bostedo..... 379,084			
			2HDoertisements.
nn metals, apparat			
Cattle guard, J. T. Hall 379,10ף	İquid separator, eentrifugal, C. D. Sb		Inside Page, ench ingertion -:- 75 cents a line.
			ht
air. See Folding chair. Railway chair. clining chair. Surgical chair.	ck. See Bag or satchel frame lock. Nut lock. Oar lock. Railway switch stand lock.		ds per line. This notice shows the width of the line, is set in agate type. Engravings may head adver-
neel cuter, w. H. A Res................ -.... 37	Iog turner, steam. J. Torrent.................... si9,088		
pper. See Cott	Loom let-orf mechanism. \mathbf{H}. Litchfeld............ 379.173	sto	
urrs. Impressing letters and ma	相 or rrain, apparatus for efectiog the turning	sto	
Clamp. See Screw	martok rage.F.W.Lscei.....................		
aner. See tbes wring	Mat. See Mattresses,	Stub holder, J. M. Berry (r). . Surgical chair, F. E. Case (r).	
atch for wheels and axles, J. Hartnose.......... 378,557 .	Measuring apparatus, coin released helkht, W.P.	${ }^{\text {sm}}$	
at, M. S	Ingham		
Iee mill, J	Mechanical movement, L. F. Goben		
okink apparatus, steam. H. C. Ballard.......... 388.9	Metal. mach	Tanks, automatic ralve for water, C. H. Harkins.. 37,169	
378,4,			The Edison United Manufacturing Co.,
stton chopper and cultitiator, R. T. Hugkins..... 378,900	Metals, apparat tas for decorating, J. Baynes........ s77,092	Telegraph key, E. M. Hamilton. \qquad 379,003	
ton openers, ylelding grate for, L. H	Metals	Telerraph, oolice, fre, and	SEBASTIAN MAY
upllig. See Car coupling. Pipe coupling.	dullus	Telegraph sounder, E. M.	
shaft coupling. Thill	$i_{\text {Mlik }}^{\text {Mill }}$ aer	${ }^{\text {Telur }}$	
Vlady ka $\&$ mitchell.	Milling	Tempe	
Tholder, S. P. Babcock............. ${ }^{\text {57,982 }}$	Mop wringer, H. Blake...	Tent, folding, L. F. Ryan......................... 3788	
	Motor. see Car motor. Self		
		The. See Bale tie. R	Cous, outits Lathes ontriat,
al		Tooacoo, device for curin, E. A. A. Buabton....... 379,094	
Eisennart (r) 10.9 9\%	ps,		
Desk and seat, aduastaje school, O. ©. Doc Die. See Dolt heading die.	Newspapers, ete., automatte apparatus for the	Tray or pa	
	Nut lock, A. w. Talley............................ 379,036	Troush. See feed troug	
ingwater and other liquuds,	Oar lock	Truekr F. F. H Otto..	
R. D. Gladnes...............		Truck and ladder, J. L. Craats.................... 579.0033	
	Oil	Tube, M.	
Iling machines, feed	Ord		ExcavatorCo.
	Packag	Um	
Electric machine, dynamo,		Val	S.-A PAPER BY DR. H. C.
tric machine, magneto, O. P. Loomi	Paint can prese, w. C. willams.................. 579,19	Vane, Illuminated wind, D. Rockwell............. 579,031	
Electrical contact maker and breaker, C. Jambdin....	Paper boxes, machine c. W. Hobbs		
evator			
Embroidery stand, A. M. Pa	Paving, etc., block for, F. M. Plickering............	Vehicle mheel, G. M. Hughes s78,961	
gine. See Rotary end	,	Velocipede, E. G. Latua........................ 59.017	
		ve	
ed regulator; H. A. Barn	sham. L. Buntrock.......................... 98,962	vise, J.	
ed trourh, D. L. Spicher...................... 378,		${ }_{\text {Wagon sk }}^{\text {Warp bea }}$	
cee machine, hand. B. Curre	P1	Wash bench, w. Cochrane. 378,	
ence post, Harmon \& Terrell ...	astic material, machine for forming balls, etc.,	Washio	
ence weaving machine, ©. J. J. Cline.............			
	俍		
ee, letter, ,	Pole ch	Watchen, stem minding and setting mechanism	
e alarm sik			
Fire escape, J. H. Glasscock.......................... 378.88	E. A. \& F. Cameron,..................... 379,088		
Fireplace lining, J. Dwyer. \qquad 379,05 Fires and lights in railway cars, apparatua for ex-	Preserving fruits, etc., H. L. Blits 378,399	w	all news-
tinnuishing, M. o. Parrer			
es in railway cars, apparatus for extinguishing, Edwards \& Sackett.	Pressure gauges, combined cock and siphon for steam, E. A. Wood	win	RDEKDRITS CAE
h hook, w	Printing machine, cyllider, M. viereneel........... s79,		
cleaner, w. F.	Propelling and steering apparatus, boat, J. Her	Wire rods, reeling apparatus for, F. H. Daniels... 379.104	c
me. see Displas frame. Qullting trame. Reel-			
		reacu.	
538,944	Quarta, mill for crushiog or grindigg, Q. Frisboe..	or thread rk	RY\&RAMRORO WORY
			RAND DRILL co 23 Papk Plate sio:
ces, heatinz tube for, H. Tllden............. 388.9010	Rack. See Hat and coat rack	DESIGNS.	
shell, T. Nordenfelt. 379,025 See Marking gauge. Saw bench gauge.		DESIGNS.	co System of Are and
e board, J. A. Martin.................. 899,174			
me ?drankhts tn be played by three persons, an! apparatustherefor, J. Hyde.			

