SYixutifir chamerian.

ESTABLISHED 1845
MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.

O. D. MUNN.
A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN.
One copy, one year, for the U. S. or Canada..
One copy, six months, for the U. S. or Canada
One copy, six months, for the ear, to any foreign country b
One copy, one year, to any foreign country b
Remit by postal or express money order.
Australia and New Zealand.-Those who det anticic a merican for alittle over one who desire to receive the Colonial bank notes. Address

The Scientific American Supplemen

is a distinct paper from the ScIENTIPIC AmRRICAN. THE SUPPLEMENT issued weekly. Everynumber contains 16 octavo pages. uniform in size
ith Scientipic American. Terms of subscription for Supplement, $\$ 5.00$ a year, for U. S. and Canada. $\$ 6.00$ a year to foreign countries belong ing to the Postal Union. Single copies, 10 cents. Sold by all newsdealer Coughout the country
biged Rates.-The Scientific american and Supplemen even dollars.
seven dollars.
The safest wa
egistered letter.
Australia a
Ausplement will be sent for a little over one year on receipt of ${ }^{2} 2$ cur rent Colonial bank notes.
解
NEW YORK, SATURDAY, DECEMBER 31, 1887.

Contents.

(Illustrated articles are marked with an asterisk.)

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT INO. 826 .

For the Week Ending December 31, 188%. Price 10 cents. For sale by all newsdealers.
A RBORICULTURE.-The Snowdrop Tree.-The Halesia tetrapter I. Chemistri.-On a New Method of Examining Butter.-By tetecting butter ace Narren.-A simple analytical method of ally determined.
The Comparative Delicacy of Some Qualitative Tests.-By J. S. c. Werless.-The delicacy of prominent chemical reactions ex-
\qquad
tively new and original type of battery described and illustrated. -1 illustration.
The Manufacture of Electric Light Carbons. -The method in use by the Liepman Carbon Company, of London, for making pen-
cils for the electric light...
V. engineering.-Asphalt and Concrete Foot Pavements.-By Mr. G. R. Strachan.-Experiments with asphalt walks in Eng-
land, giving valuable practical data of durability cost, and other factors...
The City of London and Southwark Subway.-A new under ground railroad now in process of construction in London.-Th excavating machinery and general plans of the structure.-7illus-
trations... trations. method used by the Egyptians, is setting up their monoliths.-1 illustration..
The Eriection of the Forth Bridge.-By Mr. ANDREW S. BIG-GART.-A paper on the building of the trusses and cantilevers of
the world's greatest bridge.-Full details of the riveting cages, the world's greatest bridge.-Full details of the riveting cages,
etc. -8 illustrations...
. mineralogy.-Gems and Precious Stones.-By George w. KUNTZ.-A valuable treatise of the nature and orizin of the diamond and on other stones.-Reproduced by special permission
from advance sheets of this important paper.
VI. MISCELLANEOUS.-An Earthquake Railway Station.-The San Mateo station on the Oroya railway as wrecked by an earthquake.
-1 illustration................................. "Big Ben" an Bis Ben " and the Westminster Clock. - The details of what is
betieved to be the most powerful clock in existence ; its wonderful accuracy; the dimensions of its various parts.- - inllustrations Roburite, the Now Explosive.-Recent trials of the new explo-
sive agent as conducted in England; its uses and power
VII. TECHNOLOGY.-Wool Hat Making.-A full account of the manufacture oflwoolen hats: the machinery and manipulation em

NAPHTHA EXPLOSIONS IN ROCHESTER AND JERSEY

 CITYA very serious explosion, due to an escape of naph tha, took place in Rochester, N. Y., on December 21. The Municipal Gas Light Company of that city uses one of the modern gas making processes, in which naphtha is employed for enriching the gas. The gas works receive large quantities of naphtha from the Vacuum Oil Works, and the two establishments are connected by a pipe line, part of which is placed in the bed of the canal. Fourteen thousand gallons of the inflammable fluid had been pumped into the line to be carried by it to the works. One or more leaks existed in the pipe line, and, in consequence, a quantity of the naphtha escaped and found its way into the sewers. At 3:25 P. M. it caught fire and exploded near John H. Poole's mill. The roof was blown off the mill and the street was torn up at intervals for a distance of half a mile. Other explosions rapidly followed, and soon Mr. Poole's mill was in flames. Three flouring mills were completely destroyed before the firemen had the flames under control at half past eleven at night.

A leak has been found in the pipes near the Atkinson Street sewer. This is thought insufficient to account for the extent of the disaster, and the whole line will be tested by hydrostatic pressure. The loss of life is not yet known with certainty, but several people have probably perished. The sewers are badly damaged in probably perished. The sewers are badly dam
places, and windows were broken everywhere
Immediately following the news of this occurrence comes the tidings of a nother similar accident, though, fortunately, of far less extent. In the office of the Jersey City Gas Light Company, in Jersey City, N. J., a naphtha leak existed in the cellar. The heat of the steam pipes, it is supposed, vaporized the fluid, and about noontime on December 22 two explosions followed each other in quick succession, the second being the worse. The front of the building was blown out, but the occupants escaped with more or less serious injuries. One of them is not yet pronounced out of ${ }^{1}$ danger.
These two accidents emphasize the need of extreme care in dealing with naphtha. It is more dangerous than gas, because when a leak occurs it takes far longer for the last traces to disappear. Its comparatively stable nature makes it a fearful adjunct to a conflagration, as it burns and when mixed with air explodes. The first explosion only disposes of a part of the danger ; some will almost always be left to prolong the trouble. Water acts ineffectually in extinguishing it, it flante and burns upon the suriace.
In this city vast quantities are used, probably over a thousand barrels a day in the gas works alone. But, fortunately, these establishments are all situated on the edge of the water. The oil is brought in tank barges to the dock and then pumped through a short line into tanks, whence it is taken to the works. Yet, in the light of what has occurred, it would seem that more stringent regulations should be applied to its use. No line of pipe used for its transfer should be buried. The greatest element of safety in handling naphtha is exposure. Hidden pipes and tanks are a perpetual menace. Ventilation is also important security. Everything connected with its storage and transporta tion should be open both to inspection and ventilation.

POSITION OF THE PLANETS IN JANUARY.

 venusis morning star. An interesting event in her course oc curs on the 2 d , at $11 \mathrm{~h} . \mathrm{A} . \mathrm{M}$. She is then in conjunc tion with Jupiter, the planets being only $1^{\circ} 51^{\prime}$ apart, Venus being that distance farther north. The planets rise on the morning of the conjunction about three hours before the sun. Venus rises on the 1st at 3 h .54 m. A. M. On the 31st she rises at 4 h .47 m . A. M. Her diameter on the 1st is $188^{\prime \prime}$, and she is in the constellation Libra.

JUPITER

is morning star. He signalizes his progress in the sky during the month by his meeting with Venus on the 2d. He makes also a close conjunction with Beta Scorpii on the 24 th, at $6 \mathrm{~h} . \mathrm{P}$. M., being at that time only 8^{\prime} south of the star. At the close of the month he rises four hours and a half before the sun. Jupiter rises on the 1 st at $4 \mathrm{~h} .4 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31st he rises at 2 h .30 m. A. M. His diameter on the 1 st is $31^{\prime \prime}$, and he is in the constellation Libra.

SATURN
991 is morning star until the 23d, and then evening star. On the 23 d , at $9 \mathrm{~h} . \mathrm{A}$. M., he is in opposition with the sun. He is then at his nearest point to the earth, and is visible under the most favorable conditions, rising at sunset and continuing above the horizon all night. Saturn rises on the 1st at 6 h .26 m. P. M. On the 31st he sets at 6 h .49 m. A. M. His diameter on the 1 st is $19 \cdot 2^{\prime \prime}$, and he is in the constellation Cancer.

MARS

is morning star. On the 5 th, at $7 \mathrm{~h} . \mathrm{A} . \mathrm{M}$. , he is in quadrature with the sun, rising at that time about midnight, and is easily visible as a small ruddy star
in conjunction with Uranus, being $1^{\circ} 10$ north. Mars rises on the 1 st at $0 \mathrm{~h} .15 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. He rises on the 31 st at 11 h .13 m. P. M. His diameter on the 1 st is $74^{\prime \prime}$, and he is in the constellation Virgo.

MERCURY

is morning star until the 18th, and then evening star $H e$ is in superior conjunction with the sun on the 18th, at 3 h. P. M., passing beyond the sun, and changing from his western to his eastern side. Mercury rises on the 1 st at 6 h .53 m. A. M. On the 31st he sets at 5 h . 48 m . P. M. His diameter on the 1st is $48^{\prime \prime}$, and he is in the constellation Sagittarius.

URANUS
is morning star. On the 7th, at $7 \mathrm{~h} . \mathrm{P}$. M., he is in quadrature with the sun. Uranus rises on the ist a 0 h .37 m. A. M. On the 31st he rises at $10 \mathrm{~h} .35 \mathrm{~m} . \mathrm{P}$ M. His diameter is $3 \cdot 6^{\prime \prime}$, and he is in the constellation Virgo.

neptune

is evening star. He sets on the 1st at $4 \mathrm{~h} .4 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31st he sets at $2 \mathrm{~h} .4 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. His diameter on the 1st is $26^{\prime \prime}$, and he is in the constellation Taurus. At the close of the month, Mars, Uranus, Jupiter and Venus are morning stars. Neptune, Mercury, and Saturn are evening stars.

Saved by the Scientific American

Mr. J. J. Stranahan is the editor of the Exponent bright paper published at Chagıin Falls, Ohio. In a ecent issue of his journal he gives the following :

Those wishing to be well up in scientific and me chanical matters cannot afford to be without the Scientific American. It has been a constant visitor at our sanctum for fourteen years, and the other half of our family says that it is nip and tuck between the Bible and the Scientific American so far as we are concerned. We, however, have a double interest in the Scientific American, for, but for it, a new man would be behind the editorial quill of the Exponert. When we came near crossing the dark river, when taken by cramps while swimming across Mark Neice's pond in Newbury last summer, the first thought that entered our mind in that awful moment was an article which we had read about two weeks before in the Scientific American, on how good swimmers are drowned by becoming frightened, when by coolness and deliberation they could save their lives. Although ten rods from they could save their lives. Although ten rods from
shore, in twenty or thirty feet of water, with severe onarops in neck and thigh, we swam to shore, and spoiled a nice funeral and cheated some other fellow out of a seat in the sixty-eighth general assembly. And there are doubtless those who wish that the Scientific American was in Hades before that article was published."
Mr. Stranahan further states that the facts above given are true to the letter.

Artificial silk.

The author dissol ves 3 grins. of nitro-cellulose in 100 to $150 \mathrm{c} . \mathrm{c}$. of a mixture of equal parts of alcohol and ether. He adds 2.5 c . c. of a filtered solution at onetenth of the dry ferrous chloride of commerce in alcohol; or of stannous chloride, and further 1.5 c . c. of a solution of tannic acid in alcohol. The whole is filtered in a closed apparatus to prevent loss by evaporation. The liquid is placed in a vertical reservoir, having at its bottom a blowpipe nozzle of glass or platinum. This pipe forms an acute cone with an orifice of from 0.10 to 0.20 mm ., the thickness of the margin not exceeding 0.1 mm . This aperture opens into a vessel of water acidulated with one-half per cent of mono-hydrated nitric acid. The level in the reservoir being some centimeters higher than in the vessel of water, the outflow proceeds easily. The fluid thread hardens at once in the acidulated water, and may be drawn out by a uniform movement. The thread thus formed must be dried rapidly by traversing a current of dry (not hot) air, and may be wound up as soon as dry. It is gray or black, but a number of soluble coloring matters may be introduced into the ethereal solution, thus obtaining threads of all colors. $-M$. De Chardonnet.

How to Invest Nine Dollars.

By remitting $\$ 9$ for the Scientific American, Sar entific American Supplement, and the Architect and Builders Edition of the Scientific AmeriCAN for 1888 , the subscriber will surely have the latest and best scientific, engineering, mechanical, architectural, and building information to be had, and it is only in these three publications that a great deal of the information they will contain can be had at all.

The number of engravings of new inventions, engineering works, scientific experiments, the elevation and plans of new buildings, etc., which have appeared in the three editions of the Scientific American during the year just closing reaches the large number of twenty-eight hundred and forty-nine. Every iseue of the Architect and Builder contains views of modern houses printed in colors

