each side of the center line and connect the ends of the two front and back cross lines. These oblique lines form the two upper radial corner lines of the bellows. Supposing the sides to measure $81 / 2$ inches wide on the back and $41 / 4$ inches on the front or small end, we divide the distance, at each end and locate the side center lines (see Fig. 6). From these we determine the location, by measurement, of the two lower radial corner lines of the bellows. The bottom of the bellows is then divided, and one-half added to each side of the

Diagram A.-Measurements for a 5×8 Bellows.

Diagram B.-Plan and Measurements for an 8×10 Bellows.

Diagram C.-Measurements for a 4×5 Truncated Cornered Bellows
sides of the bellows, an extra length of $1 / 2$ an inch being allowed for the lap or joint.
The crease lines for the cross folds are next deter mined, by first dividing off on the respective center lines in equal distances the width of a double fold, which may be about $11 / 2$ inches. The measurement should commence from the wide end and proceed toward the small end. Cross fold lines are then drawn between the four radide corner lines in each section, at right angles to their respective center lines, and will neet each other, producing a shape similar to a portion of an octagon. The next step is to locate the position of the intermediate fold. This is done by'laying the base of a drauglitsman triangle on the base line, or back of line, and drawing a line at 45 degrees inward from the intersection of the corner line with the back line, nearly across the fold, then by reversing the position of the triangle, so that its base is coincident with the next fold line, and drawing another diagonal line at 45 degrees inward from the intersection of the fold line with the radial corner line to where it will cross the other diagonal line. Where they meet will be the pro per location of the internediate fold line. This will be the same for all the intermediate folds. The points for these line should then be located on the center line, and the hould be drawn paralle with the other fold line the other fold line two cente corner lines. Each side of the bellows is measured of in the same way. The corner folds are located pre cisely as in the case of the rectangular bellows, by drawing lines $3 / 4$ of an inch distant from the corne lines parallel with the lat ter, and crossing the squares' so formed by diagonal lines, which repre sent the zigzag lines of the corner folds. Fig. 6 and Diagram B show positions of these lines. The dou ble lines are to be creased from the inside.
One slight objection to this form of bellows is that it is liable to stick and not to freely expand. Hence Mr. Bierstadt has devised a simpler shape, in which the corners of the folds are truncated. This form is clearly shown in Figs. 7 and 8.
The bellows, by its pe-

A NEW PALM-SARGENT'S PALM (CHAMEPHENIX SARGENTII).
family of nobility on the southernmost extremity of southwestern Florida, at Cape Sable. These few ex. amples were all that were known to belong to the United States, as a native growth. The small grove was a place of resort for lovers of the curious and interesting in nature, but the vandal hands of some of the too rapidly increasing bands of hunters and tramps long since carried off every vestige of the wood from these beautiful vegetable forms.
It was with great pleasure that we learned from Mr. Monroe, of Staten Island, that he had discovered several of the grand trees on a piece of timber which he had purchased near the Miami River. Mr. Monroe was an early purchaser in this region, and adds to his enterprise in planting the new lands near the Ever glades considerable scientific and æsthetic skill. He

Diagram D.-Plan of Truncated Corners.
penetrated the thickets in all directions, and with photographic implements in hand he secured the pictures of all notable objects.
It was with surprise that he came upon several handsome palms, differing wholly from those which are familiar to the visitor there. He readily decided that they were royal palms, yet their low and outspreading foliage struck him as differing from those glorious trees.
The habitat of these palms is so difieult of accers, it is scarcely strange that they have never before been seen. Elliot's Key is another and more recent locality of these palms, lying about eight iniles off the southeastern coast of Florida, forming with Arsenicker Keys the southern boundary of Biscayne Bay. The island is about seven miles long and about a half mile wide. Here the very successful experiment of raising pineapples is being repeated with profit.

In 1886 Prof. Sargent, of Cambridge, was engaged in examining the botany of the region. Here the proprietor, Mr. Filor led the party to what was considered a group of young royal palms. On observing the fruit, which was not fullymatured at the time, it showed plainly that it was of a distinct species, and new to science. As there are about a thousand species of the palms, their identification palms, their identification is not al accomplished. Prof. Sargent sent a specimen of this tree, in the form of its fruit and some other essential parts, to Prof. Wendlandt, of Germany, who has great facilities for the study of such plants. It was found that the newly discovered tree was not only different in species, but in genus also. Hence the Professor has named it Chamoephenix Sargentii. The first or generic name denotes its resemblance to the date palm.

Prof. Sargent first visited these trees in April, when the fruit was not yet ripened. He thinks that the tree flowers in September, and that the fruit ripens in June-when it is about the size of children's marbles. The fruit is borne mostly in twos and threes, the thin, smooth pericarp incasing one, two, or three spherical nuts. The ber-
ries of the royal palm are scarcely larger than buckshot. This new tree reaches about twenty feet in height.

Mr. Monroe informs us that the Messrs. T. \& E. A Hine, of Woodside, N. J., owners of a large cocoanut grove in the western end of Long Key, while prospect ing came across "quitea large grove of what they took to be the royal palm," rather stunted in growth, as they thought, by the winds. It seems that Mr. Monroe was suspicious that the tree was not a true royal palm, as he was familiar with both, having found on Little River several specimens of what now prove to be new. He transplanted several, and up to lately they were doing well. Should these new trees prove hardy and easily propagated, they will be a valuable addition to the semi-tropical flora of the United States.
That they stand quite low temperatures is seen by the fact that in the winter 1875-76 the mercury at the above localities stood at 36°-a point much lower than ever known there before.
We are indebted to A. H. Curtiss for some items of interest connected with the discovery of this new tree, he having accompanied Prof. Sargent as a botanical guide to the Florida flora.

A New Compass.

The Alta California gives an account of the test of a new compass invented by Leon Sirieix, a Frenchman by birth, and a graduate of the French Polytechnic. The compass as exhibited consists of a brass cylinder divided into two compartments. The lower compartment contains the corrector of the needle, while the upper division contains the compass card, which is swung on a pivot, as in the ordinary compass. On one side of the cylinder, close to the base, is a screw, and in the center of the base is another. 'These are the adjusting screws, the first, A, being used for correcting the permanent magnetism, and the other, B, for the correction of the induced magnetism. The inventor placed his compass on an imaginary ship, and laid her head due north, or in other words, made the "lubber line " form one with the pole on the wall. The needle then pointed due north. On the other courses the same result was attained. The needle never deviated one degree from the north. Iron was placed around the compass, and the needle was observed to deviate a degree west. The inventor moved screw, B, and adjusted the needle carefully. The imaginary vessel was swung again, and on every course the needle pointed due north. It was also shown that the compass had no "heeling error," which is caused by the rolling of the vessel. A most severe test was applied, but the card remained perfectly horizontal. The Sirieix compass was revolved at a great rate, much more than could ever be attained in swinging a ship, and directly the motion was stopped the compass card was seen to be still pointing north, and it had moved little more than half a degree on each side of the "lubber line." The compass card was spun round at a great rate. Left to itself, it became dead in about one minute's time. An ordinary compass would revolve probably five minutes or more. Mr. Sirieix has in his compass avoided the use of compensating magnets placed in the deck or binnacle, vertical bars, and other arrangements necessary to the compasses mentioned. He has, to use hisown expression, "centralized and neutralized" the magnetism of the ship in a spot directly beneath the compass card, thus succeeding where others have failed. The Alta says : "Prof. Sladky, of the University of California, has testified in writing to the splendid performanes; of $\mathbf{M r}$. Sirieix's instrument, and it has also
been examined by Lieutenants J. B. Milton, E. J. Dorn, and G. M. Stoney, of the U. S. Navy, all of whom agree as to the efficiency of the compass."

Spanish Naval Progress.

IIThe United States government has at last screwed up its courage to the extent of ordering ships thatshall make 19 knots an hour. This is equivalent to being about a quarter of a century behind old Spain. The Spanish navy is now in possession of a war vessel, the Reina Regente, that sails at the rate of 21 knots per hour. Probably by the time our 19 knot ships are ready, Spain and other nations will have vessels that can make 25 knots. It seems to be difficult for our Navy Department to keep posted as to what is being done by other naval powers. What is the use of building antiquated, slow boats, when better and more approved forms are already afloat that can sail around them and run them down.
The Reina Regente has a displacement of 5,000 tons, 12,000 horse power, burns 1.4 pounds of coal per hour per horse power, and has a very formidable armament. This wonderful vessel was built in 15 months' time. The fastest torpedo boat is also in the Spanish navy. It is named the Destructor, and runs at a speed of $221 / 2$ knots or over 26 miles per hour.
Spain is rapidly regaining her ancient prestige on the sea. Spanish steamship lines are fast being extended all over the world. Splendid Spanish steamers now ply between New York, the West Indies, and Mexico. On the Pacific the Spanish steamers are vigorously competing for the coast trade.

The Gas Lighting.

The first really authentic record of experiment on the destructive distillation of coal for the production of illuminating gas occurs in a work by Dr. Stephen Hales, published in the year 1726. In it he says that from the distillation of 158 grains of Newcastle coal, 180 cubic inches of gas (or, as he says, "air") could be produced. In the year 1792, William Murdoch, of Redruth, in Cornwall--a Scotchman by birth-experimented on the gas produced by the destructive distillation of various animal and vegetable substances, though ii does not appear that he used any other means of purifying the gas than water. Upon the occasion of the national illumination at the peace of Amiens, on March 28, 1802, he lighted up a portion of Messrs. Boulton \& Watt's factory at Soho, near Birmingham, with a public display of gas lights ; and this is probably the first practical attempt at gas lighting upon a tolerably large scale. He afterward extended the apparatus so as to give light to the principal shops in the neighborhood; and in 1805 he fitted up plant for lighting Messrs. Phillips \& Lee's cotton mill.
But we, as a nation, are not to bear the whole honar of introducing gas as an illuminating agent, for in 1799 Lebon lighted up his house in Paris with coal gas, much to the astonishment of the people; and Mr. F. A. Winsor, happening to be at Brunswick at the time the experiments were made known, was much interested, and forcibly struck with the vital importance of the results. On his return to England shortly afterward, he endeavored, by a series of popular lectures which he illustrated by suitable experiments, to overcome public prejudice, and advance the general adoption of coal gas as an illuminant.
After many unsuccessful attempts, Winsor succeeded in forming a compary in the year 1810, when an act of incorporation was obtained under the title of "The Gas Lighting and Coke Company ;" the royal charter, however, not being granted till the year 1812. But from that time to this the use and manufacture of gas for illuminating, domestic, and manufacturing purposes has steadily and enormously. increased, till at the present day it forms the center of one of the most important and profitable of the industries which invariably accompany the triumph of civilization and science
over the dark mist of ignorance and superstition.A. C. Wilson.

Magnesia.

Dr. Frank, of Charlottenburg, refers to the previous experiments of Vicat, Macleod, and Deville, who had noticed the possibility of employing magnesia as a cement, but it was not until the need of finding some use for the enormous quantities of refuse magnesia salts, arising as by-products in the manufacture of potash at Stassfurt, that the subject again recently attracted attention. The question is of all the more innportance in that the other compounds, the chlorides combined with the magnesia at Stassfurt, are valuable for the production of bleaching powder and hydrochloric acid. When Sorel pointed out, in 1867, that a cement could be produced by mixing chloride of mag-
nesium and magnesia, it was hoped that good results nesium and magnesia, it was hoped that good results
would ensue. The composition of this cement was based upon much the same principles as the white stopping used by dentists, made of zinc oxide and chloride of zinc. This cement of Sorel, in spite of many attempts to use it, proved a failure in consequence of a tendency, of ten noticed also in calcareous cements, to swell and blow, owing to deferred hydration. Dr. Grundmann, of Hirschberg, has recently patented a new method of treating the magnesia, for whereas formerly the material was merely calcined and made
up with water, he now carefully slakes the calcined up with water, he now carefully slakes the calcined magnesia, and subsequently exposes the compound
or casting to the action of carbonic acid gas, much in the same way that builders have been in the habit of drying and hardening plastered roomsby coufining the air and burning coke in them, so as to liberate carbonic acid gas. The natural carbonate of magnesia, known as magnesite, is a mineral of great hardness and density, and the similar substance obtained by the above treatment resembles magnesite in its hardness and in its capacity for taking a good polish. Grundmann also employs the magnesia as a cementing agent for various materials, for instance, by the use of marble dust an artificial dolomite is obtained. The magnesia can also
be improved by adding to it soluble silicates of the nature of water glass, and it can be used as a stucco for building purnes.

Alibility of the Telegraph Company.

Clumber dealer in Bangor, Me., delivered to the festern Union Telegraph Company at that city, for transmission to his correspondent in Philadelphia, the following message: "Will sell 800 M laths delivered
at your wharf two ten net cash. July shipment. Answer quick." The message as delivered in Philadelphia omitted the word "ten," making the price read "two net cash." The offer contained in the telegram was accepted immediately by telegraph. `The laths were shipped at the price named in the telegram as
delivered, viz., two dollars per M, and the Bangor
dealer brought suit against the telegraph company to recover for the loss sustained by him. The company
relied, among other things, upon astipulation printed on the blanks to the following effect: "It is agreed between the sender of the following message and this company that said company shall not be liable for mistakes or delays in the transmission or delivery or for non-delivery of any unrepeated message, whether happening by negligence of its servants or otherwise, beyond the amount received for sending the same." The company also urged that the plaintiff was not bound by the erroneous message, and need not have delivered the laths to his Philadelphia correspondent. The Supreme Judicial Court of Maine (Ayer vs. West ern Union Telegraph Company) decided against the company upon both grounds. It held in the first place that the stipulation referred to did not bind the sender, but was void, as against public policy, declaring it to be essential for the public good that the duty of the company to use care and diligence should be strictly enforced. In the second place, the court held that the sender of the message was bound by it even if erroneously delivered, but that he had his remedy over against the telegraph company. As between sender and receiver, however, it held that the party selecting the telegraph as the means of communication should bear the loss caused by the errors of the telegraph.

John B. Cornell.

The senior member of the great iron manufacturing firm of J. B. \& J. M. Cornell, of New York City, died October 26, at Lakewood, N. J., in the 67th year of his age. He commenced work in this industry when fifteen years old, and in 1847, with a brother, opened a factory in New York City. The first year they employed only four or five hands, but their business grew steadily, and the firm now employs upward of 1,000 men, being among the largest manufacturers of iron for building purposes in the United States. They furnished a large part of the iron for the elevated railroad structures in New York, and are now fur nishing the iron for the Brooklyn elevated railroads. Mr. Cornell was a trustee of the Broadway Savings Bank, a member of the Union League Club, and a prominent member of the Methodist Episcopal Church, being President of the Board of Trustees of Drew Theological Seminary. His gifts and charitable contributions to the church have been very large, and he always took a lively personal interest in its work. He leaves a widow an it seven children.

Iron Brick Paving Stones.

Paving blocks called iron brick are now being in troduced by Louis Jochum, of Ottweiler, near Saar brucken, Germany. This brick is made by mixing equal parts of finely ground red argillaceous slate and finely ground clay, and adding 5 per cent of iron ore. This mixture is moistened with a solution of 25 per cent sulphate of iron, to which fine iron ore is added until it shows a consistency of 38° Baume. It is then formed in a press, dried, dipped once more in a nearly concentrated solution of sulphate of iron and finely ground iron ore, and is baked in an oven for 48 hours in an oxidizing flame and 24 hours in a reducing flame. The German government testing laboratory for building materials has reported favorably on this brick.

Simple Method for Reviving Personis Apparently

 DeadAt a meeting of the last congress of German scientists this subject was discussed, and Dr. H. Frank mentioned that there are but two ways to stimulate the heart-electricity and mechanical concussion of the heart. The first is considered dangerous by him, as it may easily destroy the last power of contraction remaining in the organ. But what is termed "pectoral oncussion" is decidedly preferable. Dr. F.'s method is as follows :
He flexes the hands on the wrist to an obtuse angle, places them both near each other in the ileo-cæcal region, and makes vigorous strokes in the direction of the heart and of the diaphragm. These strokes are repeated from fifteen to twenty times, and are succeeded by a pause, during which he strikes the chest over the heart repeatedly with the palm of his hand. In favor able cases this method is early successful, and some times a twitching of the lids or the angles of the mouth appears with surprising rapidity as the first sign of returning life. As soon as the symptoms are noted, the simple manipulations above described must be earnestly continued and persevered in from a half to one hour for, with their cessation, the phenomena indicating beginning return of life also cease. Generally, the face assumes a slight reddish tint, and at the same time a faint pulsation maybe felt in the carotids. By this mewhom Wr. F. has seenlife returnin fourteen cases, among and aspere such as had hung themselves, croup. In three cases of asphyxia by coal gas and in one case of apparent death by chloroform the method one case of apparent death by chloroform the method
described alone-succeeded.-Med. and Surg, Reporter.

