InTERESTING EXPERIMENTS WITH SLMPLE APPARATUS.

Several very interesting philosophical experiments, which are seldom attempted by those who are not supplied with costly apparatus, may be performed in a satisfactory manner by the use of a pair of Argand lamp chimneys and a supply of rubber and glass tubing (nursing tube). These can be obtained at any drug store, and the cost need not exceed fifty cents, except in experiment Fig. 14, shown in engraving.
The rubber tubing can be conveniently coupled to any desired length by using pieces of the glass pipe.
The stand, a section of which is shown in Fig. 3, although not absolutely necessary, is very convenient, and should be made of some heavy material.
The necessary corks should be of good quality. Rubber corks, if they are obtainable, serve the purpose in a most satisfactory manner.
By referring to the illustration, Fig. 1 will be seen to represent a level with its air bubble in proper position. To prove its accuracy, reverse the glass on a surface to which the level has been applied. Fig. 2 represents a siphon arranged to show that water seeks its level.
Tantalus' cup is shown in Fig. 3. A piece of glass pipe through the cork, at the lower end of the chimney, couples the curved pipe above to the discharge pipe below.
The arrangement of apparatus in Fig. 4 will also show that water seeks its level.
In the fountain the end of the glass tube should be drawn out to small size by heating in the flame of a spirit lamp. If the jet is perpendicular, it may be made to support a pith ball. If it is discharged at an angle, the parabolic course of a jet of water may be traced.
With the same arrangement the equilibrium tubes may be produced. See Fig. 5. If the water rises somewhat higher in the glass tube than in the chimney, it is due to capillary attraction.
The experiment with the fountain may be varied by removing the rubber tube, pushing the fountain nozzle through the cork into the chimney, and immersing the apparatus in water, as shown in Fig. 6 There will be j in the chimney, which will also illustrate the theory for the action of artesian wells.

Torricelli's principle is shown in Fig. 7. Choose a chimney with a level edge, invert it, and connect the rubber tube with the smal end of the chimney by means of a piece of glass tube put through a cork. Wet a piece of blotting paperand use it in making an air-tight joint between the upper edge of the chimney and any plane sur face, as a pane of glass or a tea plate. Fill the chimney with water, press it against the plane surface, and it will adhere with more than sufficient force to support itself.

A similar but less striking experiment, shown in Fig. 8, is performed by filling the chimney with water, leaving the large end open. Dampen a piece of paper, press i against the edge of the chim ney, and invert it. The water will not escape, and the paper will retain its position
Fig. 9 represents Mariotte's vase. The ehimney is closed, above and below, with corks, each of which is pierced by a ghass tube. When the chimney is filled with water, none will escape below until air de scends in the tube and rises in the chimney.
In Barker's mill, Fig. 10, the chimney is inverted and suspended by means of a strong thread. A large cork, in the lower end, serves to hold the bent tubes in position. These tabes should be made of lass, but a piece of the rub ber tube will serve the pu pose; if curved and held in place by means of a stiff wire. The arms may be reversed and cause the mill to rotate新 op opposite direction, or with the arms operating in the same direction there will be no revolution. In Fig. 11

