Intinutifir chmerican.
 ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. е. Beach.

TERMS FOR THE SCIENTIE
 c american ${ }^{83} 18$

 onial bank notes. Address

- The Scientific American Supplement

 rent Colonial bank notes.
Address MUN $\&$ Co

NEW YORK, SATURDAY, OCTOBER 1, 1887.

TABLE OF CONTENTS OF
SCIEN TIFIC AMERICAN SUPPLEMENT No. 618

the Week Ending October 1, 1887.

 Price 10 cents. For eale by all newsdealers.

STITUTION OF THE ONITED STATES.

Mr. William E. Gladstone has given it as his opinion that the Constitution of the United States is the most remarkable work produced by the human intellect in modern times. The centennial of the signing of this instrument was celebrated with great pomp in Philadelphia on September 15, 16, and 17, 1887. The President of the United States and his wife, members of the judiciary, State governors, members of the cabinet and of the houses of Congress, army officess, many church dignitaries, and other notabilities were present. The vessels of the North Atlantic squadron of the U.S. navy, five in number, sailed up the Delaware and anchored
off Fairmount Avenue. The city was decorated with off Fairmount Avenue. The city was decorated with bunting, and every available spot was utilizer by sightof staging were carried, which were filled with chairs, providing alone for the accommodation of many thou sands. Arrangements had been made to provide for accidents. The fire department was kept ready for instant response to alarms. The ambulances were in readiness to answer any calls. The hospitals made special preparations, and quantities of bandages and similar supplies were sent to them by some of the large business houses. Fortunately these preparations were not needed, as owing to good organization the great display passed off with very few accidents. It included processions, receptions, speeches by the President, by Justice Miller of the Supreme Court, and others.
The different trades of the city made a fine display in a parade upon the first day; workmen executing the operations of their trade, both in the old and in the modern ways, were carried on floats or great trucks through the streets. The Carpenters' Club bore a banner which ninety-nine years ago had been carried in the first anniversary of the framing of the Constitution. The portion of the parade occupied by this display of the industries of the country was very long, and took over an hour to pass a given point. The mailitary parade took place upon Friday, and General Sheridan led the march, the famous Marine Band of Washington preceding it, and the different State governors appeared as participants. Finally, upon Saturday, the anniversary day of the signing, the closing exercises took place in Independence Square. An immense stage erected there was filled with 15,000 people, while on the street an audience of 30,000 patiently stood during the addresses, which but few could hear.
The chairman of the Centennial Commission, Mr. John A. Kasson, after calling for silence, during which Bishop Potter pronounced an invocation for the nation, addressed the assemblage. He was followed by the President and Justice Miller. The latter delivered a long and carefully prepared address upon the Constitution. After some further addresses and singing of "Hail Columbia," with additional stanzas by Oliver Wendell Holmes, ann national hymn, by J. Marion Crawford, was recited by Professor Murdock, the elocutionist. Then Cardinal Gibbons, of Baltimore, in full canonicals, recited a prayer, terminating the proceedings by his benediction.
The number of people who participated in the different parts of the display cannot be estimated. It is doubtful if so extensive a celebration of this nature has been seen in this country. As a lesson in the organization of such proceedings, the successful carrying out of the three days' programme, with the liberal provision for spectators, is not without value.
Our readers should not forget that in this celebration was included the anniversary of the foundation of our patent system. In the Constitution are those famous articles on which the patent statutes were based, and on which their weight reposes. Three hundrad thousand defined inventions, with all the incicental unpatented inventions which they have led to, and with the unprecedented development of American industries, fostered and brought on by them, all repose upon these few sentences of the Constitution. Little allusion to this can be found in the proceedings, but the great labor parade, with its contrast of the old and new
methods, was the noblest tribute, if an indirect one, that could have been rendered. When the time for the centennial of our patent system shall come, the country will be presented a display in its essentials the most impressive ever yet witnessed.

positions of the planets in october

VENUS

is morning star, and is a superb object in the morning sky, rising on the first of the month about an hour and a quarter before the sun, and at its close nearly two hours and a half before him. She reaches her period of greatest brilliancy as morning star on the 28th, when she may be seen in full daylight. Venus rises on the 1 st at $4 \mathrm{~h} .48 \mathrm{~m} . \mathrm{A} . \mathrm{M} . ;$ on the 31 st , sherises at 3 h . 2 m. A. M. Her diameter is 57.9°, and she is in the constellation Virgo.

SATURN
is morning star, and is easily found making his way among the small stars of Cancer, and forming a triangle with Pollux and Procyon. He is in quadrature on the
on the 1 st at $12 \mathrm{~h} .21 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. ; on the 31 st , he rises at 10 h .31 m. P. M. His diameter on the 1 st is $16 \cdot 6^{\prime \prime}$, and he is in the constellation Cancer.

MARS

is morning star. He is near the bright star Regulus on the 10th, and may be readily seen in the small hours of the morning of that day as a small, rudiy star north of his brighter companion. Mars rises on the 1st at 1 h 50 m. A. M.; on the 31st, he rises at 1 h .24 m. A. M His diameter on the 1st is $4 \cdot 8^{\prime \prime}$, and he is in the constel ation Leo.

neptune

is morning star. He is near opposition, near his least distance from the earth, and in excellent position for telescopic observation. He may be found about 5 south of the Pleiades. Neptune rises on the 1st at h. 51 m. P. M.; on the 31st, he rises at $5 \mathrm{~h} .49 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. His diameter on the 1st is $2 \cdot 6^{\prime \prime}$, and $h \theta$ is in the constel lation Taurus.

URANUS

is evening star until the 6th, and then morning star He is in conjunction with the sun on the 6th, rising and setting with the sun at that time, and being at his greatest distance from the earth. Uranus sets on the 1st at 5 h .41 m. P. M.; on the 31st, he rises at 4 h .20 m. A. M. His diameter on the 1 st is $3 \cdot 4^{\prime \prime}$, and he is in the constellation Virgo.

JUPITER
is evening star, and sets so soon after the sun that he will soon become invisible. He makes a close conjuncion with Alpha Libræ on the 26th, at 1 h . A. M., being 34^{\prime} north of the star. Jupiter sets on the 1st at 6 h .44 m. P. M.; on the 31st, he sets at 5 h .3 m . P . M. His diameter on the 1st is $30^{\prime \prime}$, and he is in the constellation Libra.

MERCURY

evening star. He reaches his greatest eastern eionga
 un. He is far enough from the sun at that time to be visible to the naked eye, but his southern declination will make him a difficult object to find. Mercury set on the 1 stat $6 \mathrm{~h} . \mathrm{P} . \mathrm{M}$.; on the 31 st , he sets at 5 h .34 m . P. M. The diameter of Mercury on the 1 st is $5{ }^{\prime \prime}$, and he is in the constellation Virgo.

An Arrival of Cholera at New York.

On Sept. 23 the steamship Alesia arrived at New York from the Mediterranean with four passengers sick with Asiatic cholera, there having been eight deaths on board from the disease during the voyage. The ship sailed from Marseilles Aug. 29, and stopped at Genoa, Leghorn, Naples, and Palermo, taking on 561 Italian emigrants, and having aboard in all 609 persons After the vessel had arrived at the regular quarantine station, which is some six miles below the lower end of New York City, no time was lost in turning her back to the Lower Bay, and putting the passengers and crew under the strictest rules to cut off all possibility of the epidemic being communicated from the ship. The sick were landed on one of the small quarantine islands there, and put in a hospital for contagious and infec tious diseases, and the others were placed in an observation hospital, to be detained from ten to twenty days, or until all danger is supposed to be over.
'The ship has been thoroughly washed and fumigated, and the cargo and baggage put through a special process of cleaning by sulphurous acid gas, in much the same way as rags are disinfected. The cholera has pre vailed for many weeks past at Genoa, Naples, and Palermo, there being many new cases daily at Naples, of which 70 per cent were proving fatal, but the New York health authorities have no apprehension that the disease will ohtain a foothold here, so prompt and thor ough has been the action of the department, while President Baylies, of the Health Department, is of the opinion that cholera in New York City is not as bad as diphtheria. There were cholera epidemics in New York city in $1832,1834,1849,1854$, and 1866. Deaths fron the disease in those years are as follows : 1832, 3,513 1834,$971 ; 1849,5,071 ; 1854,2,509 ; 1866,1,137$. Most of the deaths were in tenement houses, and the disease obtained its strongesthold in the vicinity of bone-boiling and fat-rendering places. In other parts of the city it yielded readily enough to sanitary measures.

An Electric Whistle.

M. Zigang has devised a trumpet worked by elecricity and designed to warn or signal vessels, trains, or tram cars. It consists of a trumpet tube and a sounding plate which is vibrated by the electric current passing through an electro-magnet having its poles close to a soft iron armature carried by the plate. A regulating screw contact, with a platinum point, rests against the iron armature and serves to interrupt the current of two Leclanche elements as the plate vibrates, thus keeping up the sound as long as desired. The apparatus is simple in construction and can be used also as a Morse sounder in receiving telegraphic messages, the current being sent through. the electro-magnet.

The New Commissioner of Patents.
The N. Y. Tribune concludes that the new Commissioner of Patents, Benton J. Hall, of Iowa, is about as hard-working an officeholder as any this administration has discovered. He climbs up the Patent Office steps every morning as the clock strikes nine, and often stays until long after four o'clock. The slippery chairs and sofas which adorn the commissioner's office are held down continually by attorneys, waiting to transact their business with the office, in place of the iormer crowds of reform congressmen with Democratic principles and good-looking young women whom they wanted to get into office. The commis sioner has made some effort-though not so strenuous as might be-to cut the deadwood out of the examining and clerical forces left him as a legacy by his predecessor. In brief, he seems to recognize the fact that the Patent Office is not a political office, that it is sup ported by the money of a particular class, the invent ors. So well supported, in short, that a yearly dividend of twenty per cent is realized from the fees paid in, while there is an accumulated surplus of $\$ 3,000,000$ in the Treasury. Every week's issue of the Official Gazette contains from one to three of the commissioner's decisions on points of office practice, tending to bring about uniformity in the same among the different divisions. If the stories told by the attorneys are to be believed, something of that kind is badly needed. The office is slowly catching up with the work, but no great gain can be expected, I am told, with the present force. While the number of laborers in the patent vineyard remains stationary, the crop of applications is growing heavier every day. The coming Congress ought to do something to remedy the existing state of things.
And the editor might have added that a great injustice has been done inventors and others transacting business with the Patent Office, owing to the indifference of congressmen in past sessions of legislation. The encomium of the Tribune upon Commissioner Hall is just, and reminds one of the Patent Office administration under the commissionership of Judge Mason and Judge Holt, which was a good while ago, but whom a few of us live to remember with satis faction.

Chilled Armor for Land Defensen.

The Gruson Works of Buckau-Magdeburg have recently published a book of some size, written by Engineer Von Schuetz, in which the system of construction of chilled cast iron armor for use in the protec tion of earthworks and in the making of turrets for land batteries, as devised by Dr. H. Gruson, some years ago, is described at length, and an account is given of the results of the experiments which have been made, from time to time, hy several European governments, to determine its efficiency in resisting the impact of the heaviest modern ordnance. This work has been translated into English by Commander Grenfell, R.N.. and we are indebted to the courtesy of Captain Piorkowski, Dr. Gruson's representative in this country, for an early copy. The subject and the matter of the work are of exceedingly great importance to a nation which, as is the case with our own, is destitute of the most ordinary means of defense in the event of a foreign attack either by land or sea. So serious is our case that, as remarked in a private letter from the admiral of the navy, just received and lying under the hand of the writer, if we desire to learn what advances have occurred during the last twenty years, we must go to England, France, Germany, Russia, and even to Constantinople, to study those of the scientific and mechanical departments of the military and naval establishments, and not to our own army or navy. This work of Dr. Gruson would seem to illustrate such advances in the defense of coasts.
Dr. Gruson's armor is simply a chilled cast iron shield, of which the body is a strong normal iron, while the surfaces on the exposed side are chilled like the "tread" of an American car wheel. Such enormous masses are handled, in this case, however, that corre spondingly enormous chills are needed, and the manufacture of these plates becomes a matter of extraordinary difficulty and cost. All the resources of a great establishment are drawn upon, and all the in genuity, knowledge, and experience of an able staff are called out in the prosecution of the work. Chilling, as is well known, probably, to most of our readers, consists in the casting of a peculiarquality of cast iron, known as "chilling iron," in contact with a large mass of cold iron forming that part of the mould which is to form the surface to be chilled. The sudden abstraction of heat prevents the isolation of the carbon in graphitic form, as would otherwise occur in the slow process of cooling naturally, and insures its retention in the combined form, producing a steel layer of considerable depth. The depth so secured 18 dependent upon the quality of the iron and the efficiency of the "chill," as the iron mould is called. The latter must have great thickness and good conducting power to give best results in these applications. Successfully carried out, this process gives a surface harder than
tempered steel over a strong and massive interior, the best possible combination, apparently, for an armor Dr.
Dr. Gruson constructs large fixed turrets and land batteries of such plates, and the results of trial indicate them to be more reliable defenses than any wrought metal, whether iron or steel, or "com pounded," yet introduced. The weight of these shields s too great for use in naval construction. The first trials were made in 1869, at the Tegel range, and it wa found that all shots fired against the chilled plates broke into fragments, and that the plates bore the hammering with remarkable success. The experimental committeereported that the chilled armor was
well adapted for its use. Later trials confirmed this well adapted for its use. Later trials confirmed this opinion, and the Prussian government at once gave defenses, and Austria, Italy, and Holland followed its example. In all these trials the chilled iron shot were ound superior, if well made, to any steel shot, except n one or two cases in which makers like Krupp and the Ternitz company had either succeeded in securing an exceptional quality of steel or had found re markably effective methods of tempering. Plates wer tested of from $13 \cdot 77$ to $49 \cdot 21$ inches thickness, and were attacked by guns varying from 6 to $1 \dot{7}$ inches caliber, throwing shot weighing from 61 to 2,205 pounds. The hickness of plate was usually not far from three times the diameter of the bore of the gun to be resisted. The energy of impact was, in the case of the larges gun, over 47,000 foot-tons, which was only obtained, however, by firing at short range- 150 yards. In all such cases, the shield is subjected to more severe trial than would be likely to be met in actual battle. In trials last year at Spezia, with the 100 ton gun, the shot weighed a ton and the powder charge 327 pounds, the velocity of impact being over 1,700 feet per second. The maximum penetration was four inches, the plates inally breaking up under repeated blows.
The method of proportioning is to give the plates maximum thickness in inches equal to from oneourth to one-third the fourth root of the energy of the attacking shot measured in foot-tons. The total weight of each plate of which the armor is composed is not far from the weight of the gun expected to be used in the attack.
The system of defensive armor here described is one in which we have a peculiar interest. We have in the United States, in the "Salisbury," and "Hanging Rock," and other brands, the best chilling irons in the world, and it would seem very possible that this may prove to be the best system for our purpose yet de vised. It is especially one which we may hope to obtain permanent advantage from, as it seems probable that its advantages over other forms are not likely to be soon lost.-R. H. Thurston, in Science.

How to Get Rich.

In answer to a request of the Boston Herald to write some practical hints for young men on the acquirement of wealth, Gen. Benj: F. Butler responds as follows :
A difficult task is set me, as circumstances under which young men commence life are so widely varied. But I think that more young men fail in the investment of what they earn or receive than in any other way to acquire property. The temptations to speculate are so great, and the desire to become suddenly rich so strong, that I believe eight out of ten, if not more, of young If are wrecked at the very beginning.
If a young man is earning something more than the expense of his living, and has no object in view, he is likely either to increase those expenses carelessly or to loan his money to his friends, and in so doing in the majority of cases he will lose both friends and money. So that the best thing that he can do is to have an object, gather up his money, and to have a call for it which shall be a profitable one. He makes no investment because he says, "I have got so little money that it won't come to anything. I will wait until I get more;" and in waiting, generally, what he has
goes.
When a young man has a very little money, let him buy some property, preferably a piece, however small, according to his means, of improved real estate that is paying rent. He had better buy it when sold at auction, under a judicial sale, paying in cash what he can, giving his notes for the balance in small sums coming due at frequently recarring intervals, secured by a mortgage on the property, and then use all his extra income in paying up those notes. It is always safe to discount your own note, and if the notes come a little too fast, as soon as he gets anything paid his friends will aid him when he is putting his money where it cannot be lost, and where the property is taking care of the interest. and in a very short time he will find that he has got a very considerable investment. He will become interested in it, save his money to meet his notes, and he will directly come into a considerable possession of property, and hardly know how it came to him. That is, he will have had a motive for saving, and will get the result of that sav-

Nothing is so safe for an investment as improved real state. Nothing is likely to grow in value faster. In the last 50 years 90 per cent of all the merchants and raders in Boston have failed. In the last 50 years 90 per cent of all the business corporations have failed or gone out of business, so that their stock has been wiped out. In the last 50 years all the improved real estate on the average has paid its interest and taxes and quadrupled in value. If a young man's father can give him anything to start him in the world, he had better invest it in that way and let it accumulate and earn his living and he will be richer than if he had gone into business. ay Gould is said to have started from a mouse trap seller to become a millionaire. Assuming that to be rue, he is only one of $60,000,000$ of people ; and if any young man thinks that he is going to imitate Jay Gould, there are $60,000,000$ chances to one that he won't acceed.
The rule I would lay down for a young man is, never do a mean thing for money. Be prudent and saving of your money. Be careful to have no interest account running against you, unless you have an equal or great er interest account running in your favor. Work dili gently, and you are sure of a competency in your old age ; and as early as possible, if you can, find a saving, prudent girl who has been brought up by a mother who knows how to take care of a house, and make a wife of her. She will aid, and not hinder you.
I claim no originality in this advice, and will relate you an incident in my own experience to illustrate it In my earliest practice in my profession I was quite successful in earning money, and I had a small halance in the Lowell Bank, at the head of which was Mr. James G. Carney. The bank was directly across the hall from my office. I stepped into the bank to deposit a little money on one occasion, and Mr. Carney said to me " Why don't you invest your money?" "Invest," said I; "I have nothing to invest." "Oh, yes," he says;
"you have quite a little sum of money, and I see that " you have quite a little sum of money, and I see that your young friends come with your checks occasionally, evidently borrowing it. Now you had better invest it." "How can I invest it?" "Invest it in real estate." I know nothing about real estate." "Go to the much and buy the property. You cannot b very littled in that, because you will have to give
 colle for i. Give your notes for it , save your money See that the property is improved property, so that th rent will keep down your interest account, and when you get any other money, invest it in the same way and if your notes press upon you a little faster than you can pay them, why we will, when we find that i what you are doing with your money, discount your note and give you a little more time, so that you can pay it up. This will necessitate the prompt collection of your bills, for I know that you would rather work and earn a hundred dollars than dun a man for it unless you have a pressing need for it. You have not even asked for a little bill that we owe you in the bank, which shows me that you do not promptly collect you dues." I followed the advice and bought a number of pieces of property in that manner, and I never did ex actly know how they were paid for, but they were, and in a few years I owned some twenty different pieces of property in Lowell that came to me in that way. I can only say that I wish I had been wise enough to have continued this course through life.
I do not think that I need to extend these sugges tions any further, because if a young man won't mind these, he won't any others, and I cannot suggest any better ones.

I am, yours truly,
Benjamin F. Butler.

Farming by Gaslight.

Howard County farmers residing in the vicinity of he great Shrader gas well, near Kokomo, Indiana, go on record as harvesting the first wheat by natural gaslight. A dozen self-binders and men shocking wheat was truly a novel scene, which was witnessed by hundreds of people, who surrounded the fields of grain in carriages. The constant roar of the Shrader well can be distinctly heard eight miles away, while the light can be plainly seen at Burlington, fifteen miles west of here. The estimated flow of gas from this well is $15,000,000$ cubic feet every twenty-four hours.-Indianapolis Journal.

Steam Pipe for Heating Purposes.

The Master Steam Fitter gives the following rule for finding the superficial feet of steam pipe required to heat any building with steam : One superficial foot of steam pipe to six superficial feet of glass in the windows, or one superficial foot of steam pipe for every hundred square feet of wall, roof, or ceiling, or one square foot of steam pipe to eighty cubic feet of space. One cubic foot of boiler is required for every fifteen hundred cubic feet of space to be warmed. One horse power boiler is sufficient for forty thousand cubic feet of space. Five cubic feet of steam, at seventy-five pounds pressure to the square inch, weighs one pound avoirdupois.

