nuty

HINTS TO CORRESPONDENTS.

(1) J. C. M. asks how kerosene oil can be made a red color. A. Use the extract of alkane root, sold ander the trade name of a
your own extract and color with that.
(2) P. V. I. asks (1) what receipt there is for making magic wire solder. A. Magic wire solder is ordinary strip solder. As fux for iron or brasa sur-
faces you may use the following: Dissolve as much Paces you may use the following: Dissolve as much
zinc chloride as possible in one part of alcohol and then zinc chloride as possible in one part of alcohol and then
add one ounce glycerine. 2 . A receipt for making a add one ounce glycerine. 2. A receipt for making a
liquid glue or cement for mending wooden, glasg, or or Scientific American Supplement, No. 158.
(3) H. C. asks (1) what preparation to put in any common ink, especially India ink, so it can be used for a hektograph. A. Mix with glycerine.
2. How to make hlack hektographic ink? A. Use a 2. How to make hack hektographic ink? A. ©se a
strong aqueoussolution of soluble aniline black, in the strong aqueous solation of sor ble aniline black, in be
proportion of about 1 to 5 or 7 of water. It mast be proportion or abont 1 to 5 or 7 gen
saturated solution, rather thick.
(4) A. S. asks : Is there any chemical or bleaching process known, by which dark colored
animal hair can be given a bright color, say dark animal hair can be given a bright color, asy dark
brown to light brown, or dark gray to light gray? A. brown to ilight brown, or dark gray to light gray? A.
Yea. Use hydrogen peroxide. See the articles on this subject contained in 8 .
EENT, Nos. 184 and 399 .
(5) G. A. L. asks a formula for making modeling wax. A. Use whi e wax. which is melted
and mixed with lard. In working it, the tools and the board or stone are moistened with water, to prevent it adhering; it may be colored to any desirable tint with
dry color.
(8) H. W, C. writes: A farmer wishes to know how to construct a cheap and easily hadiled
glter for water.
 shown in the accompanying engraving, the bottom one
being a water jar with side being a water jar with side
hole, if it can be procured; otherwise, if no fancet can be
nsed, the top jar can be rensed, the top jar can be re-
moved to enable the water to be dipped ont. The top jar
must have a hole drilled or must have a hole drilled or
broken in the bottom, and a small fiowerpot sancer inverted
over the hole. Then fill in over the hole. Then fill in a
layer of sharp clean sand, rather coarse. A layer of
finer sand, a layer of pulverized
charcoal with dust blown out, then a layer of sand,
the whole occupying one-third of the jar. (7) J. H. F. M. asks: 1. How long could a man live in pare oxygen? A. It is not definitely known how long a man would hive in pure oxy-
gen. 2 How long do the pearl divers hold their breath, and would it make any difference if they breathed oxygen instead of air? A. It would probably enable them to bear a longer immersion if they filled their lungs with oxygen beforedescending. A minute to a minute
and] a half is a fair period of immeraion. 3. Is and a half is a fair period of immersion.
there any cure for a horse that is subject to colic? A. arise from s variety of causes Castor oil and lan arise from a variety of causes. Castor oll and lau-
danam are often recommended. 4. What is the pressure of water at the moment of freezing? A. Water in freezing can exert a pressure probably not less than
that of 4,000 atmospheres. 5. What would be the effect if it was confined so it could not expands A. If pre vented from expanding, it will not freeze except at very low temperatures.
(8) C. W. S. asks : 1. What is the explosive force per square inch of two cubic feet of hy-
drogen gas and one cubic foot of oxygen gas, making drogen gas and one cabic foot of oxygen gas, making
three cabic feet of the two gases, at atmospheric pressure? A. The theoretical pressure from the perfect and instantaneous explosion of hydrogen and oxygen gases
without compression is probably nearly 200 pounds per square inch. A mach less pressure is obtained in practice. 2. How long will it take a cheap battery of one cell such as described in Sciennific American of April 11, 1885, to decompose one pint of water, porons cap beingtwo inches diameter inside and six inches
high? How long with six cells? A. The decomposition of water by one or six cells, as described, is a very slow process. It will possibly require several weeks to de-
compose a pint. 3. Is there any substance that compose a pint. 3. Is there any substance that mag-
netism cannot act through I notice watches adver netism cannot act throughy I notice watches adver-
tised as anti-magnetic. A. There is no substance that will insulate a magnet. Watches are protec ed by iron cases or iran lintog within the case, the substance
thereof arranged to have possible magnetism of different parts balance each other. 4. Which is best for the battery-wrought or cast iron tarnings? A. Cast iron
borings or turnings. borings or turnings.
(9) H. O. G. asks : 1 . If a thermo-electric pile can be used to a good advantage as a ther-
mometer in connection with a vensitive galvanometer?

If so, howi If not, can you explain how the temperatare outside may be indicated inside the house without cates, in connection with a galvanometer, differences in the temperature of its two faces only. We do not
see how it could be used as suggested. There is a com pany in this city who pat ap thermometers designed to expansion and contraction of zinc places. 2. Will th expansion and contraction of zinc rods be greater ir
they are amalgamated than if not? And in what pro portion can zinc and mercary be melted together to form a solid? A. We have no knowledge of the re
lative expansion of amalgamated or unamalgamate zinc. The former is extremely brittle, and woald pro
bably expand the most. A great deal of mercary bably expand the most. A great deal of mercury is
taken ap before liquefaction by zinc, bat it continaully ends to separate from it.
(10) M. J. H. asks : A porter here takes care of some lamps-filling, lighting, etc. He has been found fault with for failure, so he says, to wipe the
bowl proper of the lamp after it has been flled. This, however, he has done regalarly, he says, and claims that the oil on the bowl is not due to carelessness, a charged, but to condensation of the vapor of the oil after the lamp has stood some time, or been in use. I
he correct as to the canse of the oil on the bowle A Kerosene oil "creeps," as it is called, by capillary action, and wing the same is taken good care of with pillarity, and not condensation, is the force involved. Your party is probably taking every care of the lamps.
Try the effect of wiping one off yourself. Perhaps he Try the effect of wiping one of yourself. Perhaps he
fills them too fall, or neglects to turn the wicks below he brass when the lamp is not burning.
(11) A. W. R. asks : What are the poorest conductors of heat? A. Glass and porcelain are
very poor conductors. All porons bodies are the (12) C. F. J. writes : I would like to know how to make a rabber paste for patching the so that there are several small holes through whict utgn gets in and fogs the negatives during exposure. A Try some of the liquid glaes. These give good resulta.
Or try a solution of gatta percha in bisulphide of carbon.
(13) E. J. R. asks : 1. How many pounds of insala ed wire will be necessary for field magnets and armature in dynamo described in Supplement,
No. 161 \& Also, if it should be of any particular brand A. About $5 \% / 8$ ponnds in field and $1 / 2$ pound in armature How can tempered horseshoe shaped steel, aboat inches across, be permanently magnetized on a large
aynamo? Poles are a greater distance apart, that is, I cannot pat poles of small horseshoe on two differen
poles of dynamo. A. You might run two bars of iron from the two poles of the dynamo magnet to the poles
of your smaller one. This would give you some effect. (14) S. C. H. asks; Must the secondary coil in a telephone transmitter be wound to about the same number of ohms resistance as the bobbin over
the bar magnet in the receiving instrument, to get the best results, and also do they require to be wound to higher resistance for long distance telephoning? A transmitter is wound to 80 ohms in the Bell Company's instruments and to 250 ohms in the Edison instruments.
The receiver coil has about 80 ohms resistance. They The receiver coil has about 80 ohms resistance. They
are wound the same for all ordinary distances. They ed not be wound to the same rest
(15) W. F. T. asks: Does a horse hair tarn to a worm in water? If so, why does it do its A (16) M. asks: Will you be kind enough to answer in your paper, how manyand what are th primary colors? A. Seven is usually accepted as the ed-bat several scientists have proposed three as be ing really the primary colors.
(17) H. V. asks : Will you please oblige ne by answeringa few questions in Scientific AmeriA. Naphtha naphtha gas explode by anelectric spark? A. Naphtha gas mixed with air forms a mixture that
will explode by the electric spark. Naphtha gas alone will explode by the electric apark. Naphtha gas alon
will not. 2. What heat will naphtha evapora e at? from $100^{\circ} \mathrm{Fab}$. upward. 3. What heat is naphtha dan gerous at? A.
fire of any kind.
(18) J. G. asks if there is an instrument that is within accurately and instantaneously, distanc on water or on shore, or from shore to a point at sea, or vice versa. A. Varions instruments called stadia have been invented for effecting this parpose. An ob-
ject of approximately known size must be present a the point whose distance is to be determined, to serve a base line.
(19) J. P. H. S. asks how to color bilhard balls. A. For red, macerate cochineal in vinegar, and boil the balls in the liquid for a few minates; for blue, immerse for a short time in a dilate solution of indigo carmine; for yellow, immerse for a few
minutes in water containing a little s annons chlorid minutes in water containing a little s annons chloride
(protochloride of tin), afterward in a hot strained de (protochloride of tin), afterward in a hot strained de
coction of fnstic; for violet, dye red first, then immers for an instant in solution of indigo carmine; for green dye first yellow, and afterward dip into solation of indigo carmine. Or use the aniline colors in solution withont mordants.
(20) A. L. B. asks: What can be ap plied to rabber staffs, like rubber bands, to keep the
from rotting A. We know of nothing except to kee them clean; oil or grease is very destructive to rubber. 2. What is the best way to prevent a finte being injured by the weather? A. A flate mast be carefully kept, and is liable to snffer from any, abrupt change
in the weather, and so should be preserved in chamois We know of no better advice to give you.
(21) H. I.-Our imports of merchandise
how mach the "working class would earn on these oode if made here, and not imported"' A considergrown, not made, and that could not be grown here under favorable conditions. Probably one-
half, however, represents manufactured products hat; really come into competition with those made our uwn mechanics. How much more our worke would make by producing all such goods here, in qusion, and which, consequently, we cannot be expected to enter apon in this place. If it were possibe, however, for as to make all these goods ourselves, and thas -shat out foreign manufacturers from our markets, is it likely that we could continue selling our products in foreign markets, as at present? Alhough our imports for 1886 were so large, our exports or the same
$\$ 713289,686$.
(22) C. J. H. R. asks: Can you tell me where to find a receipt for the ink used to re-ink type r violet, $3 / 6$ ounce, alcohol 15 ounces, concentrated gly erine 15 ounces; dissolve the aniline in the alcohol and dd the glycerine.
(23) A. C. S. A. asks: How far does Maud S . step when trotting her best? A. She strides bout 19 feet.
(24) C. H. K. asks the process of stuffing deer's head. A. We can send you Batty's "Practi-
cal Taxidermy and Home Decoration " for $\$ 1.50$, which will give you full-information on this subject, It would require too much room for a place in this column.

TO DVVENTORS.

An experience of forty years, and the preparation of more than one hundred thousand applications for pa-
ents athome and abroad, enable us to understand the aws and practice on both continents, and to possess unynopsis of the patent laws of the United States and all oreign countries may be had on application, and persons contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices,
which are low , in accordance with the times and our exensive facilities for conducting the business. Address MUNN \& CO.. off

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted,

February 1, 1887,
AND EACH BEARING THAT DATE.

Seenote at end of list about coples of these patents. 1

Book support, J. H. Fergue
Boot. felt. D. F. M
Boot or shoe stretcher, L. Nottingham.. Boots or shoes, spring
Bottle, P. England.
Bottle holder, C. A. Tatum
Nater-
mann.....................................
Box or case, C. W. Boman....
Bracket. See Sehicle body bractain rod bracket
Brake. See Automatic brake. Car brake
Bridle. J. K. Hotze.
Bridle bit, A. Buermañ..
Bride bit, A. S. Johnston.
Broomi holding rack, Altman \& Meech.
Buckie, E. Marx.
Burnishing machine, C. J. Addy
Burnishing machine, G. B. Kelley.
Butter worker, e. S. Rice.
Button, E. D. Cooke
Button, F. Hosser
Cabinet for paper sheets and bags, J. A. A. Pritch

Clod crusher and pulver

Clothes line reel, pin holder, etc., combined,
357,152
357,045

Clutch. friction, J. C. Potts............................
Colling attachment for rolls or sitters,
Coiling attachment for rolls or siltters, Hine..
Coln counter, Leber..................................... sur,0e2
Jr..57,071
Collar, 899
Conductor pipe, expansible, H. Pfeiffer
Convering machine, J. M. Dodge
Cooking vessels, attachment for, R. A. Willison.
Corkserew, pocket. L. B. Haff............
Corset, H. W. Gilbert............................
Coupling. See Car coupling. Thill coupling.
Cotton choper w.
Cotton chopper, W. T. Arbuckle..................... 357,08
Cotton chopper and cuitivator, J. A. Schaumle 3 36,
Cradle child's Cradle, child's, e. E. McGrath....................... 357.0
Crane for excavating machines, L. Birckhead.... 358,? Crusher. See Clod crusher.
Crusping machine, $\mathbf{\Sigma}$. W. H
Cultivator, wheel, A. T. Campbell 366.929
36641

Curtain rod bracket, C. J. Beckman................... 356,7\%
Cut-ö for steam engines, E. Querol y Delgado 356, , Cutter. See Foddercutter. Straw catter.
 Draught reducer for vebicles, C. W. Pearsan
Draw bars, manufacture of, J. T. Wilion,
g
Drawers, lady's, W. F. Kneip........................ $356,85,127$
Drier. See Clothes drier.
Drier. See Clothes drier.
Drill. See Hand drill.
Drill. See Hand drill.
Drum pedal, G. R. Olney............................. 357,0:
Dumb waiter stop, J. J. Mahony............... 356.2

Thomson 356,902
Hiectricmachines, commotator adjuster for
Electricmachines, commutator adjuster for ds
namo, C. L. Bucking bam................
namo, C. L. Bucking bam....
Eliectric motor, W. W. Griscom
Eliectric motor. E. J. Houston............
Eilectric signal for engines, J. C. Ricketaon
Electrical apparatus, contact piece for, M. M. M
Slattery...............................
Electrical call system, J. D. Peachey..
.... 3556.796
Electrical call system, J. D. Peachey..............
Electrical sigana coupler. automatic,
. s. Capers.
ing block for, J. Fahnestock............................356,983
End gate; waron. s. C. Dix.................... 367,069
Engine. See Dental engine. Fire engine. Hy-
End gate, wapon, s. C. Dix..........................
Engine. See Dental engine. Fire engine. Hy-
draulic engine. Steam engine. Traction en-
Eraser, C. C. Dudley................................... 357,14
Fabric. See Woven fabric.
F'abric for carpet lining, packing articles, etc., \mathbf{a}
Kelly ..
Kelly
Fan, revolving band, E. Elesten
Feed water heate
vence, J. Gilbert.
Fence post, F. L. Fairchild.
Fertilizer distr
Filter, L. Bell... Firearm, breech-loading. J. W. Redfeld Fire engine. horse power, M. Morton...
Fire extinguisher, automatic, W. Harkn Fire extinguigher, automatic, W. Harkness Fire extinguisher, chemical, T. G. Turner.
Fire extingutshing apparatus, W. Harkness
Fireplace heater, Gleason \& Clague.... Fish trap, J. P. Smith..
Fishing device, deep sea,
Flour, drying, J. Norton, JI
Flueor
Flue or chimney lining, H.
Flushing tank,
Fodder binder, c. . . . Beele
Fodder cutter, G. N. Jooss
Fodder cutter, G. N. Joss.
Foldịg table. W. R. Fee.
Foot ano sitz bath, folding. R. Sabin
Foot power, D. D. Camp..........
Fork. See Carving fork. Hay f
Frame. See Window frame.
Furnace. See Gas furnace. Hot air furnace.
Furniture, S. Hayward.
Furniture, s. Hayward..................................... 356,98
Ganke. See Micrometer depth gauge. Water
Enuge,

