a WeEkly Journal 0f Practical information, art, science, mechanics, Chemistry, and manufactures.

A REMARKABLE COLLISION.

"On Monday afternoon, January 17," says the Post of Lindsay, Canada, "the singular sight could be seen on Victoria Avenue of two locomotives piled one on top of the other, and a snow plow underneath crushed out of all resemblance to the useful machine that clears the track. During the afternoon a violent snow storm had prevailed. At times the snow fell in such a cloud as to prevent anything being caught sight of more than ten feet away. During the height of the storm, engine 634, driving snow plow No. 18, passed the junction (Lindsay north), having come south over the Coboconk line, under orders. A few minutes before, engine No. 624 left the station with a train of freight cars to haul to the junction. Just above Elgin Street, Driver McIntosh caught sight of the plow and engine, but it

Britton, photographer, after engines were hauled down to the yard to be dismounted.
This accident reminds us of one that occurred in 1874 on the Chicago and Northwestern Railroad, when two engines collided and reared up on end, locking their wheels together, and remained in upright position, presenting a remarkable spectacle. It was illustrated in Scientific American Supplement, No. 40, trated in ScIENTIF
September 30, 1876.

Protection of Buildings frem Lightning.
The French Minister of Public Instruction recently submitted to the Academie des Sciences an important question concerning the fitting of lightning conductors for public schools and other large buildings. It appears that a departmental commission represented to

This general method of increasing the factor of safety in buildings, in case of lightning stroke, has been advocated in the Scientific American for the past twenty-five years, and we believe was first publicly suggested in these columns. We have repeatedly shown how faulty, if not useless, is the ordinary lightning rod system, where the lower end of the rod is simply stuck a foot or two into the dry ground; and we have urged, first, that the rod must have a thorough and extensive conducting surface in contact with tne earth; second, that all metallic fittings both within and without the building should be connected with the rods, or with special rods leading to the ground terminals. Where there are underground metallic pipes, such as water, gas, or drains, the rods should be connected with them. If there are no such metallic pipes or masses,

a REMARKABLE COLLISION AT LINDSAY, CANADA.
was only a few yards away at the time. Driver McIntosh and Fireman Rogers jumped from the engine and landed in a snow bank. Conductor Pym was not so fortunate, for in scrambling out on the tender to make the leap he was a moment too late, and was thrown from the tender to the ground, escaping unhurt. Driver R. Johnston and Fireman Tutton of 634 stuck to their engine. In fact, the first intimation they had of the state of affairs was on seeing engine 624 making desperate efforts to climb up on top of the boiler of 634 , accompanied with a fearful clatter and smashing of things generally. A cab behind 634 was uncoupled by the shock and shoved back nearly two hundred yards. The momentum of engine 624, backed by the weight of a long line of freight cars, was terrific. The engine was forced up the plow as if up a short and very steep grade, leaving the front truck and pilot :buried in the board work of the plow. The pilot, smoke-box, stack, and upper works of engine 634 were smashed into pieces and thrown about. The tender of 624 followed the engine, and hung suspended by the couplings, with the rear truck resting on the track. It seemed almost incredible that such an enormous weight as that of a locomotive could be pushed up in such a manner and fastened so securely:"
Our engraving is from a photograph taken by J
the minister that it was necessary in a particular case to connect all the iron. stairs and other internal metal work of a school building to the lightning conductors, so as to prevent the danger of lightning leaving the outside conductors and striking through walls or roofs at the insulated metal inside. The minister logically concluded that if this was done for one building, it should be done for all similarly circumstanced; and as this action would involve the expenditure of a considerable sum, he asked the opinion of the Academy upon the point.
The committee to whom the question was referred have reported to the effect that it is indispensable for the perfect protection of buildings from lightning that the conductors should be well connected with all important metallic masses inside. The case applies not only to iron in roofs, partitions, or staircases, but also to gas and water pipes, heating apparatus, and similar metallic fittings. It is laid down also that where there are many lightning conductors attached to a building, the nearest of them should be placed in connection with the metallic masses in question. It is understood on the part of the committee that the lightning conductors themselves are always properly "grounded," by being put in perfect connection with the earth by means of a well which is never dry.
then long trenches leading away from the building should be dug, deep enough to reach moist ground, pulverized coal should be placed in the bottom of the trenches, and the lower end of the rod extended for a considerable distance in the trench in contact with the coal, which is itself a conductor.

Importance of Furnishing Good Goods to Mexico.

In many lines of goods American manufacturers have a well established trade, says the Mexico Financier, referring to its own country, and this satisfactory condition of their business may be attributed to the excellence of the articles sent here, the care taken in packing, and the liberal terms accorded to Mexican buyers. In other lines of goods, especially in those which already are extensively sold here by German, English, and French houses, the American manufacturers, with some exceptions, are foolishly regardless of the elemental rules of sound business. It seems to be their policy to send here imperfect articles, or, when shipments are made of perishable articles, to neglect the same precautions they would take for long routes in their own country. The fact that the Mexican public requires the best grades of goods, and is accustomed to get them from Europe, in all but a few lines, needs to be impressed on American manufacturers.

ฐ̌rientific gmmeriaul.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.

o. D. MUNN.
 A. e. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy, one year. postage included.-
One copy, six months, postage included
8300 Clinb.-One extra copy of The Scientific AmpricaN will be supplied

The Scientific American Supplement is a distinct paper from the SCIENTIFIC AMFRICAN. THE SUPPL EMENT
is issued weekly. Every number contains 16 octavo pages. uniform in size

 papers to one adar
registered letter.
repistered letter
Address MUNN

Scientific American Export Edition.

NEW YORK, SATURDAY, FEBRUARY 19, 1887.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
INO. 581.
For the Week Ending February 19, 188%.

GREAT WAR SHIPS AND FORTS,

Are armored ships and big guns and forts necessary to an effective defense? The Senate, in favoring a preliminary appropriation of $\$ 21,000,000$, has virtually said yes. It remains for the House to put in its measure. Outside of Congress, there is quite as dis tinct difference of opinion in regard to the general pro position among the well informed. Those who do not favor the building of a great armored fleet and costly shore works have recently been joined by Captain John Ericsson, the designer of the famous Monitor.
He makes the point that a port like New York can be successfully defended without them, and following this argument to its conclusion, those opposed to great outlays for ships and forts might logically insist that by Ericsson's admission they were unnecessary.
He says that the problem before us is how to beat off a fleet of modern war ships, whose tactics during bombardment would be that of retreating to the open sea before night.
To successfully accomplish this in the ordinary way, we should have guns capable of piercing twenty inches of armor at ranges varying from six to seven miles. As to stationary torpedoes, such mines may be countermined, and even the fish torpedo, like the White head and the Lay, cannot be effectively served with hostile machine guns in play. After explaining to us the nature and virulence of our disorder, Ericsson, like a skillful physician, comes to our relief with an antidote. As may be guessed, the antidote is the Destroyer type of submarine torpedo server, and those unfamiliar with the man's history may jump to the conclusion that he is anxious for government contracts. Such a conclusion would be as unjust as it is hasty; for, to one who has seen the great maritime powers use his designs as criteria from which to remodel their fleets, who may fairly be said to have revolutionized naval warfare, and whose sands of life are nearly spent, fortunes would not compensate for failure.

He says:

"I have for a series of years studied, under special advantages, the problem of defending the harbor of New York against first-class ironclad ships. I have positive grounds for recommending the adoption of the submarine gun of 16 in . caliber, as applied in the Destroyer. This gun possesses power and capacity to expel projectiles carrying explosive charges weighing 300 lb ., hence capable of shattering the hull of a Lepanto or an Inflexible. The vessel carrying the submarine gun, being protected by an impregnable breastwork of inclined solid armur plates two feet thick, backed by six feet of timber, is capable of resisting any ordnance whatever during attack bows on. I deem it important to observe that, like the Destroyer, all vessels carrying the submarine gun, whatever be their size, must be provided with steam turning gear, by means of which they can be directed to any point of the compass without backing or going ahead.'

To err is human; the best calculations sometimes fail, and hence nothing which is the product of man's understanding or foresight is altogether reliable and certain. But if a man is to be judged by his works, if by that of the past, then no man is more entitled to a fair and patient hearing than Captain John Ericsson. The mode of attack which he has adopted for his De stroyer, like that of his Monitor, does not rely for success upon favoring conditions of tide and wind and shore line. He goes straight to his mark. Calculating what is the worst the enemy can do against him, what the crushing power of his heaviest blows, he devises an armor shield that will defeat the purpose under the most favorable conditions the enemy can discover. The many experiments made with heavy guns at Spezia, at Cronstadt, at Woolwich, and other points, have been carefully studied by Ericsson.
Those who believe in the efficacy of the fish tor pedo principle and in dynamite guns will, no doubt, regret that the inventor dismisses them after so cursory an examination. He says: "Whitehead's torpedo, in itself a useful weapon, is carried by light, frail vessels, incapable of withstanding the fire of the hundreds of quick-firing machine guns carried by an attacking fleet.
" Well protected and pointed by a reliable method, besides being favored by daylight and the smooth water of the bay, these admirable guns could in a few hours destroy a fleet of our torpedo boats. On the other hand, our present forts and guns, assisted, if necessary, by temporary earthworks, mounted with light artillery of any caliber, could quickly dispose of the enemy's torpedo boats intended to protect the ironclad in truders against our small vessels carrying the dreaded submarine gun."
If this is true, and ordinary light artillery can stand off torpedo boat catchers, why could not the fish tor pedo boat and the dynamite gun boat be protected by heavy inclined armor, like that of the Destroyer? Both the fish torpedo and the dynamite gun have a far longer range than the Destroyer's submarine gun ; and those who have seen the dynamite gun and the sub-
marine gun at work, as the writer has, will incline to
the belief that the former is at least quite as reliable while, at the same time, by no means so complicated What splendid work the dynamite gun could do afloat with its one mile effective range, if only it could be protected against the assault of heavy guns!

ELECTRO-MOTOR VS. CABLE TRACTION.

Those who have been in upper Eighth Avenue, New York city, recently, may have noticed a car, similar in most respects to the ordinary street car, save that it moves over the rails without the aid of horses or any other visible agents of propulsion. This is the Julien electro-motor, now experimentally at work, brough here last fall by its designer, Mr. Edmond Julien, and who, it is said, has had no little success with it on the European continent, notably in Belgium.
Mr. Julien, like others who preceded him in the development of the electro-motor, discards the system of electrical mains, both surface and aerial, carrying his electrical energy aboard instead of picking it up while in transitu.
The accumulators are placed in apertures in the sides of the car, and connected up with the driving wheel apparatus by wire in the ordinary way. They are charged from an. electrical generator, working in the car stable, and are ranged in tiers on either side of a siding in the depot. The car is then run in on to this siding, the exhausted accumulators are taken out of it, and those that have been re-enforced thrust into the places left vacant. It is hard to see how this operation could be more conveniently or expeditiously accom plished. It is the custom of the horse car managers to run their cars into the stables at certain intervals; "swinging," the operation is called, and is necessary in order to afford drivers and conductors opportunity to get their meals.
The Julien car, with its accumulators freshly charged is good for a seven hours'run; indeed, there is sufficient energy aboard to increase this to ten hours, but it has been found inadvisable, for reasons well understood by electricians, wholly to exhaust electric accumulators of this type. The car moves along Eighth Avenue with an ease only disturbed by the irregularities of the track, and so far as speed is concerned, is limited only by the exigencies of transit through a populous thoroughfare. The round trip over the course, a distance of five miles and a half, occupies about three-quarters of an hour ; the car being run slow purposely, so as not to interfere with the regular business of the road.
It is stopped and started by a simple arrangement the same being an electric switch and an ordinary brake combined; the latter pressing against the wheels.im; mediately after the electric current is cut off from the driving wheel apparatus.
The weight of the car when ready for work is thus distributed :

Accumulator Wheels......

2,570
1,120
560
This makes a total weight of 4,250 kilogrammes, which is something less than five tons. A Siemens motor of horizontal type is used, this, under ordinary circumstances, making 1,000 revolutions a minute. There is but one driving axle, which is worked by flexible cables running in slotted pulleys, which get their energy from a shaft connected by belting to the motor engine.
Mr. Julien describes the elements of which his batteries are composed as consisting of 19 plates, 9 positive and 10 negative, insulated by rubber. The positive plates are four millimeters thick, and weigh each 655 grammes. (A millimeter is 0.03937 of an inch; and a gramme 1-24 of an ounce- $151 / 2$ grains troy.) The active matter counts in this for 165 grammes. The negative plates are three millimeters thick, and weigh 450 grammes, of which 150 grammes is active matter. These elements therefore contain 2,700 kilogrammes (a kilogramme is 2 lb .3 oz .4 .65 drachms, or 2.206 pounds avoirdupois), say 26 per cent; including the liquid and the recipient, the gross weight per element is 14 kilogrammes. Ebonite boxes are the receptacles of the elements, which are joined in pairs. The elements in each of these batteries are placed in tension, the electrodes of the elements of the batteries being soldered. In selecting railway apparatus, certainty and reliability comes even before economy
Hence, it is not enough to show that one class of motor is cheaper than another, but as well that itio quite as reliable. The promoters of the Julien type of electro-motor claim that it is cheaper than cable traction, and bring forward a formidable array of figures in support of the assertion. But is it as reliable? This is, of course, a difficult question to answer with any thing like certainty, because of the comparatively limited experience had with the electro-motor. On the other hand, cable roads have for some years been in active and continuous operation; in populous districts, too, where the service is exacting, and where apparatus subject to frequent disarrangement, or even occasional mishap of a sericus nature, would prove too costly, however cheap it might be had. It is true, however, as the promoters of the Julien system point
gines that operate it, stops traffic along the whole ex tent of the road, while an accident to the apparatus of an electro-metor does not in any wise impede or inter fere with travel on an electric road, for it may be re moved from the tracks until repaired.
M. Julien could scarcely have chosen a better time for exhibiting his motor in New York City, for quite recently the largest, richest, and most enterprising o the surface roads, to wit, the Third Avenue, decided to adopt cable traction, or electrical, or any other which promises to relieve them of their costly and troublesome horse service. If, therefore, he can show that the electro-motor may be made to give as reliable and as economical service as the cable, he will find a ready market, and one capable of being developed almost indefinitely.

THE BELL TELEPHONE BEFORE THE SUPREME

 COURT.The hearing in the Supreme Court of the United States of the five appealed telephone suits, which be gan on January 24, came to an ending on February 8. The Supreme Court then adjourned to March 7. What ever the result, the of the bar on account of the interest involved, the mass of testimony taken, and the number of decisions obtained from the different courts. The importance of the Bell patent could be no better illustrated than by the original bringing and present defense of these appealed suits. That a company should so energetically defend a patent that has only six years to run is the best comment on its value. The legal expenses of the Bell Company, spent in sustaining the 1876 patent, must be without precedent in the his tory of patent litigation in this country. Although two patents are cited, the 1876 patent is the one that gives the monopoly of the electric transmission of speech. It contains the famous undulatory current theory, and is the one concerning which the allegations of fraudulent granting have been made. The litiga tions were devoted to sustaining it.
Two weeks' time of the highest tribunal in the United States have been devoted to the mere hearing of this appeal. Among the counsel for the Bell Coinpany, Messrs. E: N. Dickerson and J. J. Storrow figured most prominently. Senator Edmunds, Messrs. Lysander Hill, Wheeler H. Peckham, and Cansten Brown were
among the leading counsel for the five appealing parties.
The decision of the court will now be watched for with great interest. The probabilities normally would be'deginst the patent. Of late years nearly all the at tempts to sustain great and oppressive patent monopoies have failed in the Supreme Court. It would seem impossible that the Bell patent could be sustained as fully as it has been in the circuit courts, if it is not pronounced quite invalid.
As now interpreted, it is a patenting of the transmission of speech by electricity. To carry out this inter pretation, the hazy theory of the undulatory current has to be accepted as a legally proved fact, and as rep resenting a patentable thing.
The patent is interpreted to grant the monopoly of a
natural force. The breadth awarded to its claim compares with that refused to the patent of the telegraphic inventor, Morse. He sought for a similar judgment, Dut was refused.
-The senior counsel for the Bell Company gave a most eloquent closing appeal for his client. His peculiarities of manner, so familiar in the circuit courts, met with a definite rebuke from Justice Harlan. Notwithstanding this, the counsel recovered sufficiently to portray, later on, in his florid style, the pitiable case of his client, whose honor he declared was impugned by those seeking to destroy his patent. Many of the attacks which he assumes as personally made upon Mr. Bell have been really aimed at the work of the Bell Company
and its advisers. Mr. Bell is a man of the highest honor. If, as claimed, nis vatent. in its cranting and sustaining, is shadowed by fraud, no implication of wrong doing is charged to Mr. Bell personally.
The establishment of what Mr. Dickerson called the "Bell Telephone Annex" of the department of justice was commented on. By it he said the resources of the United States were devoted to hunting "down this innocent man to death or destruction." The best comment on this is afforded by the futile results of former attempts at'a similar end-the death or destruction of his patent. Mr. Bell's success has been such that he should feel pretty well prepared for further conflicts.
The recognition of Mr. Bell by the University of Heidelberg, "within ten miles of Reis' home," in granting him its diploma last year; the recommendation by the Academy of Paris to the French Government, to award him the Volta prize of 50,000 francs, were both eloquently depicted. Mr. Bell is said to come "writhing in agony" to his counsel for protection. He was told to await the action of the Supreme Court as his vindication, and his protests at having to endure so fong were most feelingly spoken of. If Mr. Dickerson's description of his client's feelings is correct, then, if th
dase goes against him; tris plight will be a bad one.

Newark; N: J., Mechanically Considered.

A correspondent of Engineering describes the excur sion of the Society of Mechanical Engineers to Newark, N. J., as follows

The manufactories of Newark are seldom realized by those who have not visited them, for the city is overshadowed to some extent by its proximity to New York (nine miles). The population at present is 150,000 , and it will probably be 250,000 in the next five years. It is nost decidedly a manufacturing city, and (what many even of the mechanical engineers do not know) has urned out some of the finest mechanical work ever made, tools of the most delicate and exact natura, which will cut always and accurately 200 threads to the inch. Many of these were afterward examined by the visitors in Mr. Weston's laboratory, and few of them knew they were made but a short half mile distant.
A large quantity of "foreign jewelry" is made in Newark; the delicate filagree work of the Mexicans, the mosaics of the Romans, and the finely colored work of the Etruscans are all made here, and imported to New York city for sale, and fine specimens of the ancient art they are. The writer has a fine pair of Japanese sleeve buttons, and he obtained them at a Newark factory. Beautiful ancient brasses are also made here, which are even better than the originals, and Russia leather is also a product of this great city. The writer is not speaking ironically of anything but the titles, for the work is as well done as possible, and Newark manufacturers are second to none in the world, as we found out during our visit.
The first place seen was that of Hewes \& Phillips, en gine builders, and there much beautiful machinery was examined, and their thorough system of doing work favorably commented on by their visitors. From there we went to the Armory Hall, and enjoyed a bountiful feast, and the topical query arose then and there, numbered twenty-nine on our list, viz., "Which do you precleared the difficulty, but that could not be said of the tables. The keen air of the bay had sharpened every one's appetite, and the food was of a most appetizing character. Hence the tables were cleared and refilled time and again, until all were satisfied, and in that state were taken to the United States laboratory to witness the grieat inventions made by Mr. Edward Weston, a member of the society, and one of the most distinguished electricians of the day. It is due to his wonderful mind and great ingenuity that the electric light in the United States occupies the position that it light

The writer has had the pleasure of seeing Mr. Weston's nethods of reaching a result, and he is most eminently analytical and differential. Hediagnoses an investigation by analysis into all its possible and probable cases, and proceeds to eliminate them one by one until he reaches the true solution. Having reached this, there are no failures, for the practical result which has been patiently worked out is thoroughly reliable. It was just this method which produced "tamadine" for making the filament in the electric light. Mr. Weston wanted to obtain a homogeneous material, and he found it. Then he threw into the process his mechanical and chemical knowledge, and now this material is readily made and the filament constructed by operators who only know the plain manipulation. These works were not long since described in your columns. Hence nothing further need be added here. Suffice it to say, they proved so extremely interesting to the visitors that it was with greatest difficulty they were started from them one hour after the allotted time, and taken to Watts, Campbell \& Co.'s works, where they were again treated to a sight of beautiful mechanical work, and shown how to construct a fine and perfectly working engine.
It was again with great difficulty they were persuaded to lave this interesting place for the Clark Spool Thread Works, an enormous building, which, having outgrown one side of the Passaic River, has promptly extended itself to the outer side. There were many ingenious and interesting machines shown to us here, and not the least interesting to some of the younger members, and it must be said to many of the older ones, were the bright-eyed and roguish-looking girls who at tended them. When one factory hand can detain three gray-haired veterans in the explanation of a most simple piece of mechanism, what can be expected of the younger members, who are able to produce the plea of ignorance as an excuse for lingering?
At last all were started for Mr. Weston's private labo ratory, which is probably the most complete in the world, and has been visited with delight by many en cineers from your side of the water. There are really our laboratories under one roof-the physical, the elec trical, the mechanical, and the chemical. This build-
ing was called into existence by the demands made on ing was called into existence by the demands made on
this distinguished engineer for private consultation and experiment. No pains or money have been spared in its fitting up, and everything bears witness to the mas er mind which conceived not alone the general plan but each particular detail. It seems to the visitor as though every emergency had been provided for, and
Mr. Weston's private .practice has grown to such pro-
portions as to absorb almost his entire time. Much time could have been spent here with great profit and pleasure, but the boat must leave before dark in order to get through the drawbridges, of which there are four, without delay. The captain was found in a great state of mind, vowing we stood a good chance of remaining on board all night, but his fears were unfounded, and we reached New York city about 7 P.M., after having a fine view of Liberty with the torch and electric lights around the base in full blaze.

The Employment of Salt for the Removal of
Snow.
The current volume of the "Minutes of Proceedings of the Institution of Civil Engineers" contains an abstract of a memoir on this subject by Mr. Bazabant, which appeared in a recent number of the Annales des Ponts et Chaussees. It appears that in 1880 Mr . D'Ussel gave a description of his first attempts to thaw the thin layer of ice in the public streets, produced by the compression of snow by vehicles in time of frost. Since that period, owing to the expenditure of nearly $£ 200,000$ in futile attempts to remove the snow in Paris in 1879-80 and 1880-81, the heavy tax has been removed from pounded salt, not suitable for ordinary purposes, enabling salt to be largely used for clearing away snow, a provision of 4,000 tons of salt having been made for this purpose in Paris for the winter of 1885-86. A regular service for the removal of snow, on its first appearance, has been organized in Paris, as it is important to clear away the snow before it has been compressed into ice by the passage of vehicles, when it is far more difficult to remove. As falls of snow rarely occur at Paris with a temperature much below the freezing point, salt may be sprinkled on the snow, producing a liquid, of which the temperature may descend to 5 deg. Fahrenheit without its freezing.
The salt should be scattered on the streets as soon as the snow begins to fall fast. The mixture is effected more thoroughly by the traffic, it does not adhere to the ground, and gradually liquefies, so that at the end of four or five hours the streets may be cleared by the sweeping machine, the caoutchouc rake passed over the footpaths, and the mixture washed to the sewers by the addition of water. This cold mixture does no harm to paved roads, asphalt, and wood pavements; but salt should not be used on macadamized roads, which are disintegrated by the frequent artificial thaws thereby occasioned. This affords another reason for discontinuing macadamized roads in large towns in France, which possess the great disadvantages of being very muddy in rainy weather or during thaws, and of discharging quantities of sand into the sewers.
The employment of salt would probably be very restricted in countries where the temperature often falls below 5 deg.; but everywhere else it furnishes the best means of dealing with snow. It has been suggested that the coldness of the mixture is disagreeable to foot passengers, destructive to boots, and bad for horses' feet; but the latter can be protected by greasing the inside of the hoof, and as the mixture should be removed directly it becomes liquid, the inconvenience, both to men and animals, is very short in duration, and very slight compared with the advantages and economy of the system.
The salt should be scattered in the proportion of about one drachm per square foot for each four-tenths of an inch of thickness of snow fallen, or a larger amount if the temperature is low. Formerly, each cen-timeter- 0.4 in .-depth of snow falling in Paris necessitated an expenditure of over $£ 2,400$, whereas now the cost is only about $£ 800$, or a saving of two-thirds. Moreover, the use of salt dispenses with sanding the streets, which, on the arrival of a thaw, produced quantities of mud in the streets and deposit in the sewers. Further, if the cessation of interruptions of traffic by means of this processis taken into account, the indirect gain to the people of Paris must be reckoned by millions of francs. Several machines have been devised for the removal of snow, but none of them is as cheap as salt; and the author gives a comparative estimate of the cost of melting snow by steam and by salt, which shows that the method of steam would be much more expensive, besides entailing other disadvantages.
The use of salt will probably not be confined to the clearing of streets in towns, but be extended to all paved roads, to tramways, and to the approaches to railway stations and all large manufactories. Perhaps, even in France at any rate, salt might be used for dealing with snowdrifts in railway cattings, by spreading it in sufficient quantities and sweeping thin layers successively salted.
On all paved roads over which there is considerable traffic, the use of only half the proportion of salt adopted in Paris would enable a track of $61 / 2 \mathrm{ft}$. to 10 ft . in width to be dealt with, along which the snow would be prevented from being frozen to the ground, and thus rendering traffic almost impracticable. The small cost of the system, and the advantages to traffic, are sufficient reasons for an early and wide extension of the use of salt for removing snow.

DOUBLE-DECK STOCK CAR

This car is so designed that it may be quickly and easily changed from a single to a double floored car; the object being to provide a car that may be used either for the transportation of cattle or of sheep, hogs, or other sinall animals. The car, which may be of the ordinary form, is provided with a movable auxiliary, or upper, floor. To the top of one end of the car is hinged a heavily made flap, or leaf, to which, in turn, there is hinged a platform, to the opposite end of which is hinged a second flap, which is hinged to the end of the car at a point just in line with the sur-

WHITE'S DOUBLE-DECK STOCK CAR.
of the box, so that no mail already in the box can be extracted. Properly arranged flanges on the movable curved plate and across the upper edge of the dome opening, the side edges of which are covered by curved and grooved heads, prevent the entrance of rain and snow. In the lower part of the main fraine is a box so hinged that it may be swung outward and downward, to facilitate the emptying of the mail matter directly into the mail collector's bag
This letter box, the invention of Mr. A. V. B. Bush, of No. 2 Fulton St., New York city, is adapted to receive either large or small mail matter; and when opened for the deposit of mail, the main part of the box is securely closed, and, as the shifting frame automatically closes itself, there is no danger of the box ever being left open.

IMPROVED WAGON STAKE.

The object of the invention here illustrated is to provide a wagon stake formed entirely of metal, and which will be stronger, cheaper, more durable, and easier replaced in case of breaking than any other style of stake. The tapering body of the stake consists of a flat web of iron surrounded by a flange thickened at two or more points along face of the platform when the latter is in its lowered the outer edge, and provided with holes for receiving position. The platform normally rests in its lowered the bolt or rivet by which an annular clevis is pivoted position, being then supported by suitably arranged to the stake. At the bottom, the flange is widened cleats; but when the car is to be cleared for the purpose of transporting cattle, the platform is drawn up until it occupies a position just beneath and parallel with the roof of the car. This movement is brought about through the medium of a chain or rope, one end of which is secured to the end of the platform, as shown at the left in the engraving, while the other end is guided over sheaves, located as shown in the drawing, and secured to a shaft preferably mounted at one end of the car. The shaft is provided with a hand wheel and pawl-and-ratchet attachment. To draw the platform up (it is represented in the engraving about midway between its upper and lower positions), the hand wheel is turned to wind the rope upon the shaft, thus drawing up the platform and its leaves. When the platform is to be lowered, a handle on the pawl is moved so as to release the pawl from 'the ratchet, when the weight of the platform causes it to drop to its lower position. When the platform is lowered, side flaps hinged to it drop into the spaces be tween the doors and edges of the platform. The center of the platform is steadied and supported by a chain, as shown
This invention has been patented by Mr. Luuis H White, of St. Augustine, Florida

IMPROVED LETTER BOX.

This letter box is provided with a shifting receiving frane, arranged to deposit the mail in the main recep tacle, and constructed so as to close the same when moved to position for receiving the mail. The top of the casing forms a semi-cylindrical dome, having an opening through which the mail matter is placed in the receptacle of the shifting frame, which is pivoted in the dome, and is so overweighted in front of the

bUSH'S IMPROVED LETTER bOX.
pivots that it will swing of its own accord to a closed, inverted position for dropping any mail it may contain into the main receptacle, as shown in the sectional view, Fig. 2. Seeured to the front edges of the end plates of the shifting frame is a curved plate, provided with a knob, by means of which the frame may be turned so that its mouth will coincide with the opening in the dome, when mail matter, may be deposited. When the frame is in this position, its lower back piece, together with a stationary curved plate held at its ends to the main frame, closes the main lower part
and extended to form a foot, which rests upon th bolster of the wagon. Projecting from the bottom of the foot is a steady pin, and also a bolt provided with a nut for binding the stake to the bolster. A bolt a nut for binding the stake to the bolster. A bolt
or screw is also inserted in the bolster through a hole or screw is also inserted in
in the extended part of the foot. The stake may be made of cast or malleable ron, and the pin and bolt may be formed integrally with the stake, or may be secured by casting the metal around them, or by metal around them, or by
screwing them into threaded holes in the stake.
This invention has been patented by Messrs. J. H. Conover and D. S. Brink. Further particulars can be had by addressing the former at Springborough, forme
Pa.

Adhere to One Busine
Concentration, says the
 Manufacturers' Gazette,
is an important factor in the success of the manufacturer or merchant. The individual who attempts to do everything seldom succeeds in doing anything well. Life is not long enough to exhaust even one branch of science, art, or industry. When one needs nything out of his line of business, it is far better to make the purchase of an experienced and trustworthy neighbor than to undertake to learn another branch of business, with all its cost of experience. The concern which undertakes to make all the money, to get along without making any purchases of others, and to monopolize all the avenues for profit, generally gets left in the race for wealth. The most successful inleft in the race for wealth. The most successful in-
dividuals and firms are those which have developed a promising specialty, leaving collateral matters to the attention of their neighbors in trade and industry. The possibilities of any one branch of manufacture grow upon investigation, and develop rapidly under fostering care. The man who gathers all the profits that are in one branch of legitimate industry can well afford to give his brother in trade a chance as well.

THE Republican wishes to say a word of disinterested praise for one of the best papers published in this country. We allude to the Scientific American, published by Munn \& Co., New York city. For three dollars a year it furnishes a greater amount of solid reading than is to be found in any other journal on the globe. Its departments of science, mechanics, natural history, and pure literature are unrivaled. Its illustrations present models of excellence in the art of picture making. Every family in the land should take the Scientific American.-Hendricks County Republican, Danville, Ind.

THE fastest ocean passenger steamer afloat is believed to be the Cunard liner .Etruria, plying between New York and Liverpool. On her westward voyage, October, 1885, she steamed 481 nautical, or 557 statute, miles in 24 hours, being at the rate of over 23 miles per hour.

IMPROVED TRANSOM LIFTER.

The transom is hinged to the door casing by the up per end of its frame, and carries, on one side, bracket, in the outer forked end of which is held a grooved pulley, over which passes a curved arm'formed on the upper end of a lifting rod sliding vertically in bearings and provided at its lower end with a handle.

WALKER'S Improved transom hifter.

When closed, the transom can be opened by moving the rod upward, when the curved arm will act on the pulley and its bracket and swing the transom open. The transom can be held in this position by screwing a set screw in the lower bearing against the rod. The set screw also serves to lock the transom in a closed position. The roller prevents jarring, and imparts an easy motion to the transom. The forked end, being attached by the bolt of the roller to the arm, can be swung downwardly, so as to engage the curved arm from the inner side, thus permitting the hinging of the transom at its lower instead of its upper edge.
This invention has been patented by Mr. Leander T. Walker, of South Pueblo, Colorado.

COMBINATION TOOL.

This simple and inexpensive device is adapted for use as a clevis fastening or for holding double treeps or neck yokes to the tongues of vehicles. It may alsd be used as a hammer, wrench, and screw driver, thus facilitating the keeping of agricultural implements in running order. The tool is preferably made of cast steel or iron. Upon one side of the hammer head are wrench sockets.(Fig. 1), adapted to receive nuts of different sizes, while from the other side projects a screw driver bit, as shown in Fig. 2. The shank or handle portion is made round, to allow it to be passed through the top and bottom end parts of a draught clevis, which is thereby held to the end of a plow stock, as represented in Fig. 1. The extremity of the shank is threaded to fit a threaded hole in the lower part of the clevis. As the sides of the wrench sockets project beyond the outer face of the head and

OGLETREE'S COMBINATION TOOL.
at the side of the shank, a good hold is obtained upon the nuts, and there is ample room left for the fingers to pass around the handle at the side next to the sockets.
It is evident that this tool, which is the invention of Mr. John W. Ogletree, of Powder Springs, Ga., while capable of good service in holding the clevis to the plow or other implement, is always conveniently at hand for instant use when required. When used for holding double trees or neck yokes to vehicle tongues, the screw threads on the shank may be dispensed with.

THE LARTIGUE RAILWAY.

The Lartigue railway system is that of a series of cars drawn by horse power or a specially constructed locomotive, running on a single rail elevated a few feet from the ground. The system has been in use since 1883 in several parts of Europe and Africa, and a model line has recently been shown in action near Victoria Street, Westminster. The main features of the system, which is applicable to military, agricul tural, or manufacturing lines, are as follows:
The line, which is exceedingly portable, is composed
The line, which is exceedi
of one rail, of the shape of of one rail, of the shape of
a flat bar, extremely rigid when subjected to vertical pressure, but easily bent horizontally. This rail is supported above the round by Ashapad tles, or frames, made of angle or some very stiff section of iron. The uppe extremity of these trestle is bolted to the rail, and the lower extremity rest on the ground, being supported by a bed plate o sleeper, to which the frame is firmly secured. Th_{h} sleepers may be of different sizes and shapes, and may further be secured in their places when required by long pegs driven into the ground through holes drilled near the extremity of the sleepers, thus pre venting the line from shift ing. If a river has to be crossed, some light piers can ke made, or two wire cables may be stretched across to receive the tres les of the line ; while if ravine has to be traversed, the line can either be carried directly over the gap
or taken down the gorg by means of a zigzag length, which can be connected by curves of as small a radius as ten feet. Moreover, it is possible to use gradients as steep as 1 in 17 . On passenger lines, guards to prevent the swinging of the ears;-and points, sidings, signal, etc., have been introduced, and everything has been constructed with a special eye to simplicity.
The cars are fitted with two grooved wheels, which run on the rails, but are fashioned according to the purpose for which they are intended. The passenger carriages, as well as the locomotives, are fitted with horizontal grooved wheels, which run on side guide lines, attached to the trestles by the side of the main line, thus imparting steadiness. As our sketches show it has been tried in Russia both for the transport of troops and of military invalids; in the Pyrenees it is used for carrying ore; while its facilities for passenger traffic were tested at the short line at Westminster. It has been shown at various European exhibitions, and is in use at Algeria and Tunis for carrying esparto grass. Indeed, it was while seeking to solve the problem of carrying the grass from the plains to the main
lines of communication that the idea of the single line railway first occurred to the inventor, M. Lartigue, the appearance of a caravan of camels in the distance laden with bags on each side of their humps furnishing the starting point. The advantages claimed for the line are its extreme simplicity and portability. Unevenness of the ground can be balanced by different engths of trestles, while the motive power can be either electricity, horse traction, or steam. The in ventors state that during a trial in Russia, 6 ft .6 in .

ventors state that down in six minutes by six men, so that a were
 were laid down in six minutes by six men, so that a

1 Train of the Lartigue Railway at Tothill Fields, Westminster, ascending a Viaduct on an Incline of 1 in 10 . 2. Train for the Transport o Wounded Soldiers, at the Russian Guards' Camp, near St. Petersburg. 3. Electrical Train at the Mines of Ria, in the French Pyrenees carrying Copper Ore. 4. Section of Railway and Third-Class Open Passenger Carriage. 5. View of Carriage for the Transport of Troops, at the Russian Guards' Camp, near St. Petersburg.

SHE LARTIGUE ELEVATED SINGLE RAIL RAILWAY

4 by 8 by $3 / 8$ angles. Unusually heavy metal, 36 inches deep and $7-16$ thick, is used in the floor plates. The midship scantlings are as heavy as if made of ordinary ron, but at the ends of the vessel the sizes have been reduced, and so, with no loss of strength, considerable saving in weight has been effected. The outside plates are five-eighths of an inch in thickness and are flush to hree feet below the load water line. Thence to "garboard" she is rated "in and out." The decks are plated to the beams and cross braced diagonally to sist the lateral strains. The wood decking of white pine is lajr ${ }_{2}$ on top of this. All the deck houses are of steel plate, built into the deck, covered with teakwood worked in panels. The bulwark stanchions, plank sheers, coamings, skylights, and all other wooden fittings on the upper deck are also of heavy teak.
The Aiva has three masts, with yards on the foremast. When leisurely cruising, she will -make a large spread of canvas, which will enable her to economize on coal during a long passage. All the work of construction has been done in the shops of the Harlan \& Hollingsworth Company. The engine is of the compound surface condensing type, with three cylinders and three cranks, and is of similar make to those which have proved so successful in the Cunard steamers Etruria and Aurania. The cylinders are set in a fore and aft line are of 32 and 45 inches diameter, with 42 inches stroke.
The Alva's steel shell boilers, of the Scotch type, mile could be completed by thirty men in eight hours. have nearly 5,000 square feet of heating surface, and
n this instance the line was raised 3 ft .3 in . above he ground.-London Graphic.

THE ALVA-VANDERBILT'S NEW YACHT

The Harlan \& Hollingsworth Company has lately finished for Mr. William K. Vanderbilt the steel yach Alva, the finest pleasure ship afloat, at a cost, it is said, of about one million dollars. The vessel is commanded by Capt. Henry Morrison, who for many years has ated so faithfully in the service of the American Line between Philadelphia and Liverpool.
The principal dimensions are as follows
Length over all. Feet.
285 In.
Length from stem to pos
Length on load line
post...
Depth moulded
Extreme draught.
Diameter propelling wheel.
Measurement, in tons O. M., 1,311.
The keel is of bar type, 12 by $21 / 2$. The frames are of
have nearly 5,000 square feet of heating surface, and
will supply steam at a working pressure of 100 pounds to the square inch. They are only 10 feet long, the diameter being 17 feet. It is stated at the yard that, as far as diameter is concerned, these are the largest boilers ever constructed in this country, or even in England.
The bed plate of the machinery weighs 16,990 pounds. The magnificent steel shaft, which is incased in brass, is some 10 inches in diameter. The propelling wheel furnishes an exception to the statement that all of the machinery is of American make. It is of manganese bronze, and was cast in Glasgow, Scotland. It measures 13 feet in diameter, weighs 9,632 pounds, and paid Uncle Sam $\$ 1,100$ in duties when it came through the Custom House. The coal bunkers of the Alva, which are in the boiler compartment, will carry 300 tons of coal. That the yacht will be equipped with all the latest and most approved appurtenances goes without saying. She will have a steam windlass and steam steering gear that can be operated from the midship bridge. There will be electric lights, bells, speaking

THE ALVA, THE NEW MILLION DOLLAR PLEASURE YACHT.
tubes, and telephones throughout the ship. Supplementary engines and boilers will be supplied to run the fire engine pumps, the electric dynamo and ice-making machines, and various other apparatus.
The internal arrangements of the Alva are as labyrinthian as those of a palatial hotel. In fact, she is literally a floating hotel, designed for the comfort and luxury of a few select guests. The best hostelry in the land can furnish nothing that will not be found upon this pleasure ship, and few. private palaces will surpass her commodious accommodations and material luxuries. In many of the new steam yachts the crew occupy the after part of the ship and the owner and his guests the forward part. In this instance a com promise plan is adopted. The seamen live in the bow of the craft. The owner occupies the space from the forward compartments to the engine rooms, and also several apartments abaft of the machinery, while the captain and his executive officers, the engineers, the chief and the stewards live in the rear compartment. The Alva is expected to have a high speed rate-probably 23 miles or more per hour.

The Hon. William Gurley.
By the recent death of Mr. Gurley, at the age of 66 years, the city of Troy, N. Y., loses one of its most estimable, enterprising, and useful citizens. He was born and always resided in Troy, was prominently identified with its business and social interests for most of his life, was a member of its city government in various positions, and a representative in the State Legislature. He was the senior member of the firm of W. \& L. E. Gurley,
manufacturers of civil engineers' and surveyors' instruments, was an officer of several financial institutions, and president of the Troy Female Seminary, which he successfully brought through very serious difficulties, and his work for which he was accustomed to look upon as the most satisfactory achievement of his life. Besides the important publi positions alluded to, his private life was filled with acts of the most unselfish and kindly nature. His counsel was largely sought and freely given to all.
His Christian character and example in all the relations of his active and busy life were such as to make him a model to the young men of his time.
He had a most ingenious and practical mind, and made many important improvements in the instruments of the engineer, some of which were protected by valuable patents.
His death is really a public loss, and will be a source of sincere grief to the many who knew him in various parts of our land.
Mr. Gurley was graduated from the Rensselaer Polytechnic Institute in 1839, and was at the time of his death its acting president. He was always prominent in religious and charitable work, and in the promotion of what was best and purest in the life around him.

IMPROVED TENT.

The accompanying engraving illustrates a tent, which is the invention of Mr. Merritt P. McKoon, o El Cajon, San Diego Co., California. As the doorway is placed at the center of one side, the trunks or cots can be placed crosswise of the tent, and near the ends and end poles, thereby economizing room in the center of the tent, where it is most desired. This middle room can be occupied by table, chest, chairs, etc. The half-diamond shaped ends form valuable "stowaway" places, or they can be curtained to form separate apartments when necessary. The center or point seam on each end is rope bound and brass linked over end pole iron spikes at the top of the tent, while the lower end of this rope is left loose for about 20 inches

THE CAMPER'S FAVORITE TENT.

beyond the tent, to becket over tent pin tightly or loosely at will, as dry or wet weather requires. This anchors the tent firmly and solidly, and insures its standing during the most severe gale. The angular roofing or awning over the doorway is of great value ; as either one or both of the door flaps can be attached to the sides of the awning at pleasure, so as to obstruct
the entrance of sun, rain, or wind when desired, a most agreeable shelter is provided. The tent presents a neat and most attractive appearance, and is as well
adapted for lawn or sea shore use as for actual hard adapted for lawn or sea shore use as for actual hard
camping service. eamping service.

IMPROVED SHEEP SHEARING TABLE

The sheep shearing table shown in the accompanyng engraving consists of two parts, a main and auxiliary table, the former (A B in the plan view, Figure 2) supporting the body of the sheap, while the latter, C, supports its head. The front corners, A, of the main table are formed with arms, each of which has a hook adapted to hold a stock, which secures the

PHELPS' SHEEP SHEARING TABLE.
legs of the sheep, and the tables are so arranged, in relation to each other, that a space is formed between their adjacent edges through which the front legs of the sheep swing when he is turned from one side to the other in shearing. Thus he is turned on his belly instead of on his back. Attached to the back arms of the main table are other hooks, B, which catch the bails of stocks (shown detached and enlarged in Figure 3) for holding the sheep when turned upon the side opposite to that shown in Figure 1. The stock is formed with an edge opening and with side communicating openings to receive the ankles of the sheep, and a hinged block is arranged to spread the limbs of the sheep into the side openings and also to close the edge opening, so that when the limbs are placed in the stock and the block closed into its opening they will be securely held. The sheep's head is held to the auxiliary table by a strap that buckles around his neck or horns, and is attached to a block provided with a ring to go over his nose. The block is held to the table in loose bearings, which permit it to turn axially so as to give considerable freedom and a degree of comfort to the sheep while confined for shearing. Upon raised fenders attached to the rear edge of the main table, and extending to the outer corner of the auxiliary table, is secured the outer edge of an apron, whose inner edge is secured to the tables by suitable fastening devices. The apron is thusheld in an inclined position to receive the wool as it is clipped from the sheep, and a space is cut in it to correspond with the space between the tables, so that it will not interfere with the turning of the sheep, and this space is filled when tying the fleeee by raising a second smaller apron provided for the purpose.
This table furnishes an absolute fastening for the legs and head, which can be easily and quickly applied by one person, and a clean, smooth surface on which to fold and tie the wool. The sheep is held in an easy position, in which it does not suffer nor struggle. The sheep can be instantly turned, without lifting and breaking the fleece or scattering the wool, and the fleece when wholly removed is ready for tying for market, with the clean side out.
This invention has been patented by C. B. \& J. B. Phelps, of Northville, Cumberland County, Tennessee

The Work of the Patent office.

The annual report of the Commissioner of Patents was laid before Congress on February 5. The repor calls attention to the utter inadequacy of room and facilities for conducting business in the present office. The Commissioner believes the salary list of the office should be completely revised, which, he thinks, would result in great good, and in no aggregate increase of the total.
The total number of applications filed during the last the numiring investigation and action, was 41,442 , and ceipts were $\$ 1,154,551$, and the expenditures $\$ 992,503$, leaving a balance of receipts over expenditures of $\$ 162$,
048. The amount to the credit of the patent fund in the Treasury was $\$ 3,107,453 .-N . Y$. Sun.

A fearful railway accident took place at Woodstock Bridge, on the 5th inst., on the Vermont Central Railway. The rear part of an express train, going north at thirty miles an hour, became separated from the front part. The accident took place just at the entrance to the bridge over the White River. Four passenger cars plunged fifty feet down to the margin of the icy stream. A few persons escaped. The wreck was soon on fire from the car stoves; no water was at hand; and the imprisoned passengers, some thirty-five or more in number, were burned alive. This was but a repetition of horrors that have attended other accidents in this country for years past. It is high time fireproof materials, instead of dry wood, were used in car construction, and that some new mode of heating railway cars was invented.
In this city the five hundred daily trains of our steam elevated railways are comfortably warmed by steam taken from the locomotives. No stoves are used. About a million passengers are daily transported. But this system, although good for local or fixed service, cannot be easily adapted to the varying exigencies of general railway travel, for reasons staten by Mr. Depew, President of the New York Central Railroad. In a recent interview with a reporter of the New York Tribune, Mr. Depew said :
"We make up trains here at Forty-second street, and before the train goes out of the station the engine may be blocks off. It is not always possible to have an engine attached to a waiting car or'a train simply to give heat. Another objection to steam is that after a train has left New York, for example, it will pick up additional cars at Poughkeepsie, Albany, Utica, Syracuse, and so on. These cars have been waiting in these stations in advance of the coming of the train, to accommodate passengers and save time. Often they are sleepers, in which persons have gone to bed early. They must be kept warm, and how is that warmth to be had rom an engine drawing a train miles away? It has been proposed to have a special boiler attached to the baggage car, with a special attendant. This would give heat to the complete train, but I don't know that the plan has ever been putinto any kind of successful peration. What must be devised is a source of heat for each car, without the use of fire."

A Serions Oversight.

A correspondent writes from Cairns, Queensland, to the Ironmonger as follows: "England ought to make herself better acquainted with colonial wants, otherwise she will lose a great part of her colonial trade. America is pushing her hard in several lines, such as tools, agricultural implements, and rice machinery. A six horse power machine made in the United States of America can be bought for $\$ 900$. It is not perfect, for it breaks the rice too much. Let. England step orward and make a perfect one, and get the trade, for there will be a great demand for rice machinery in Queensland. Our vehicles are nearly all built in the United States of America, sugar machinery from France, and steel rails from Germany. Englatrd ear not hold her own in saddlery; very few will buy an English saddle. You at home by your actions seem to think you know our requirements better than we do ourselves, but when you lose the trade you will not find it an easy matter to get it back again, and you will lose it if you do not alter your ways. It would pay your manufacturers to send out some intelligent persons to see what the colonials require."

GARMENT AND HOSE SUPPORTER.

The accompanying engraving clearly shows the construction of this simple and useful article, which has been patented by A. P. Rindskopf. The middle portion of the wire forming the supporter is bent upon itself so as to make a spring clasp above which each section of the wire is curved outward and then inward, and the ends are hooked. The supporter is attached to the elastic fabric by means of the hooked ends. A portion of the garment to be supported is then passed through the central curved portion and pulled down within the clamp, which will firmly hold it. There is no danger of the garment being torn, even when of a delicate nature. The supporter is made of the best quality steel spring wire, heavily silver plated.
This device is manufactured by the Brooklyn Shield Co., 67 Sumner Avenue, Brooklyn, N. Y.

©arrespondence.

Taking Cold-A War Experience.

To the Editor of the Scientific A merican:
Your correspondent Van Bibber's army experience with "Taking Cold" was very much my own. I served with the 13 th N. C. Regiment, and though considered a quite delicate young man, I went through with the rest much hardship and exposure. The severest cold I had in the war was when my company was " eating its wheat bread," in the winter of 1861, at Todd's Point Va., where we had close, comfortable cabins and large roaring fires. There was too much comfort. I had suffered for years from severe attacks of tonsilitis and ulcerated sore throat, that every year confined me to bed for weeks. Yet as a private in infantry fifteen months, and an officer in line the restoof the war, doing hard service, marching through snow, sleet, rain, mud, often sleeping in mud and water, and occasionally waking in the morning covered with snow, I had but one attack the whole war, and that was in November 1863, when we left newly built winter quarters near Orange C. H., Va. (the close, comfortable, cabins again!) to go after Meade at Vadairsville. It was a cool night, we were on line of battle, ordered to charge the enemy at early dawn, and hence were allowed little or no fire. My servant had my overcoat and blanket, and was afraid to come to me on line, and I sat all the night over a few coals, green, smoking pine, my throa much swollen, and with a fever. In the morning Meade was gone. My throat was well in two days, J did not quit duty, and I have had but one attack of tonsilitis since, and that was soon after the war.
P. S.-While fully up with the great damage of an intemperate use of tobacco to the nervous system, I al ways felt more comfortable, and, somehow, as better proof against " taking cold," if in the cold and wet in the trenches, or roughing it on the open plains, I had the quid in my mouth. But it is a nerve destroyer. an satisfied of that.
T. C. Evans.

Reidsville, N. C., February 2, 1887.

To the Editor of the Scientific American
Seeing the article in your paper of January 1, on "Remarkable Boiler Explosion," by Mark Bacuitt, also in your issue of January 22 by W. P. Woodward, I venture to make a few remarks, which I think, if care fully considered by practical men, will throw; a little light on the mystery of boiler explosions.
Mr. Ames, the master mechanic, claims to see no reason for explosion, beyond the fact that the cock in the steam gauge pipe was partially turned off.
First Question.-What was the cock turned off for ANSWER.-When the spring in a gauge gets weak, or sometimes when the parts are worn, or sometimes in an improperly constructed gauge, the hand of the gauge will vibrate when the locomotive is in motion; to remedy this, the cock in the gauge pipe is turned of until the hand stops vibrating.
Second Question.-About how large is the hole left for steam to pass through the cock? ANSwEr.Gauges vary ; sometimes, the cock has to be almost closed before the hand stops vibrating
Third Question.-Was this cock put in for this purpose? ANSWER.-No, it was intended to turn off the steam, so that the gauge might be taken off and repaired while there was steam in the boiler.
Fourth Question.-Is it advisable to turn off the steam from the gauge in any way? ANSwER.-No, repair or renew the gauge.
Fifth Question.-Is a gauge pipe more liable to plug up by being tested by cold water pressure than by steam? ANSWER.- Yes, especially after extensive repairs on inside of boiler, more or less light sub stance will be left on the inside of the boiler, which will float on top of thedwater, find its way to the high est places, one of which is the steam gauge pipe being too large to pass through the almost closed cock tick and swell.
Farnham, P. Q., January 23, 1887.

How Cut Glass is Made
 To the Editor of the Scientific A merican

Referring to question 9, J. S. B. (who asks how cu glass is made), in issue of January 22, 1887, page 59, cut glass table ware is not common pressed glass cut over, etc.
In making cut glass, the articles are always blown, not pressed. Goblets, wineglasses, fingerbowls, etc., are made "off hand," that is, they are blown and shaped by hand, the only tools used being a blowpipe and the gaffer's tool. Oval and irregular shaped articles are blown into proper moulds having smooth surfaces, the moulds serving merely to give the shape, and not to impress any pattern. All articles leave the glass maker's hands with a smooth surface, and in this state they are called "blanks." The pattern or design is cut out of the smooth surface with iron wheels adapted to the work. Every line is then "smoothed" on stone wheels, and finally buffed and polished with crocus and rouge on leather and linen wheels. The essential
other varieties of table ware is that in the former the pattern or design is entirely cut out of the solid mass of the glass.
A pressed article, though it were smoothed and polished over, would not be properly called cut glass, nor would it look at all like a genuine cut piece. I will briefly give the reasons for its inferior appearance. In the first place, the glass always shows a " chill" where was in contact with the iron of the mould.
This "chill" can be taken off the outside surface of any article by subsequently heating the surface to very nearly the melting point, but it cannot be removed from the inner surface of a goblet, for instance. This is one reason why a goblet flrst pressed and then polished over would not have the brilliancy of a cut goblet. In the second place, the pressure brought to bear on the soft glass when it is pressed greatly affects the refraction of light in the finished article. When the goods are sold as pressed ware, the refraction is again partly restored by reheating the surface, as before mentioned, after the pressure is removed, such reheating serving to take off the chill as well as to swell a thin skin of the glass into a state in which it seems o regain its refractive powers, in other words, its brillancy.
In cutting over such a pressed article, this thin skin of refractive glass would be abraded, and the brilliancy of the whole article impaired.
The value of cut glass is in proportion to its purity of color and the brilliancy of the "metal," or glass and it is a matter in the experience of every glass maker that a pressed article cut over is not as brilliant as the same piece rot cut, and having the fire polished or reheated surface intact. Hence, though it is cheaper o press a piece first, and then cut over the pattern, such goods are so inferior that they would not bring as much as the merely pressed and fire polished article. It can be considered a rule that the less pressure here is put on the glass while bringing it into shape, the more brilliant the final cutting will appear.
These remarks may be verified by a visit to the Dor flinger Flint Glass Co., White Mills, Pa., or to the Mt. Washington Glass Co., New Bedford, Mass., where the reader may make himself fully acquainted with all the details of the manufacture of cut glass proper.

ANDREW Gottschalk.

A New Method of Blasting.

Dr. Kosman proposes, in blasting in fiery mines, to substitute for gunpowder, dynamite, and other explo sives requiring ignition, cartridges containing zinc dust the mixture of finely divided zinc and zinc oxide that collects in the condensers of the zinc retorts) and diuted sulphuric acid. The cartridge case is a glass cyl nder, 7 inches long and 1 inch in diameter, closed at the bottom, and divided into two parts, whose volumes re in the proportion of 1 to 4 , by a choking or contrac tion, which reduces the bore at the junction of the two chambers three-tenths or four-tenths of an inch. The ower or larger division is filled with diluted sulphuric acid, and the contracted opening is stopped with a plug of cork, India rubber, or asbestos, in which state it is civen to the miner
When required for use, the upper part of the case is filled with zinc dust, and the shooting needle is passed through it into the plug closing the acid chamber. The shot hole is loaded and tamped in the ordinary way, first with tempered and then with dry clay or broken up shale. If the rock is porous or jointed, the hole should be carefully clayed, to prevent the gas escaping through the cracks. The shot is "fired" by one or more smart blows on the shooting needle, which drives in the plug and breaks the glass at the choked part, when the zinc dust mixes with the acid, and a rapid, although not instantaneous, evolution of hydrogen takes place, whose expansive power is sufficient to break down the rock. The following figures are given as a measure of the power available :
A cartridge of 25 millimeters in diameter and 180 millimeters long is approximately of the capacity of 90 cubic centimeters. The charge consists of 50 cubic cen timeters of sulphuric acid and 12 grammes of zinc dust which, according to its average commercial composition, will contain about 10 grammes of metallic zinc. According to the formula, $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{ZnSO}_{4}+$ $2 \mathrm{H}, 10 \mathrm{grammes}$ of zinc will liberate 0.3 gramme of hydrogen, or by volume 3.37 cubic meters (1 cubic meter of hydrogen at 760 millimeters barometer pressure weighs 0.089 gramme). This volume of gas being confined to 90 cubic centimeters, the resulting pressure $3,370,000$

90
bers. This is computed at zero, but at higher temper atures, such as prevail in mines, the pressure will be notably greater. In blasting with gunpowder, the pressure developed is below 5,000 atmospheres. The production of the cartridge cases has been intrusted to a single firm, in order to obtain uniformity in the manufacture. The cost of a shot will vary with the caliber and weight of the charge, from about $11 / 2 \mathrm{~d}$. to 2 d .
The question whether danger might be apprehended
to the air of mines already containing inflammable gas must, Dr. Kosman thinks, be answered in the negative, as hydrogen diffuses so rapidly in atmospheric air that the power of infiaming is soon dissipated. For instance, if zinc dust is covered with diluted sulphuric acid in an open dish of 500 cubic centimeters capacity the gas cannot be fired by a naked light at the edge of the dish, and the flame must be applied to the bubbles of hydrogen ass they form to obtain a detonation. This rapidity of diffusion is likely, therefore, to prevent any danger by the addition of hydrogen to the air in mines which are well ventilated and worked with safety lamp. The heat developed by the action of the acid upon the zinc also causes a considerable development of steam, which, mixing with the gases, acts in diminution of the explosive power. These and other points can, however, only be settled by experiment on the large scale.

A PUZZLE.

The following, I believe, has a solution, but what that solution may be I by no means promise to tellfor a most excellent reason.

The figure represents the plan of a prison with intercommunicating cells (bless the Latin!); a prisoner in A is offered his freedom if he can make his way to B , after passing once, and once only, through all the 36 cells. How is he to do it ?-Knowledge.
The above is the puzzle as published in our number of January 15, page 36. We have received a large number of replies, some of which deny the possibility of its solution if the exact terms are complied with. Others find no difficulty in its solution in the manner stated as follows by one of our correspondents :
The prisoner says to the keeper: "Come, we will go

through room No. 2; now we will go through my room No. 1, then No. 3, and so on as per diagram. In this way we go through all the 36 rooms once, and once only."
W. P. Murphy.

Ridgway, Elk County, Pa.

Crown Jewels of Firance.

Since France has been under republican rule, the disposition of state treasures has been a subject of frequent discussion in her legislative halls. At one time the money obtained for the crown jewels was to be applied to the founding of trade schools, and the collection was exhibited once in the Tuileries in order to help the metal workers in setting up a special school for their apprentices. Now it is said that the products of the sale are to be turned into the treasury. The whole collection is not to be sold. Three objects are to go to the melting pot, viz, the Imperial crown, the glaive of Louis XVIII., and the glaive of the Dauphin. Several of the stones will be handed over to the Mineralogical Museum and the School of Mines, to be used henceforth as specimens. A tew objects will be preserved as curiosities, viz., the military sword, the reliquary brooch, the Regent diamond, the Mazarin diamond, the watch presented by the Dey of Algiers, the large ruby, the dragon pearl, and the badge of the Little Elephant of Denmark. The remaining treasures will be treated as if they were seized for debt, and ures will be treated as if they were seized for
will be sold by auction in the Hotel Drouat,

The Geological Survey of New Jersey.

We have received from Prof. Geo. H. Cook, State Geologist of New Jersey, three sheets of the topographical map of the State, now in process of completion. Each sheet is 27 by 37 inches in size. Seventeen sheets are to complete the State, of which thirteen have been issued, and the completion of the work is promised in 1888. The scale is one inch to the mile, and the country is laid out in 10 foot contour lines, with special references to heights of points of interest. The work, now so near completion, is of the highest interest and value to all interested in the State of New Jersey. The execution of the maps is most excellent, the work being done by the well known firm of Julius Bien \& Co., so long associated with government map work. We also note the receipt from the same survey of the agricultural station report, giving interesting statistics upon the sorghum plantation at Rio Grande, and the results attained by the diffusion battery in extracting sirup from the cane. This review of the well known experiment in northeru sugar culture will be appreciated by all sugar manufacturers and planters.

Injury to the Brain.

A most remarkable accident, illustrating the necessity of using the greatest care in fixing cutting tools in machines, is reported in Science. While a wood turner of San Francisco was at work at his trade, a steel chisel became detached from a grooving machine, and struck him in the head, producing a fracture of the bones of the nose, and severely injuring the lefteye, so seriously as to destroy that organ and necessitate its removal. After the removal of the eye, the surgeons found behind it a piece of steel $31 / 2$ inches long, one inch wide at the center, and tapering to sharp points at the ends. One end was buried $11 / 2$ inch in the brain. The velocity and force with which this chisel must have entered the brain may be imagined when it is stated that the drum to which it was attached was making 2,300 revolutions a minute. The injury to the brain was not discovered until several days afterward, and the man died at the tenth day.

Cleaning Cherry or Ash.

As the proper cleaning and finishing of oak or cherry require considerable care and skill, it will be interesting to notice the practical treatment which the woods undergo under the hands of the woodworker.
Cherry, as in tables, framing, etc., is usually roughed off by the planing machine and worked into its re quired shape before finishing. When, as in the case of a veneered door, the frame is ready for cleaning off, it is laid on and firmly fastened to the bench by strips cut in between the joggles, then carefully surfaced or leveled over with the fore plane. This is in itself a delicate operation, as the surfaces of the pieces must be exactly flush under a straight edge-that is to say, across the face stiles must be on the same level as the face of the rails, and the latter on the same level as the mullions; in short, the surfaces must all be in the same plane and the stiles likewise straightened. Al lumps must be reduced, and great caution exercised to avoid sprawling corners. Use the plane with the grain as the contrary works out holes, and causes more trouble with the smoother. This done, it is usual to smooth off with a closely set, well-sharpened plane, or better still, a Bailey iron plane. Some woodworker object to using the iron plane, as it marks the stuff, and causes much scraping afterward, but it neve breaks corners, and will work well against crossgrained stuff like this. Having finished smoothing, proceed to scrape the surface with a scraper which will cut to a shaving. Work carefully with the grain and take out all holes and rough spots, especially near the joints. When scraping across joints, bend the scraper with the hands, and avoid tearing up the grain on either side of the joint. Obliterate every imperfection noticeable before applying the sandpaper, which should be No. 1, and used with a broad, flat cork rubber. On no account sandpaper across the joints, as the grit in the sandpaper will score across the sensitive surface, but work close to the end-wood joint and then with the grain of the jointed stile or rail, as the case may be. Of course the result of the operation depends on the operator's skill, but an exceedingly neat, job can be done with a little care.
Ash is, perhaps, the most difficult of all the woods to clean, as the grain is of an open and straight nature, varied with a frequently recurring tough cross spot. Like cherry wood after going through similar treatment, it shows a beautiful surface, which, being filled and varnished or polished, looks rich and glossy, the one dark and warm and the other light and elegant. After sandpapering, rough spots are seen by white blotches, and they can be easily scraped out as before. In these days, when pine almost obsolete and the hardwoods growing in favor, it is essential that their treatment be understood. Owen B. Maginnis in Milling News.

LONDE'S METHOD OF TIMING PHOTOGRAPHIC EXPOSURES

The process illustrated in the cuts is a development or improvement by M. A. Londe of M. Vidal's method. 'To make it perfectly accurate, a tuning fork is used to determine the absolute time. The tuning fork, as a measurer of time, is the only one whose accuracy cannot be questioned, and we believe that, instead of its being restricted to the hands of scientists, it should

3.-REPRODUCTION OF THE SINOIDAL CURVE IN LONDE'S METHOD.
A.-Beginning of the Impressio
be used for our advantage in the interest of our researches.
It will probably be objected that such methods as here described cannot be used by every one. This is indisputable, but it seems clear that to measure hundredths and thousandths of a second requires instruments of great precision, or else it is useless to occupy one's self with such work. To measure such smallfractions of seconds by approximate methods appears to us as

2.-REPRODUCTION OF A PROOF OBTAINED BY LONDES METHOD.
A.-End of the Luminous Impression.
of the same nature as weighing milligrammes with gramme weights. As soon as these problems are attacked, the utmost precision is required. In this order of ideas, we have devised the following apparatus:
A registering cylinder is governed by a Foucault regulator. On its end is placed a bright point, a nicke plated head of a nail, for example. The point and cylinter inove together. It is its displacement that we photograph. It moves behind a graduated screen r pierced with a segmental opening (Fig. 1). The screen

The regulator is started, the stylus of the tuning fork is made to touch the paper, and the shutter is released.
The result of an experiment is here reproduced (Fig. 2). The divisions of the dial and the trace, A B, left by the brilliant point are shown clearly. The light began to act at A, and ceased at B. On our sinoidal curve we now must determine to which places these two points correspond, and what time passed between A and B. Nothing is simpler. The cylinder is turned by hand until the point is at A. Here the impression begins. We trace therefore a line which cuts the sinoidal curve, by moving the tuning fork along on its car. The point, A, is referred to the point of intersection of this line and of the curve of sines. The cylinder is rotated until the point reaches B. We trace a second sine, which gives the point corresponding to B. The number of vibrations comprised between A and B must now be counted, to ascertain for what period the light has acted, to know the value of the time of exposure. In the experiment illustrated 10 vibrations took place ; the tuning fork gave 250 per second; the time of exposure was 10250 of a second, or 1-25 (Fig. 3).

- In this method, combining graphic and registration methods, regulated movement is not required, as the law of movement of the cylinder is always known. The dial need not be divided with accuracy, as its graduation is only used to establish the positions. The method is really a simplification, while giving most accurate results.-La Photographie Instantanée, by Albert Londe.

Protection of Iron.

M. De Meritens, in continuing his experiments upon the protection of iron, has obtained some further results, which seem likely to be of practical importance. The method of protecting an iron or steel surface by the electrolytic formation of a coating of the black magnetic oxide has already been taken up in France as a commercial process. Experiments in this direction have also been undertaken by the French arsenals, and are understood to have led to satisfactory results. M. De Meritens describes his later researches in a note presented to the French Academy, as follows :
"When we submit a piece of iron to the action of the current in a bath of cold water, the formation of magnetic oxide does not immediately take place. The surface of the metal is in the first place coated with a layer of the protoxide of iron. This is a body of which little is known at present. It has not been completely studied by any chemist. Berzelius undertook a prolonged investigation of the substance, but he has never completed the work. The protoxide is the least stable of the oxides of iron. If it is produced by precipitation from a salt of iron, it is immediately converted into the sesquioxide. A similar conversion into the higher oxide takes place when the protoxide formed upon the surface of the metal by electrolysis is exposed to the air, or if the electrode is allowed to remain in the bath after the cessation of the current. If, however, the sheet of iron coated with the protoxide is immediately transferred to a bath containing a solution of a suitable salt of some other metal, such as copper, silver, gold, or aluminuin, a perfectly adherent layer of this metal is immediately formed upon the iron. It is probable that the action is due to a partial reduction of the protoxide by hydrogen and the formation of an actual alloy between the two metals, both of which are at the moment in the nascent condition." M. De Meritens exhibited specimens of iron coated by this process with the several metals named above.

A Candy Temperance Society

At a recent meeting of the Nineteenth Century Club, of New York City, Dr. Hammond addressed the audience on the subject of "Brain Forcing in the Education of Children." Miss Tate, the principal of one of the city public schools, refuted the idea of any brain injury resulting from the ordinary education, according to the school system. Candy she affirmed to be the evil in the daily life of a large proportion of the youthful maidens of the country. The Hour thinks the formation of a temperance society for controlling this particular vice would seem to be as essential to the progress of the country as the suppression of whisky where men are concerned. In fact, cream caramels have never before been presented to the public under so fatal an aspect. A large gathering listened with evident satisfaction to the speakers of the evening. Among those present were Mr. and Mrs. Wm. Hamilton, Mr. and Mrs. Stickney, Professor and Mrs. Boyesen, and Mrs. Bernard. The Marquise De Lanza and Mrs. Charles H. Stebbins reed the guests.
IT is reported from Maine that the English sparrows are becoming acclimated, and growing white.

MULTIPLE DRILLING MACHINE.

We illustrate a special drilling machine made by Francis Berry \& Sons, of Sowerby Bridge, England, this machine having been specially arranged, says $E n$ gineering, for the use of manufacturers of vertical and horizontal boilers, steam cranes, portable engines, etc.
As will be seen from the engraving, the machine consists of three double-geared radial drilling machines, each with a radius of 4 feet, each radial arm having a steel spindle 2 inches in diameter and a self-acting and hand feed range for a depth of 12 inches. These drills are bolted to a cast iron wall plate 14 feet 6 inches long by 6 feet 3 inches wide, planed perfectly true, and with six T slots, equidistant, planed out,

The frequency of accidents and loss of life arising from car-heating stoves is awakening public attention everywhere, and even railroad officials are beginning to realize the necessity for some safer means of warming their cars than are now in use. The heating of cars by steam from the locomotive would seem to be the'most effective and the least objectionable method; but railroad engineers are almost unanimous in their condemnation of the use of steam for the purpose.
Mr. Chauncey M. Depew, President of the New York Central Railroad, in a recent interview said, in substance, that steam could not be used on long trains or or long distances.
Mr. Frank S. Bond, Vice-President of the five thou-
coal stove, inclosed in a wrought iron case, kept securely fastened, was the safest and best plan yet devised for heating. The Pullman Car Company inave adopted this mode of heating on most of their drawing room and sleeping cars, and they have probably given the subject as much thought as any one. But, says our informant, there is another element very slightly less dangerous than the car-heating stove, and that is the lighting appliances used in all passenger cars. The reservoirs of the several lamps contain considerable oil or other inflammable substance, and, being suspended along the length of the car, some one or more are likely to be crushed in even a slight collision, and the danger from this cause is one that has not received the attention it deserves. Electric lighting and steam heating,

IMPROVED MULTIPLE RADIAL DRILLING MACHINE.

and running from end to end. This plate carries the three drills, and by means of the T slots these drills can be moved into various positions, either vertically or horizontally, within the limits of the plate, to suit the work to be operated upon.
The top driving apparatus is also bolted to a wall plate with \mathbf{T} slots from end to end, so that the driving apparatus can be moved along to suit the varying position of the drills.

The Car Heating Problem.

The recent accident at White River Junction has caused the passing of a resolution in the Connecticut Legislature, asking that the Committee on Railroads be instructed to make a thorough examination of the methods employed in heating railroad cars in that State, and report whether legislation is necessary to secure greater security to the public.
confirms Mr. Depew in his statement. Mr. Depew,
further referring to the difficulties attending car heating, said that wealth awaits the man who invents a remedy. He had thought of flreproof cars, but concluded that they would not satisfy the public, for they must be constructed without much ornamentation, and "I know by experience," says Mr. Depew, "that the pampered public will take the chances of burning to death in a luxuriously upholstered coach which holds $\$ 10,000$ worth of inlaid woods, lincrusta-walton de signs, ornate carvings, frescoes, velvet carpets, and por tieres, rather than insure their lives in a plain iron ca that no incendiary could destroy."
In conversation with a railroad official of Providence, he tells us that car heating has been a subject of much study and many experiments in the construction de partments of most of the important railroads, and it has heretofore been claimed by the companies that the
by means practically available under the present conditions of railway business, are among the most important problems at present inviting the attention of inventors.
As the adoption of fireproof cars has been suggested, we find, as long ago as 1851, Thomas E. Warren, of Troy, N. Y., planned a metallic railroad car, which was illustrated in the Scientific American, August 23, 1851 , vol. vi., p. 388 , and the cut represents the car to be very graceful, equal in form and ornamentation to most passenger cars of to-day. We copy from the description accompanying the engraving: "The postsare made of wrought iron plates and constructed tubular, thus combining great strength and extreme lightness. The panels are of lighter wrought iron plates than the posts, and the roof is of sheet iron. The car is lined with a non-conducting material, so as to render it cool in summer and warm in winter."

SCIENCE IN TOYS.

viI.

The student of acoustics need not go beyond the realm of toys for much of his experimental apparatus. The various toy musical instruments are capable of illustrating many of the phenomena of sound very satisfactorily, if not quite as well as some of the more pretentious apparatus.
Sound is a sensation of the ear, and is produced by sonorous vibrations of the air. It may be in the nature of a mere noise, due to irregular vibrations, like the noise of a wagon on the street, or it may be a sharp crack or explosion, like the cracking of a whip or like the sound produced by the collision of solid bodies. The clappers, or bones, with which all boys are familiar, are an example of a class of toys which create sound by concussion, and the succession of sounds produced by the clappers are iregular, and clearly
distinct from musical sounds. A succession of such sounds, although occurring with considerably fre quency and perfect regularity, will not become musical until made with sufficient rapidity to bring them
within the per ception of $t h e$ ear as a practically continuous sound. The rat tle, or cricket, produces such sounds.
The wooden springs of the cricket snap from one ratchet tooth to another, as the body of the cricketis rapidlyswung ardind, makingsa series of regular taps, which, taken all together, make a terrific noise having none of thecharacteristic of musical sounds. That a musical sound may be made by a series of taps is illustrated by the buzz, a toy consisting of a disk of tin having notched edges and provided with two holes on diametrically opposite sides of the center, and furnished with an endless cord passing through the holes. The disk is rotated by pulling in opposite directions on the twisted endless cord, allowing the disk to twist the cord in the reverse direction, then again pulling the cord, and so on.

the buzz
If, while the disk is revolving rapidly, its periphery is brought into light contact with the edge of a piece of paper, the successive taps of the teeth of the disk upon the paper produce a shrill musical sound, which varies in pitch according to the speed of the disk. Such a disk mounted on a shaft and revolved rapidly is known as Savart's wheel.
It is ascertained by these experiments that regular vibrations of sufficient frequency produce musical sounds, and that concussions, irregular vibrations, and regular vibrations having a slow rate, produce only noises.
Savart determined that the lowest note appreciable by the ear is produced by from seven to eight complete vibrations per second, and the highest by 24,000 complete vibrations per second.

The zylophone and metalophone are examples of musical instruments employing free vibrating rods
supported at their nodes. The zylophone consists of a supported at of wooden rods of different lengths, bored transversely at their nodes, or points of least vibration, and strung together on cords. The instrument may either be suspended by the cords or laid upon loosely twisted cords situated at the nodes. By passing the small spherical wooden mallet accompanying the instrument over the wooden rods, very agreeable liquid musical tones are produced by the vibration of the rods, and when the rods are struck by the mallet they yield tones which are very pure, but not prolonged.

the ztiophone.
The cheaper forms of zylophone are tuned by slitting the rods transversely at their centers on the under side, by means of a saw, to a depth required to give them the flexibility necessary to the production of the desired tones. The rods are divided by the nodes into three vibrating parts, the parts between the nodal points and the ends being about one-fourth of the distance between the two nodes.
The metalophone is similar in form to the zylo phone, but, as its name suggests, the vibrating bars are made of metal-hardened steel. The bars rest at their nodes on soft woolen cords, secured to the upper edges of a resonator forming the support of the entire series of bars. The resonator is tapered both as to width and depth, and serves to greatly increase the volume of sound:
The resonator has a depth equal to half the length of a sound wave. When a bar is struck, its down

the metalophone.
ward movement produces an air wave which moves downward, strikes the bottom of the resonator, and is reflected upward in time to re-enforce the outwardly moving air wave produced by the upward bending of the bar.
The metalophone yields a sweet tone, which is quite different from that produced by the vibration of wooden bars.
The music box furnishes an example of the class of instruments in which musical sounds are produced by the vibration of bars or tongues which are rigidly held at one end and free to vibrate at the other end. The tongues of the music box are made by slitting the

edge of a steel plate, forming a comb, which is arranged with its teeth projecting into the paths of the
pins of the cylinder, which are distributed around and along the cylinder in the order necessary to secure the required succession of tones. The engagement of one of the pins of the cylinder with one of the tongues raises the tongue, which, when liberated, yields the note due to its position in the comb.
The tongues are tuned by filing or scraping them their free or fixed ends, or by loading them at their free ends. In this instrument the sonorous vibrations are produced by the tongue, which itself has the desired pitch.
In reed instruments the case is different. The sound is not emitted by the reed, but sonorous vibrations are produced by air pulsations, controlled by the reed, which acts as a rapidly operating valve. The mouth organ, or harmonica, is a familiar example of a simple reed instrument.

mouth organ, or harmonica.
When reeds are employed in connection with resonating pipes, as in the case of the reed pipes of an organ, the pipe synchronizes with the reed, and re-enforces the sound. When the reed is very stiff, it commands the vibrations of the air column, and when it is very flexible, it is controlled by the air column.
The horn is a reed instrument in which the lips act as reeds, and the tapering tube serves as a resonator.

The ancient Pandean pipes present an example of an instrument formed of a series of stopped pipes of dif ferent lengths. These pipes are tuned by moving the corks by which their lower ends are stopped, and the air is agitated by blowing across the end of the tabes.

pandean pipes

The flageolet is an open pipe in which the air is set in vibration by blowing a thin sheet of air through the air slit of the mouthpiece against the thin edge of the opposite side of the embouchure. The rate of the fluttering produced by the air striking upon the thin edge is determined by the length of the pipe of the instrument, the length being varied to produce the different notes, by opening or closing the finger holes. By comparing the flageolet with the Pandean pipes, it is found that for a given note the open flageolet pipe must be about twice as long as the Pan pipe. When all the finger holes of the flageolet are closed, it is then a simple open pipe, like an organ pipe, and, if compared with the Pan pipe yielding the same note, it is found to be just twice as long as the closed pipe. If,

flageolet.
while the holes are closed, the open end of the flageolet pipe be stopped, the instrument will yield a note an octave lower. These experiments show that the note produced by a stopped pipe is an octave below the note yielded by an open pipe of the same length, and the same as that obtained from an open pipe of double the length.

The ocorina is a curious modern instrument, of much the same nature as the flageolet. It is, however, a stopped pipe, and shows how tones are nodified by form and material, the material being clay. It pro-

ocorina.

duces a mellow tone, something like that of a flute. The zither, now made in the form of an inexpensive and really serviceable toy, originated in Tyrol. It con sists of a trapezoidal sounding board, provided with bridges, and having 24 wire strings.
Its tones ame harp-like, and with it a proficient player can produce agreeable music. Much of the nature o the vibration of strings may be exhibited by means of

zither

this instrument. By damping one of the strings by placing the finger or a pencil lightly against its center, and vibrating the string, at the same time removing the pencil, the string will yield a note which is an octave higher than its fundamental note. By examining the string closely, it will be ascertained that at the center of the string there is apparently no vibration, while between the center and the ends it vibrates. The place of least vibration at the center of the string is the node, and between the node and the ends of the strings are the venters. It will thus be seen that the string is practically divided into two equal vibrating segments, each of which produces a note an octave higher. That the note is an octave higher than the fundamental note may be determined by comparing it with the note of the string which is an octave above in the scale of the zither.
By damping the string at the end of one-fourth of its length, the remaining portion of the string divides itself into three ventral segments, with two nodes between.
The division of the string into nodes and venters occurs whenever the string is vibrated, and all of the notes other than the fundamental are known as harmonics, and impart to the sound of the string its quality.
By tuning the first two strings in unison, the vibration of one string by sympathy with the other string may be shown.
The string telephone, although not a musical instrument, nor even a sound producer, exhibits an interesting feature in the conduction of sounds. It consists of two short tubes or mouthpieces, each covered at one enđ with a taut parchment diaphragin, the two diaphragins being connected with a stout thread. By stretching the thread so as to render it taut, a conversation may be carried on over quite a long distance, by talking in one instrument and listening at the other. The vibration of one diaphragm, due to the impact of sound waves, is transmitted to the other diaphragm by the thread.
In the toys illustrated we have a representative of the Savart's wheel in the buzz; of the pipe organ in the Pan pipes, the flageolet, and the mouth organ; of band instruments in the bugle; and of the piano, harp, and other stringed instruments in the zither.
G. M. H.

DEVON CATTLE.

If it be true that "self-color," that is, a uniformity of color in all parts of the body, is proof of antiquity of breed, then the Devons have decidedly a valid claim to be considered a strictly aboriginal race. Red is the true Devon color, though the shade varies from a rich dark to a pale chestnut. Animals marked with any other color are not considered true Devons. Naturalists consider the Highland Kyloes, one or two of the Welsh breeds, and the Devons the descendants, more Welsh breeds, and the Devons the descendants, more
or less changed by crossing, soil, and climate, of the small Celtic breed, Bos longifrons, common on the island before and during the Roman occupation; but which was superseded by larger varieties of the Bos urus or Bos primigenius introduced by the Danish and Teutonic conquerers of Britain.
Certainly as far as history or tradition goes back, the northern part of Devon has possessed a breed of selfcolored red cattle, whose compactness, general beauty, hardiness, activity as workers, and aptitude to fatten have endeared them to their owners and won them a wide celebrity. The southern part of the county has had cattle possessing the same general characteristics of form and color; but somewhat larger, coarser, and less active. In the northern part, the land is, in great part, poor, bleak, wet, and exposed; while in the southern part the land is rich, and the climate more congenial, hence the difference is due to variations in soil and climate, though some influence has probably been exercised by crosses of the old Somerset and Cornish cattle-both larger strains. Although for the past century great attention has been paid to improving the North Devons, no infusion whatever of the blood of any

For work, Devon oxen are among cattle what thoroughbreds are among horses. In view of their size, they combine more fineness and strength of bone, more muscular power, more intelligence, spirit, and bottom than oxen of any other breed. Their slanting shoulders fit them better for the yoke than beasts of any other breed, except, perhaps, the Herefords. The nearer any other breed approaches Devons in shape and action, the more valuable are they, according to weight, for the plow, the cart, or the wagon. Their uniformity in style, shape, and color renders them easily matched, and their docility, intelligence, and activity make them excellent working animals, especially on ight soils or a hilly or rough country.
At the great London Smithfield Fat Stock Show, the post of honor is always given to the Devons as beef animals, and in the English markets their ineat, compact, sweet, marbled, and juicy, brings from one to two cents a pound more than that of any other breed, except the West Highland, and comparisons with other breeds go to show that on a given quantity and quality of food, they will make more beef than almost any other. Their bones, too, are very fine, and the amount of offal is small in proportion to the meat. When fattened for the butcher, the Devon matures early, and, for its weight, is probably the most profitable beef animal in existence.
It is likely that Devons were imported as long ago as the last century into this country, especially into New England, where working oxen of their type have long been more numerous than in any other section. But he earliest published records do not go back farther than the importation of Winthrop and Davenport. in

other variety of cattle has been made, and as. Devons, no improvement could be made by such means.
In size, the Devons are medium; but there is a great difference between the ox, bull, and cow. The first, full grown and in good working condition, will range from 1,400 to 1,600 pounds live weight; the second, from 1,000 to 1,200 ; and the third, from 800 to 1,000 . Specimens sometimes exceed the greatest of these weights, but they are above the average. With luxuriant pastures and generous feed the size increases, and it is found that Devons on the rich fields of the West become larger than their congeners on the scanty pastures of New England.
Devons are the prevailing cattle in several districts in the southern counties of England, and there are there a considerable number of dairy herds of the breed. While there are several large milk and butter records of Devon cows, they have, as a breed, never been famous for giving large quantities of milk; but their milk is rich in quality, and Devonshire cream has a world-wide reputation. It is said that a gallon of Deron milk will yield more butter than a gallon of milk from any other breed, except the Jersey. It is only in comparatively recent times that much atten tion has been paid to the development of milking qualities in the Devon; for in times past, the Devon, like the Hereford, was raised chiefly with a view to the development of the male for working purposes. Hence the greatly smaller size of the cow, a point which should decidedly be considered in speaking of her yield of milk. In view of her hardiness, her ability to pick up a livelihood where a Short Horn, Holstein-Friesian, or any of the larger breeds would starve, her docility of temper under good treatment, and the comparatively small amount of food she requires, the Devon often gives a good profit in the req

800 ; while the first really important early importation was that of Caton \& Patterson, of Baltimore, in 1817, from which most of the recognized pure bred American Devon herds have derived more or less of their blood. Lately, Devons have taken a more prominent place than ever before at our fairs, and are steadily advancing in popular favor, both for beef, dairy, and working purposes. The publication of the "Devon Herd Book" was begun in England in 1851, by Captain Davy, by whom it is still kept up. The "American Devon Herd Book" was established in 1880, and has since been published by James Buckingham, Zanesville, Ohio, under the direction of the American Devon Association.Rural New-Yorker.

Nitrate of Mercury for Burglars.

Dr. Edwin F. Rush, whose house in Chicago has been despoiled by burglars eight times the past year, re cently conceived a plan to play havoc with the marau ders, claiming that the police have afforded him no protection. He has a fine home at Warren and California Aves. Three days ago the doctor placed tubes containing fulminate of mercury, with nitrate of mer cury, at all the windows. The poison, it was claimed; coming in contact with the skin of a human being would cause blood poisoning. The raising of the windows was expected to explode the tubes and scatter the poison into the faces of the intruders. The facts came to the attention of the Fire Marshal, and he ordered the doctor to remove his deadly tubes. The marshal explained that he would not allow the lives of his men to be imperiled in order that a house might be protected from burglars and sneak thieves. He thought that section 1,281 of the Municipal Code, relating to the storing or keeping of any explosive in a building in the city, would cover the case.

ENGINEERING INVENTIONS

A steam boiler has been patented by Mr. Flias B. Birre, of St. Panl, Minn. This invention felatesto upright steam boiliers eesigned more especially or fre engines, and provides for a novel construction generation of steam while utilizing the fuel to the bes advantage
A plunger for oil well pumps has been patented by Mr. Edward P. Landas, of Titusville, Pa placed around the tabe and held in place at the bottom by a screw cap, a sleeve being adapted to slide on the tube, and a spring pawl pivoted to the sleeve and en gaging with the annular recesses in the central tube.
A steam engine has been patented by Mr. Charles Gibbs, of New York City. It has a cham-
bered or hollow piston having valves in its ends, the valve in one end to remain closed and that in the othe end to remain open during each stroke of the piston, in such way as to cushion the pistons as they approach the
ends of their strokes, the construction being likewise ends of their strokes, the cons
suited for air and gas engines.
A car coupling has been patented by Mr. Bush F. Laird, of Ocean Springs, Miss. Combined with the drawhead and coupling pin is a support hav
ing a spring-actuated rest, the rest having its sides grooved, and pivot bolts for securing the support in the
drawhead, with other novel features it not beirg nece drawhead, with other novel features, it not being neces
eary, with this coupling, for train men to go betwee the cars to couple or uncouple.
A safety water gauge has been patented by M. William E. Roche, of Peabody, Mass. Combined
with the casing and a valve spindle, a valve having two stems is itted loosely in the casing, one stem seated in the casing and the other in the valve spindle, with other novel features, the parts being so arranged that, should the glass trbe break, the val
A cut-off for steam engines has been patented y Emilio Querol y Delgado, of Brooklyn, N. Y. Combined with the slide valve rod and eccen-
tric rod are a sloted valve-operating lever connected with the rods, a movable fulcrum for the valve lever, and a governor driven by the engiue and arranged to move the fulcrum of the valve lever in accordance with the requirements of the engine, whereby the stroke
the slide valve will be regulated by the load carried.

meghanical inventions.

A manipulating rod for bolts, etc., has been patented by Mr. Joseph A. Coultaus, of Brooklyn, N. Y. The rod is formed of pivotally connected sec.-
tions, one of whlch has a shoulder or bearing portion arranged to be thrown against a stop, such as the casing of the bolt, to hold the rod and the device attached
A
A foot power has been patented by Mr. Davld D. Camp, of stoangton, Wia Combined with a
clank arm attached to a shatt carrying the driving
wheel, and a link having a series of apertures, with a swinging arm made of two parts which can be adjusted to each other by a thumb screw, is a treadle pivoted on whereby a dead center is avoided, and the device is Whereby a dead center is avoided, and
applicable to a bench or stationary frame.

miscellaneots inventions.

A shirt has been patented by Mr. William A. Lawrence, of Newburg, N. Y. This invention covers a novel method of making the garment, by
improving the manner of uniting the bosom portions, tion covers anovel method or making besom portions,
improvinthe manner of aniting the
whereby a neat, quick, and effective lacing or fastening is produced.

A tambourine has been patented by Mr. HenryHosens, of Brooklyn, N. Y. Combined with the rim, head, jingles, and their pins, is a second rim
and spacing tubular washers, whereby many more and spacing tubsar washers, whereby many more
jingles can be used than is possible with the usual constraction.
A harness loop has been patented by Mr. Thomas S. Alexander, of Meriden, Conn. It Consists of a separate loop casting, in combination with
a separate plate secured at one end directly to the body casting, the invention covering various details and parts designed to furnish an improved article of manufacture.
A casing for spittoons has been patented by Mr. Julius F. Langenberf, of New York city. It connected by a rod with the hinged front of the casing connected by arod whe the of sight when not in use,
to keep the spitton out of sigh preventing access thereto by fies, etc., and preventing all smell therefrom in the room in which it is situated
A combined blackboard and desk has been patented by Mr. George W. Weiss, of Brooklyn,
N. \mathbf{Y}. The board can be automatically turned upon its aris to present either face, and below the board, within the frame, is a hinged leaf, which is supported and locked when desired for use as a desk or table in an in clined or horizontal position
A pocket corkscrew has been patented by Mr. Le Roy B. Haff. of Englewood, N. J. This inpivoted to a carrier sliding within the hande, so it can be folded and concealed within the handle, and the construction is sach as to pive compactness and portability
A metallic printing block for electroLype and stereotype plates has been patented by Mr.
John Fahnestock, of Brooklyn, N. Y. The invention consists of clamps fixed on the block, with movable clamps simultaneonsly actuated by a key applied to a post monnted in the block, whereby the plates may be
A bottle has been patented by Mr. in its neck on one aide and apon the other an inward projection, with a bolkged or englarged chamber beneath
t, whereby the expulsive force of gaees in the bottle Wirtle or apon the tendency to force the cork out.
A cartridge loader and crimper has been patented by Mr. Benjamin M. Badger. of Summerton, S. C. The machine has a charge guiding and cartridge
loading cylinder, with a crimper arranged operatively in ine, whereby a shell may be charged complete and rimped before removing it, the resalt being accom lished by simple devices, without any complications.
A combined coal elevator, screen, and Philad has been patented by Mr. Lewis G. Sconenatruc tion and combination of various parts in a machine by which the coal can be shoveled from the bin or yard into the elevator, raised to the screen, screened, and
discharged from the screen into a cart, only one shoveldischarged from the
A type-writing machine has been patented by Mesirs. George w. Greene and Lewis P.
Smith, of Smithfila, Ind. Combined with an impres sion cylinder is a rocking inking ribbon support and clinder with other novel fetures the deei from the cylinder, with other novel features, the design being to not expensive to manufacture.
An anti-friction hand ironing machine as been patented by Mr. Frank Corbett, of New York City. Combined with the casing and rollers journaled
therein are friction wheels pivoted to the sides of the casing and bearing apon the journals of the rollers, in order to lessen the friction and wear of hand ironing machines, that they may be more easily operated and machines, that
more durable.
A dental plugger has been patented by Mr. Winfeld H. Baldwin, of Norwalk, Conn. It is and a spirally ribbed striker within the cylinder, with pring arranged to act upon the striker, and a studded thumb plate arranged to engage the spiral rib of the striker, by which the force of the blow can be regulated

A duplex music box has been patented Mr. Alfred Junod, of Ste. Croix, Vand, switzerland It has two independent cylinders and two independen combs for each cylinder, so that a melody can be played by one cylinder on one comb, and the accomcylinder can play a melody alone.
A water filter has been patented by Mr. Robert L. Darragh, of New York City. This inven pon covers a novel construction and combination of
parts in which a perforated spreader of convex form, with projecting nipples, discharges the water to be filtered near the under surface of the filtering material here being upper filtering and lower sediment chambers divided by a perforated diaphragm.
A breast pump has been patented by Mesers. Henry Van Altena and Victor C. Vantwoud, or provide a convenient connection with the moath piec and vacuum bulb of the exhanast bulb and its attached fiexible tabe, and also to provide external means of
destroying the vacuum of the pump, thereby gently destroying the vacuum of
eleasing it from the flesh
A system of blind nailing has been patented by Mr. David M. Balsar, of Duluth, Minn. In carrying out this invention, the casing, base board, rail,
or other woodwork is made in two or more sections, or orner woodwork in made ing hwo or more sections,
the first section applied being held by nails, serews, or other fastenings driven into portions concealed by parts afterward applied, and w,
the parts first secured in place.
An ironing board has been patented by Mr. John G. Breckenridge, of Springfield, Ohio. Com bined with a board is a leg pivoted on one end, with a
notch in its upper end, and a bar or key pivoted on the board for engagement with the leg to prevent the ing board that is strong and simple, and can be compactly folded.
A portable bath tub has been patented by Mr. Samuel D. Freeman, of Fort Thomas, Arizon light flexible material, impervious to air and water, an connected to form a central water chamber and sur-
rounding air chamber, wherein the sides are intended to be sustained by the action of the water apon the con ined air.
A wire hoop has been patented by Mr Jacob C. Durling, of Marine City, Mich. It is an inpackages, etc., the fastening plate having two or mor alternate offset portions, with apertures in their sides and the central offset and end portions of the fastening
plate underlapping the hoop ends and each resting plate underlapp.
upon the vessel.
A grate has been patented by Mr. Benjamin F. Warren, of Boston, Mass. It has an oute
stationary part with beveled seats on its front and rean stationary part with beveled seats on its front and rear bars, an inner part having front and rear inclined guic
ing surfaces, teeth, and cam-bearing arms adapted to be ing surfaces, teeth, and cam-bearing arms adapted to be the rapid discharge of ashes, and the larger clinker with the least possible waste of fuel, in all kinds of stoves and ranges.
A retouching table for use in photo graphy has been patented by Messrs. Charles L. DunNew York City. It is eo made that it can be conve niently placed and adjusted for best tulilizing the light
attainable and so the operative parts can be folded horizontally out of sight, for use as a parlor table or horizontaty ta, or sigh, for use as a parlor table or
working table, while the table may be used in cabinet

A window screen has been patented by Mr. Michael H. Walsh, of Troy, N. Y. It is made in
wo sections, adapted to enter and elide in parallel in two sections, adappet ot enter and silide in paralle in-
dependent grooves, thus permitting accees to the out. by any intervening space between the top of the scre and the bottom of the lower sash, when raised, is pro

A gate has been patented by Elsey B. Lussell, of Bardstown, Ky. It is made with spring stead of long weighted levers to balance the gate, and so that, by a slight pall on the handle, the gate will unlatch, and coiled springs will then operate to raise it, dead point, the gate being closed by the travelef pulling pon the handle
An adjustable plate holder for photoGapher of New Yok City. Combind. with alion Barker, of New York city. Com pulleys and connected with the plate-holding bars to cause the bare to move equally in opposite directions hus centering the plate in the plate holder, the object being to render a plate holder already patented more onvenient and reliable.
An addition pencil has been patented by Mr. Chester R. Thompson, of Elberon, Iowa. The cylinder or case of the pencil is of the usual size, ana, tor on which are consecative numbers, the units an tns of which are made to appear at openings in the case, on pressing the point of the pencil on the paper, adding and pointing off the figures of a sum, in
An apparatus for forming and dividing Abs or shells made of ice cream has been patented by Mr. Simeon Jullen, of Nice, France. The invention echanism or device for cutting ice cream into smal echanism or devich producing a colored light before explosion, and the ould having feet and handles for convenience in setting it on the table and moving it from place to place.

new books and publications.

Practical hand-Book of Pump Con
STRUCTION. By Philip R. Bjorling. SREUCTION. By Philip R. Bjorling.
E. F. F. Spon : London and New
York.

This modest manual is very comprehensive in its cope, while still quite elementary in its descriptions,
which are accompanied by numerous well made illustrahos areaccompanied by numerous which pumps should be made for different kinds of liquids, and on various classes of pump valves, show extended practical experience by the author in this

The Pump Catechism. By Robert Grimshaw.
Publishing Company.
This book is uniform in style with the Steam Engine Catechism of the same author, and is written rather for nners, owners, and makers of pumps than for pro fessional men. It sets out to show how to take down,
set ap, adjust, and run any of all the principal types and makes of pumps in use.
Elements of Geodesy. By J. Howard
Gore. New York: John Wiley \& Sons.
In the historic sketch which forms the first chapter解 eriod of over three hundred years, for the determina on of the length of a degree. Reference is made to Eme of the best topographical work thus far done in ctively connected subsequently holding a position in the United States Geological Survey. Subsequent chapters treat of instruments and methods of observation, base measurements, field work of the triangula tion, theory of least squares, calculation of the triangulation, and formulæ for the comput
latitudes, longitudes, and azimnths.

The New York and New Jersey DiRECTORY OF STEAM USERS ANB USERS OF MACHINERY. New
The J. N. Mills Publishing Co.
This book is a business directory covering the State of New York and New Jersey, the contents being arranged hy city and town alphabetically, and giving
names, business, location, and number of boilers used in each establishment. To any one seeking to furnish applies or to introduce new inventions in shops of various kinds, it will afford a ready reference hand-

Entertainments in Chemistri. By
Harry W. Tvler, S.B. Chicago and Pp. 79.
This little work presents typographically a most attractive appearance. .It treats in a very lucid way more popular than is usual in this class of book Its table of contents gives a good idea of the an invisible gas" (carbon dioxide) begin the book; the gases which form the air; the chemistry of the candle; combustion and explosion; a glass of water the solution of metals; sulphur; hydrogen; ammonia; a visible gas (chlorine); soap; and the chemistry of yeast, are the remaining subjects, in their order of treatment.
We can commend the book as a source of information We can commend the book as a source of information
to all beginners in chemistry, and welcome it as an ad dition to the literature of experiments in science.

Received.

an and Chocolate. A short history of their pro-
duction and use. Walter Baker \& Co., Dorchester,
Mass.
Nada: Irs History. Productions, And Natubat
Russorcze. By Hon. John Carling. Minister or
Agricaltare, Canada. Department of Agriculture

Business and $2 P e r s o n a l$.

The charge for Insertion under this head is one Dollar a line for each insertion; about eight woords to a line as early as Thursday morning to appear in next issue.

The new "Trautwine's Curves" is an exceptionally
andsome book. Enoineering News, July 3, 1886, says handsome book. Enoineering Newes. July 3, 1886, says it is probably the most complete and perfect treatise on
the single subject of railroad curves that is published in English language."
For Sale-Ivory button works. Large, well lighted ing splendid business ; plenty of cheap labor. Price ing splendid business; plenty of cheap labor.
only $\$ 3,000$. Address T. Bergy, Caledonia, Mich.
Wanted-A pushing man, capable of taking charge o a shop for building engines. A fine chance for a skilled York, Pa.
Blake's Improved Belt Studs are the best fastening Or Leather and Rubber Belt 33 Chambers St., New York.
Important to Manufacturers-A party well and favor mawn to the hardware, metal, and steam fitting
trades of the country desires to take the sale of sjecial ties in those lines. Is prepared to make advances on de sirable goods, or financially assist manufacturers desir ing representation in New York and by travelers throug the country. Address, for one month, C., box 3641, Po
Office, New York.
Wanted-Tool agents in shops. Outfit free. E. H. ndall \& Co., 154 Lake St., Chicago, In .
der press, in good ider press, in kood condition. State size, price, and
where it can be seen. Address H. B., P. O.'box 773, New ris city.
Niagara Steam Pump. 20 years before the public Always first premium. Adapted for all purpose
Norman Hubbard, Manufacturer, Brooklyn, N. Y. Cotton Belting, Linen Hose, Piston Valve Rod Cacking. All kind
Link Belting and Wheels. Link BeltM. Co., Chicago The Railroad Gazette, handsomely illustrated, pub lished weekly, at 73 Broadway, New York. Spe
copies free. Send for catalogue of railroad books. Protection for Watches.
Anti-magnetic shields-an absolute protection from al electric and maguetic influences. Can be applied to any
watch. Experimental exhibition and explanation at getic Shield \& Watch Case Co.," 18 John St New York. F. S. Giles. Agt., or Giles Bro. \& Co., Chicago
where full assortment of Anti-Magnetic Watches can had. Send for fill desc All
Woodworking Machinery of all kinds. The Bentel \&
Margedant Co., 116 Fourth St., Hamilton, o. Gargedant Co.. 116 Fourth St., Hamilton, 0
Guild \& Garrison's Steam Pump Works, Braoklyn N. Y. Pumps for liquids, air, and gases. New catalogue
now ready.

Concrete patents for sale. E. L. Ransome, S. F., Cal The Knowles Steam Pump Works, 44 Washington ed a new catalogue in which are many new and im proved forms of Pumping Machinery of the single and
duplex, steam and power type. This catalogue will be duplex, steam and power type. This catalogue will b
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J Nickel Plating.-Sole manufacturers cast nickel andes, pure nickel salts, polishing compositions, etc. $\$ 100$ "Lttle Wonder." A perfect Electro Plating Machine. Complete outftt for plating, etc. Hanson, Van Winkle Co., Newark, N. J., and 92 and 94 Liberty St., New York Iron Planer, Lathe, Drill, and other machine tools of
modern design. New Haven Mfg. Co., New Haven; Conn. Supplement Catalogue.-Persons in pursuit of info mation of any special engineering, mechanical, or scien
tific subject, can have catalogue of contents of the Sc tiffc subject, can have catalogue of contents of the SC ENTIFIC AMERICAN SUPPLEMENT sent to them free the whole range of engineering, mechanics, and physica Br Ad M
Planing and Matching Machines. All kinds Wood Iron and Steel Wire, Wire Rope, Wire Rope Tram Iron, Steel, and Copper Drop Forgings of every de We are sole manufacturers of the Fibrous Asbestos We are sole manufacturers of the Fibrous Asbestos
Removable Pipe and Boiler Coverings. We make pure ${ }_{4} 19$ East 8 8th Street, New York.
Steam Hammers, Improved Hydraulic Jacks and
 60,000 Emerson's 1886 Book of superior saws, with Supplement, sent free to all Sawyers and Lumbermen.
Address Emerson, Smith \& Co., Limited, Beaver Falls, Pa., U.S. A.
HoistingEngines. D. Frisbie \& Co., New York city.
"How to Keep Boilers Clean." Send your address The Holly Manufacturing Co., of Lockport, N. Y., will send their pamphlet, describing water works maManufacturers' Advertising Bureau. Benj. R. Westfor firms. 20 years' experience.
Astronomical Telescopes, from $\beta^{\prime \prime}$ tolargest size. Ob land, 0 .
Split Pulleys at low prices, and of same strength and
appearance as Whole Prulleys. Focom \& Son's Stratting
Worke, Drinker Ste, Philadelphia, Pa

num

HINTS TO CORRESPONDENTS

(1) J. C. M. asks how kerosene oil can be made a red color. A. Use the extract of alkanet root, sold under the trade name of a
your own extract and color with that.
(2) P. V. I. asks (1) what receipt there is for making magic wire solder. A. Magic wirt solder is ordinary strip solder. As fux for iron or brase sur-
faces you may use the following: Dissolve as much faces you may use the following: Dissolve as much
zinc chloride as possible in one part of alcohol and then zinc chloride as possible in one part of alcohol and then
add one ounce glycerine. 2 . A receipt for making a add one ounce glycerine. 2. A receipt for making a
liquid glue or cement for mending wooden, glass, or Scientific American Sutplimeknt, No. 158.
(3) H. C. asks (1) what preparation to put in any common ink, especially India ink, so it can be used for a hektograph. A. Mix with glycerine.
a. How to make black hektographic ink? A. Use a 2. How to make black hektographic inks A. Use
strong aqueous solution of soluble aniline black, in the strong aqueous solution of soluble aniline black, in the
proportion of about 1 to 5 or 7 of water. It must be a proportion or abont 1 to 5 or 7 or
saturated solution, rather thick.
(4) A. S. asks: Is there any chemical or bleaching process known, by which dark colored animal hair can be given a bright color, say dark brown to light brown, or dark gray to light gray? A. A.
Yes. Use hydrogen peroxide. See the articles on this Yes. Use hydrogen peroxide. See the articles on this
subject contained in Soirmiric Amirican SUPPIEsubject containe ind and 339 .
(5) G. A. L. asks a formula for making modeling wax. A. Use whie wax. which is melted
and mixed with lard. In working it, the tools and the board or stone are moistoned with water, to prevent
adhering; it may De colored to any desirable tint with dry color
(6) H. W. C. writes: A farmer wishes to know how to construct a cheap and easily handled
 shown in the accompanying engraving, the bottom one
being a water jar with side being a water jar with side
hole, if it can be procured; otherwise, if no fancet can be be
nsed, the top jar can be removed to enable the water to be dipped out. The top jar
must have a hole drilled or must have a hole drilled or
broken in the bottom, and a small fowerpot sancer inverted
over the hole. Then fill in a over the hoie. Then
layer of inarp clean sand,
rather conrse. rather
charcoal with dust blown out, then a layer of sand, the whole occupying one-third of the jar.
(7) J. H. F. M. asks: 1. How long could a man live in pure oxygen? A. It is not deflnitely known how long a man would live in pure oxy-
gen. 2 . How long do the pearl divers hold their breath, and would it make any difference if they breathed oxygen instead of air? A. It would probably enable them
to bear a longer immersion if they filled their lungs to bear a longer immersion if they filled their lungs
with oxygen before descending. A minute to a minate and) a half is a fair period of immersion. 3. Is there any cure for a horse that is subject to colic? A. arise from a variety of causes. Castor oil and lav-
danum are often reconmended. 4. What is the prasdanum are often reconmended. 4. What is the press
sure of water at the moment of freezing A. Water in sure of water at the moment of freezing\% A. Water in
freezing can exert a pressure probably not less than that of 4,000 atmospheres. 5 . What would be the effect if it was confined so it could not expand A. If pre-
vented from expanding, it will not freeze except at vented from expanding,
very low temperatures.
(8) C. W. S. asks:1. What is the explosive force per square inch of two cubic feet of hy-
drogen gas and one cubic foot of oxygen gas, making drogen gas and one cabic foot of oxygen gas, making
three cubic feet of the two gases, at atmospheric presthree cabic feet of the two gases, at atmospheric pres.
sure? A. The theoretical pressure from the perfect and sure? A. The theoretical pressure from the perfect and
instantaneous explosion of hydrogen and oxygen gases without compression is probably nearly 200 pounds per sguare inch. A much less pressure is obtained in prac-
tice. 2 . How long will it take a cheap battery of one cell such as described in Sorientific American of April 11, 1885, to decompose one pint of water, porous cup beingtwo inches diameter inside and six inches high? How long with six cells? A. The decomposition of water by one or six cells, as described, is a very slow
process. It will possibly require several weeks to deprocess. It will possibly require several weeks to de-
compose a pint. ${ }^{3}$. Is there any substance that magcompose a pint. 3. Is there any substance that mag-
netism cannot act throughy I notice watches advertised as anti-magnetic. A. There is no substance that will insulate a magnet. watches are protec ed by iron cases or iron lintrog within the case, the substance
thereof arranged to have posible magnetism of differ thereof arranged to have posibibe magnetism of differ-
ent parts balance each other. 4. Which is best for the battery-wrought or cast iron turnings? A. Cast iron borings or turnings.
(9) H. O. G. asks : 1. If a thermo-electrre pile can be used to a good advantage as a ther-
mometer in connection with a sensitive gavanomemer?
if so, how? If not, can you explain how the tempera tare outside may be indicated inside the house without co great expense? A. The thermo-electric pile ind
cates, in connection with a galvanometer, differences in the temperature of its two faces only. We do no
see how it could be used as suggested. There is a com see how it could be used as suggested. There is a company in this city who put up thermometers designed to
ndicate the temperature of distant places.
2. Will the expansion and contraction of zinc rodes be greater if they are amalgamated than if not? And in what proportion can zinc and mercury be melted together to form a solida A. We have no knowledge of the re
lative expansion of amalgamated or unamalgamate zinc. The former is extremely brittle, and would pro bably expand the most. A great deal of mercury is
taken up before liquefaction by zinc, but it continually taken up before liquefacti.
tends to separate from it.
(10) M. J. H. asks : A porter here takes care of some lamps-filling, lighting, etc. He has been found fault with for failure, so he says, to wipe the
bowl proper of the lamp after it has been fllled. This, however, he has done regularly, he says, and claim that the oil on the bowl is not due to carelessness, as
charged, but to condensation of the vapor of the oil charged, but to condensation of the vapor of the o arter the lamp has stood some time, or been in use. Is
he correct as to the cause of the oil on the bowls. A. he correct as to the cause of the oil on the bowl? A.
Kerosene oil "creeps," as it is called, by capillary Kerosene oil
action, and will ofteens cover the outside of a oil, even though the same is taken good care of. Capillarity, and notcondensation, is the force involved. Your party is probably taking every care of the lamps.
Try the effect of wiping one off yourself. Perhaps he alls them too full, or neglects to turn the wicks below
(11) W. R
(11) A. W. R. asks : What are the poorest conductors of heat? A. Glass and porcelain are
very poor conductors. All porous bodies are the (12) C. F. J. writes: I would like to know how to make a rabber paste for patching the so that there are several small holes through whict ugn gets in and fogs the negatives during exposure. A. Try some of the liquid glues. These give good results.

bon.

(13) E. J. R. asks: 1. How many pounds finsula ed wre will be necessary No. armature in ifynamo described in SUPPLEMENT
Nilso, if it should be of any particular brand A. About $51 / 2$ ponnds in field and and poand in armature 2. How can tempered horseshoe shaped steel, about aynamo? Poles are a greater distance apart, that is, poles of dynamo. A. You might run two bars of iro from the two poles of the dynamo magnet to the polee
of your smaller one. This would give you some effect.
(14) S. C. H. asks; Must the secondary coil in a telephone transmitter be wound to about the the bar magnet in the receiving instrument, to get the best results, and also do they require to be wound to The secondary coil in the induction coil of a telephon transmitter is wound to 80 ohms in the Bell Company's The receiver coil has about 80 ohms resistance. The The receiver coil has about 80 ohms resistance. Thes
are wound the same for all ordinary distances. They
(15) W. F. T. asks: Does a horse hair tarn to a worm in water? if so, why does it do it? A. It does not do it.
(16) M. asks: Will you be kind enough to answer in your paper, how manyand what are the primary colors? A. Seven is usually accepted as the number-violet, indigo, bune, green, yellow, orange, and
red-but several scientists have proposed three as be ing really the primary colors.
(17) H. V. asks : Will you please oblige ne by answeringa few questions in Scientipio Amerr a N ? . 1. Will naphtha gas explode by an electric spark? A. Naphtha gas mixed with air forms a mixture that
will explode by the electric spark. Naphtha gas alone will explode by the electric spark. Naphtha gas alone
will not. 2. What heat will naphtha evapora e at? A . from 100° Fai . gerous at? A. It is dangerous at all heats if near are of any kind.
(18) J. G. asks if there is an instrument that measures, accurately and instantaneously, distance on wett or water or on shore, or from shore to a point at sea
or vice versa. A. Various instruments called stadia have been invented for effecting this purpose. An ob-
ject of approximately known size must be present at at ject of approximately known size must be present a a base line.
(19) J. P. H. S. asks how to color bil ard balls. A. For red, macerate cochineal in vinegar, nd boil the bails in the liquid for a few minutes or blue, immerse for a short time in a dilute solutio indigo carmine, for yellow, immerse for a fe (protochloride of tin), afterward in 22 hot strained de coction of fustic; for violet, dye red ifrst, then immere for an instant in solution of indigo carmine; for green dye first yellow, and afterward dip into solution indigo carmine. Or use the aniline colors in solution withoat mordants.
(20) A. L. B. asks : What can be aplied to rubber stuffs, like rubber bands, to keep then
tom rotting A . We know of nothing excep the them clean; oil or grease is very destructive to rubber What is the best way to prevent a flute being in jured by the weather? A. A flute must be carefully kept, and is liable to suffer from any abrupt change in the weather, and so should be preserved in chamoi (1) I Oar
(21) H. I.-Our imports of merchandise
ow much the " working class would earn on these goods if made here, and not imported "o A consider-
ble portion of the imports are of natural products, rown, not made, and that could not be grown here under favorable conditions. Probably one-
half, however, represents
manufactured products hat; really come into competition with those made our own mechanice. Howi much more our wore wolld make by producing all such goods here, is yusion, and whies at the bottom of all tarifi de pected to enter upon in this place. If it were possie, however, for us to make all these goods ourselves, and thus \cdot shat out foreign manufacturers from our markets, is it likely that we could continue selling our products in foreign markets, as at present? Alfough our imports for 1886 were so large, our exports
or the same period were still greater, reaching 713.289,666.
(22) C. J. H. R. asks: Can you tell me where to find a receipt for the ink used to re-ink type riter ribbons? A. Take of aniline, either black, blue, r violet, $1 / 2$ ounce, alcohol 15 ounces, concentrated gly dd the glyceriue
(23) A. C. S. A. asks: How far does Maud S. step when trotting her best? A. She strides about 19 feet.
(24) C. H. K. asks the process of stuffing deer's head. A. We can send you Batty's "Practiwill give you full- information on this subject would require too much room for a place in this column.

TO DNVENTORS.

An experience of forty years, and the preparation of
more than one hundred thousand applications for pa ents athome and abroad, enable us to understand the aws and practice on both continents, and to possess un-
equaled facilities for procuring patents everywhere. A ynopsis of the patent laws of the United States and al oreign countries may be had on application, and persons contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices,
which are low. in accordance with the times and our exensive facilities for conducting the business. Address MUNN \& CO.. of
way, New York.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted,

February 1, 1887,
and each bearing that date.

See note at end of list about coples of these patents.

Acid by the aid of waste steam, obtaining sul
phuric, H. J. P . Sprengel...................
Advertising cards, device for displaying,
Stonitsch \& Sweet........................

Agricultural machines, seat for. G. Banks...............
larm for the protection of alves, Farnian
Askew.......
A wning J. Green berg.....
Bag holder. H. A. Murtoff.
Bag or pocketbook frames, fastening for, C . Blust
Balance, chemist's, assayer's, and prospector's,
Altwood \& Taylor

Bath. See Foot and sitz bath

Bed bottom, spring, A. S. Cla
Bed, folding, T. L. Odell.
Beehives, honey section for, D. ․
Beer, apparatus for forcing, W. Raydt
Belt for driving machinery, M. Gandy
Belt or band for driving machines, M. Gandy.....
Bench and irouing table, combined, D. H. Weller
ending angle and other bars, machine for, w
Billiard table leveler, P. Bacher....................
Bit. See Bride bit.
Blackboard and desk, combined, G. W. Weiss..
Emack.
Blank feeding mechanism, F. H. Richards........
Blanks, machine for cutting off and pointing
threading, Beecher \& Whiting..........
Block. See Horse block. Printer's block Boara, See Game bard. Plano sound bo
Beiler
See Marine boiler. Steam boiler. Bolt. See Shaking bolt.
Bonnet pin. I. E. Nagle......
Book support, J. H. Fergus
Boot, felt, D. F. Me
Boot or shoe stretcher, L. Nottingham.. Boots or shoes, spring
Bottle holder, C. A. Tatum
A.
mann.......................
box. Paper box.
Box or casee, C. W. Boman.....
Bracket. See Curtain rod bracket
Brake. See Automatic brake. Car brake
Bridle. J. K. Hotze.
Bridle bit, A. Buermann
Bridle bit, A. S. Johnsto
Broom holding rack, Altman \& Meech
Bucke, E. Marx.
Burnishing machine, c. J. Addy
Burnishing machine, G. B. Kelley
Butter worker, Carter \& Wightman
Butter worker. E. S. R1
Button, E. D. Cooke
Button, F. Hosser
Cabinet for paper sheets and bags, J. A. Pritch

Game board，FYnley \＆Kirkwood．．．．．
Garment supporter，A．
Garment supporter，A．P．R．Rindskopf．．．．．．．．．．．．．．
Gas，apparatuis for the mand．．．357， $137,356,860$
manufacture of Gas，apparatus for．．．．．．．．．．．．．．．．．．．．．．．．．
Gas furnace，F．Radcliffe．．．．．．．．．．．．．．．．．．．．．． Gate．See Sewer gate．Wagon end gat
Gate．H．F．Showater．．．．．．．．．．．．
Generator．See Steam generator．
Generator．See Steam generator．
Grain binder，W．R．Baker．．．．．．．．．．．．．．．．．．．．．．． Grain binders，butt adjuster Grate，De Guerre \＆De Lano．．．．．．
Gummed sheet or web，F．Godfre Gummed sheet or web，F．Godfrey Gunpowder press，H．Gruson ．．． Gutter box for tinnerers，
Hand drill，A．Shepard Hand drill，A．Shepard．．．．．．．．．．．．．．．．． Hand rest for penmen，A．
Handle．See Saw handle．
Harness loop，T．S．Alezande Harp，W．G．Steven
Harrow，D．Lubin
Harrow，D．Lubin ．．．．．．．．．．．．．．．．．．．．．．．．．． Harrow or cultivator
Harvester，E．A．Peck．
Harvester binder，low－down，J．J．Piersol
Harvester pitman，H．L．Hopkins．
Harvesting machine，potato，A．T．Dowden．
Hay pitching and stacking m
Hay pitching and stacking machine，F．Donald．
 Heater．Syle
Heater．See Feed water heater
Hoisting machine，B．Watson．
Holdback，vehicle，Kiefer \＆
Holder．See Bag holder．Bottle holder．．．．．．．．．．．
and rule holder．Pillow sham holder．Twine
Hook．See Releasing hook．Telephone hook Hook．See Releasing hook．
Horse block，P．B．Sheldon．
Horseshoe，F．S．Lepinte．
Hose reel，automatic，S．F．Reyno
Hot air furnace，N．A．Boynton
Hydraulic engine，C．E．Foster
Hydraulic engine，C．E．Foste
Hydraulic engine，w．E．Hale
Hydraulic press，H．Grason．
Ice，storing．G．T．McCormick
Incrustation preventive．S．W．Merryman
Indicator．See Time and longitude indicato nsulating underground electric Brooks ．．．．．．．．．．．
Iron．See Sad iron．
Kiln．See Pottiery．kilin．
Kitchen cabinet，B．C．Tabor

Krotophone receiver，F．C．Watkin
Lamp，F．Rhind．．
Lamp burner，S．G．Stoddard．
Lamp，electric are，H．L．Pyle．．．
emps，terminal for incande．．．．．．．．．．．．．．．．．．．．．．．
Lery．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Latoh，spring mortise，F．A
Lead and rule holder，A．A．
Letter box，A．V．B．Bush．．
Letter box，A．V．B．Bush
ifter．See Transom lifter
Lightning protector for electrical conductors，J
Liquids，apparatus for preparing and bottling ef
fiquids，device for regulating the feed and dis－
ock．See Nut lock．Seal lock．
Lock．dog，E．H．Allman．
Loom heddle operating mechanism，J．C．．．．．．．．．．．．．．．．．．．．．．．．．．
Lubricant，anti－friction，F．H．Snyder
Lubricator，G．A．Stannard．
Manipulating rod for bolts，etc．，J．A．Coultaus．．．．．．．．．
Marine boiler，F．w．Kirby
Marine bonler，F．E．Kirby ．．．．．．．．．．．．．．．．．．．．．．．．．．
Measuring device，rope，J．W．Tindall．．．．．．．．．．．
Measuring rack，adjustable wood，H． L ．Brough
ton．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Meter．See Water meter．
Micrometer depth gaug
Milk cooler，A．J．Orr．．
Mould．See Potter＇s mould．Type mould
Manlding machine，sand，P．Gallas．．．．．．．．．
Moulding machine，sand，S．P．M．Tasker
Moulding machine，sann，
Motor．See Electric motor．Water motor
Music leaf turner，S．Rathburn
Musical instrument，stringed，C．A．Ahlstrom．
Nails，machine for making screw，H．Dunham．
Nut，J．H．Burdick．
Nut，J．H．Burdick．
Oarsman＇s harness，F．F．Martin
Octave coupler，J．A．Hendrick．
Overcheck spreader or bar
Pack．
Pail，dinneer，J．Robinson
Patal
Pants stretcher，E．Bommer．
Paper box，angular，D．S．
Paper cilip，F．A．Weeks．
Pens，pencili，etc．，holder for，F．J．W．Fischer． Photogranhic camera，D．A．A．Bu
Photographic camera，O．Hyde．．．．．．．．．．．
Pianofortes．key frame for，P．Gmehlin．
ianos，pedal reed organi attachment for，A．All－
Pigeonihole case，A．D．Hobbie．．． Pillow sham holder， S ．
Pin．See Bonnet pin．

Pin．See Bonnet pin． Pipe．See Conductor pipe

Pipe wrench，J．Clark．．．．．．．．．．．．．．．．．
Pitcher forsirup，milk，etc．，J．A．Frey
Pitman，G．L．K．Morrow
corn， ，I．I．Skiles．．．．．．．．．．．．．．．．．．．．．．
Plaster fastener，F．M．Lampson et al
Platform．See Car safety platform．
Plow，W．W．Webb．．．．．

Plamber＇s clamp，E．W．Harding ．．．．．．．．．．．．．．．．．
Pneumatic dispatch systems，comblined gate and
b block for，Bryson；Jr．，\＆Mudge．．．．．．．．．．．．．．．．．
Post．See Fence post．
Potter＇s mould，J．S．Mayer．．．．．．．．．．．．．．．．．．．356，，733，
Pottery kiln，J．S．Mayer．．．．．．．．．．．．．．．．．．．．．． Power．See Foot power． Printing press． Printing press．
Printer＇s block，J．A．Burke．．．
 M．Gally
Protector．See Railway joint protector
Pulp screen clearel
Pump，W．W．Cully
Pump，S．Gil．．
Pumps，plunger fone，N．Oley Pumps，plunger for deep well，J．D Howara
Pumps，plunger for oil well，E．P．Landas．．． Punching．machine for fy
 Rack．See Broom holding rack．Measuring rack．
Railway，cable．C．Wise．．．．．．．．．．．．．．．．．．．．．． 357,16
Rail way，elevated．Cole \＆Wyman．．．．．．．．．．．．．．． 356,987

Railway rail chair or fastening，W．Goldie．．．．．．
Railway rails to their fish plates at the rail join locking，J．Tittle．．．．．．．．．．．．
Railway signal，A．B．Snyder．

ston．．．
Railway time signal，C．M．Clinton．．．．．．．．．．．．
Railway tracks，machine for laying，D．S．Moore Rand and making the same．，F．F．Raymond，2d．．．．
Reel．See Carpet cleaning reel．Clothes line reel．
eel supporting arm，J．B．Gemmill Refrigerators，ice holder for，T．s．Doherty．．．．．．．．．．
Refuse burner，E．．．，Teed．．．．．．．．．．．．．．．．．．． Regulator．See Water regulator．Wind reg
lator． Releasing hook，a
Revolver，Johnson
Rivet，！L．O．Dion． evoiver，Johnson \＆Fyrber
Rivet，IL．O．Dion．．．．．．．．．．．
od．See Manipulating rod．
Roller．See Land roller．
Rolling screws，machine for，H．A．Harvey， Roof，sheet metal，F．F．Sagendorph．．．．．．．．．．．．．．．． H．Snyder．
Sad iron，G．J．
Sad iron，G．J．\＆J．P．Múr．．．．．．．．．．．．．．
Sails，reefing and furling，
saw fling machine，R．Nolen et al
Saw handle，C．W．Boynton．．．
Sawmill，band，J．E．Emerson．
Sawmill feed mechanism，A．B．La．．．．．．
Sawmill set works，W．L．Raynes．．．． saws，machine for straightening and truing band， J．E．Emerson．．．．．．．．．．．．．．．．．．．．．．．．
Scale，electrical weighing．W．M．Hunt． Scraper，dirt，$\dot{\text { N．}}$ ．Engelhart
eal lock，J．M．Aube
Seed hulls，treating cotton，G．E．Moore．
ewer cleaner，T． H ．Dưy．．．．．．．．．．．．．． Sewer gate，C．Geiker．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Sewing machine tables，receptacle for，G．．Gray
Sewing machines，buttonhole cutting attachment for buttonhole，F．W．Ostrom（r）．．．．．． Sewirg machines，presser foot for，W．R．Parsons 356，
Shaking bolt，W．S．Parker at al ．．．．．．．．．．．．．．．．．．．． Sheet metal，ornamenting，v．Fountain．． hirt，I．H．Mambert．

Shoe vamp burnishing machine，W．F．Hutchin－

Signal．Electric signal．Railway signal．Railway
Skirt，safety．Sutton \＆Wood．．．．．．．．．
Slate sawing machine．J．H．Rudolp
oap and other substances，machin for m．．．．．．．．357，
A．Doll ．．
Spectacles，nose piece for，J．J．Frawley． Speculum，J．E．Woodbridge．．
Spindle．See Spinning spindle．
spindle．See Spinning spindle． Steam boiler．E．B．Birge
Steam engine，C．Gibbs．．．．．．．
Steam generator，V．Colliau． Steam generator，R．G．Ferguson． Steel forgings，manufacture of，R．Bagale Stirrup，D．B．Comly．．．．．．．．．．．．．
Stop metion，W．S．McKiney． Store service apparatus，I．Birge． Stove attachment，cooking，o．D．Spalding．．． Stove lid，G．Hunt． taches or furnaces，smoke and
tachent for，E．R．Howard． Straw or hay stacker，
Straw cutter，J．Diek
Supporter．See Garment suppo
Switch．See Telephone switch． witches aid signais，electrical hterlocking mech－ anism for，G．Westing iouse，Jr． Tambourine，I．Hoseus．
Tank．See Flushing tank． Morand．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Tea kettle，H ．Sangster Telegrapn，autographic，J．H．Robertson．．．．．．．．．．．．．．．．．38，， tem for E P Wercher multiple switch board sys－ tem for，．．P．Warner．．．．．．．．
Telephone hook，F．C．Watkins． Telephone signal，F，C．Watkins Telephone system，J．O．Stockweli． Tellurian，P．Rule．
 Thills，machine for bendin
tague．．．．．．．．．．．．．．．
iles to form elbows，branches，etc．．．．．．．．．．．．．．．．．．
catting drain，E．A．Stare ．．．．．．．．．．．．．．．
linsmith＇s beading machine，A．Shepard．
Tire，carriage wheel．J．U．Bu Toboggan，A．Putnam，J．．．．．．．．．．．． 356，865

Tooth：artiflcial，L．T．Sheffeld
Traction engine，c． Traction wheel，C．H．Roberts．
Transom lifter，L．T．Walker． Transom lifter，L．T．
Trap．See Fish trap． Trestle，M．S．Like．
Tripod．F ．Reinecke Trousers stretcher，C．．．．．．．．．．

$$
\begin{aligned}
& \text { Tube. See Carriage speaking tube. } \\
& \text { Tubes, device for trimming the ends of, H. Querol }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tubes, device for trimming the ends of, ㅌ. Quero } \\
& \text { y Delgado................................... } \\
& \text { Twine and bag holder, I. Dodson et al.......... }
\end{aligned}
$$

Twine and bag holder, I. DDodson et al... ©

Type mould，J．M．Conner．．．．．．．．．．．．．
Type writing machine，N．
Umbrella show case，C．M．To
Valve，circular slide，W．C．Churc
Valve，steam engine．P．Armington Vhicle body brace，W．W．
Vehicle gear，G．C．Burch Vehicle，side spring，W．A．Pater
Vehicle，two－wheeled，F．L．Perry Vehicle，two－wheeled，B．F．Rix．． Velocimeter，recording，J．Boy Velocipede，weston \＆Smit Ventilator．See Car ventilator． Vise，pipe and rod，W．D．Forbes． Wagon stake，Conover \＆Brink．
Wall paper，B．F．Holbrook．．．．． Warp beam，E．P．Collins Washing machine，W．Fitzpatrick Washing machine，A．Green．．．．．．．．．．．．．．．．．
Washing machine，Newton \＆Fitzpatrick Watch crowns，manufacture of，，H．H．Yarringto Hoffmann．．．．．．．．．．．．．．．．．．．．．．．．．． Water meter with revolving non－rotating pisto．．．．．． J．A．Tiden ．．．．．．
Water motor，H．Geer．．．．．．．．．．．．．．．．．．．．．．．．．．．．

Water regulator and accumulator for house pu
poses，A．J．L．Loretz．．．．．．
Water wheel bucket，L．Biggio
Water wheel bucket，L．Biggio．．．．．．．．．．．．．．．．．．．．．．
Welding wrought iron to cast iron，W．W．Bur
Wheel．See Car wheel．Traction wheel． Wind regulator，auto
Window，H．Tintrop．
Window frame and sas
Wire fabrics，machine for forming netted，T． Wire，machine for drawing，Wyker \＆Storm． Wire stretcher，D．R．De Haven． Wooden rods．machine for polishing，H，H．Plumb．．．．．．
Wooden rods or sticks，machine for polishing，
 Woven fabric，Hoult \＆Hel Wrench．See Pipe wrench．
Wringer．See Mop wringer．

DESIGNS．

Corsets，ornamentation of，C．A．Griswold．．．17，079to 17，081 Gas fixture．F．Hickm
Hinge，J．Tiebout．．．．
Hinge，J．Tiebout．．．．
Panel，F．Mankeo．．．．
Rattle，H．E．Collins．
Rattle，H．E．Collins．．．．．
Stove，heating，L．Kahn
Stove，heating，L．Kahn ．．．．．．．．
Suspenders，H．C．Whitmarsh

TRADE MARKS

Baking powder，powdered，acid phosphate of lime Bitters，stomach，H．P．Van Dijk．．．
Cigars and cigarettes，W．McGraw．． Cigars and cigarettes，W．McGraw Collars and cuffs，celluloid，Arlington Collar and
cuff Company．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Corn in the form of flakes，product of Indian，Gaff， Gent \＆Thomas．．．
utlery，A．J．Jordan．
Diapers，Canfield Rubber Company
Electric or givanic
Electric or galvanic batteries，H．B．
Flour，wheat，Galaxy Mill Company Food for infants and invalids．soluble，Reapd：\＆ Carnrick．．
Gas fixtures，superheating，E． P Gleason Mapu－
 Heel and sole plates，Sacks \＆Richmond．．．．．
Kid or morocco，mat and glazed，C．s．Solme Lozenges，tablets，sticks，and drops，cough，Chase
 Medicinal plasters，Johnson \＆Johnson．．．．．．．．．．．．．．
Medicine for internal and external use，liquid， Sloan．．．．．．．．．．．．．．．．．．．．．．．．．．．
Oil，cod liver，J．J．McCarty．．．
Ointment，L．B．Weymouth $\&$ Co．．．．
Ointments and salves，C．P．Caldwell
Petroleum，reflned，Lombard，Ayres \＆Company．
Rings，solld watch cases，and other
oolid gold flnger，H．Muhr＇s Sons．．． Shirts，J．Godhelp

Soap，laundry，Oberne． Stockings，A．W．Starke
 Hosick \＆Co．

Suspenders and braces，Suffolk Manufacturing
Company ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Company ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．14，038， smoking，B．F．Hanes．
smost，Bridgeport Yeast Company．
Watch cases of gold，silver，and other metals and
alloys of metal，Brooklyn Watch Case
alloys of metal，Brooklyn Watch Case Com－
pany．．14，0
A printed copy of the specifcation and drawing o
any patent in the foregoing list，also of any patent
issued since 186f，will be furnished from this office for 25
cents．In ordering please state the number and date
of the patent desired，and remit to Munn \＆Co．， 361 Broadway，New York．We alsofurnish copies of patents
granted prior to 1866 ；but at increased cost，as the specific
hand．
Canadinn Patents may now be obtained by the
inventors for any of the inventions named in the fore－ going list，provided they are simple，at a cost of $\$ 40$
eaich．If complicated the cost will be a little more．For
fuil in New York．OLuer foreigr patents maja abo be obtained．

みたまvertisements．

 SOIENTIFTC AMERICAN SUPPLE

NOTICE

The Publishers，haring a few sets of
VAN NOSTRAND＇S
ENGINEERING MAGAZINE remaining，offer ATES：

Sets complete， 35 vols，in sheets， Same，in cloth binding，
$\$ 20.00$ 40.00
Same，in half morocco，．．．． 70.00

d．Van nostrand，Publisher， 23 Murray and 27 Warren Sts．，N．Y． PROPULSION OF STREET CARS．

TRANSMISSION OF STEAM．－A LEC

HOW TO GRAFT．－A VALUABLE PA
 autocoprist： WELLL－BORING BY STEAM WITH A
 The STATUE of LIBERTY，NEW YORK

SINKING MINE SHAFTS．－DE

 THE TELEMETROGRAPH．－DESCRIP

里

Alominginm "the Matainoithas futwre"

The only Treatise in the English Language

ROCK BREAKERS AND ORE CRUSHERS

OTTO GAS ENGINE. GUARANTEED TO CONSUME 25 to \%5 A NY DOING THE GAS ENGINE

The Techno-Chemical Receipt Book.

SMALL STEAM YACHTS AND STEAM

 ON STEAM BOILERS.-A LECTURE

FOREIGN PATENTS Their Cost Reduced.
The expenses attending the procuring of patents in
most foreign countries having been considerably re most foreign countries having been considerably re
duced the obstacle of cost is no longer in the way of large proportion of our inventors patenting theirinven
tona abroad.
CA . The cost of a patent in canada is even Jess than the cost of a United states patent, and the Pormer raclades the Provinces of Ontaric, Quebec, , Nee Branas
tobi.
Then The number of our patentees who avall themselves of patents in canada is very large, and is steadily increas.
lig. ${ }_{\text {Lig. }}^{\text {EN }}$ torce on Jan. 1st. 1885, enabbes parties to secure patent in Great Britain on very moderate terms. ABritish patent includes England, Scotland, Wales, Ireland and the Channel Islands. Great Britain is the acknowiedged
Anaticial and commercial center of the world and he anaucial and commercial center of the world. and het
goods are sent to every quarter of the globe. A good Invention is like'y to realize as much for the patentee
In Inglund as bis United Btates patent produces for lu Kngland as bis United States patent produces for
him at hame. and the small cost now renders it possible for almost every patentee in this country to secure a pa
 on very reasonabie terms in France, Belgium, Germany Austria. Russla. Italy, Spain (the later includes Cuba
and all the other Spanish Colonies), Brazll, British Iudia Australia, and the other British Colonies.
An experienee of roortr yeari has enabled the
publishers of THe Scientific AmbuIon to establish competent and trust toreign countries, and it has almays been their alm to have the buginess of their elients promptly and properIv done and their interests faithfully guarded.
A pamphlet containing a synopsis of the patent laws
if all countries, inclading the cost for each, and othe information useful to persons contemplating the prothis office.
MUN N \& CNO.. Editors and Proprietors of THE SCIENTIFIC AMERICAN, cordially invite all persons desiring
anj information ie:anve to patents, or the registry any information re:anve to patents, or the registry of
trade-marks, in this country or abroad, to cull at their trade-marks, in this country or abroad. to call at their
offiees, sm Broadway. Exammation of inventions, congiltation. and advice free. Inquiries by mail promptly inswered.

MUNN \& CO.
Publishers and Patent Sons
 Buifing, near 7th Street, Wasminion, D. C.

 standard BELTING, PACKING, HOSE, and WHEELS. Adaress for new circular, NEW YORK BELTING \& PACKING CO. Warehouse: 15 Park Row, opp. Astor House, New York
52 Summer St., Boston
Chestnut St. Phila..
anches: 308 Chestnut St., Phila..,
JoHN H. CeEEVE, Treas.

PEROXYD OF HYDROGEN. -THE

WA NTED 9 ,999 Broom Corm Growers andMan fac

1hodas's
Universal Angle Union Combining an elbow and unina, and can be set at mentiacturuers \& Whoieane. zolistone yaceine $00 ., 48$ wator st., ficcebora, yass. D R I V IN G-BELTSS.-A PAPER BY

NEWSPAPER FTLE

The Koch Patent File, For preserving newspapers,
 ${ }^{\text {everyone }}$. ${ }^{\text {and }}$ MUNN \& \& CO COLishers

CE \& REFRIGERATING

 Warranted to
Stand All Acid Test.

${ }_{4}^{\mathrm{B}}$
 VELOCITY OF ICE BOATS. A COLLEC

CAARLADAWAEALALASA CALDWED, NVIVIE SPIRAL STEEL CONVEYOR,

ARTESIAN WELLS.-BY T. C. CHAM

 Have you that you W A A A mant manu acture
 WILLIAM B. ORR\& ., Allegheny, Pa.
 Stand

(THE bMEAPEST AND BEST: 67 PAFKK Pl\&ACE. NEW YORK

 Witic

PPECIAL MACHINERY For Grinding and Polishing Manufactured by The Somersworth Machine Co.

$\$ 10.00 \text { to } \$ 50.00$

NOTICE!

 H. Weindel, 405 N. 4th St., Philadelphia, Pa. AR'IISTIC BRONZE CASTING.-A

. New Catalogue of Valuable Papers

Until quite recently, considerable difficulty has been experienced by inventors n obtaining patents in both Brazil and Mexico. The requirements of the officials of these countries caused much bother and delay, and the expenses of a patent orresponded therewith.
But there no longer exists that trouble and delay in obtaining patents in either country. The proprietors of this paper have perfected arrangements with resident professional gentlemen in both countries, Brazil and Mexico, which en ables them to obtain patents within reasonable time and at reasonable cost.
These two countries embrace an enor mous area of territory, and makers of im proved machinery and implements are now finding a market for their products in those countries.

The cost need no longer deter inventors from obtaining patents in either Brazil or Mexico.
For further information address MUNN \& CO.,
Proprietors Scientific American,
361 Broadway, New York.

CURE Fir DEAF

ONSUMPTION:

THE HAMMER TELEPHONE.-BY L De Locht Labye. Description of the apparatug, Its

peration, Land the apparent contradiction by it of the
Bell theory of contlous

ARTESIAN

IOE-HOUSE AND REFRTGERATOR

Mineral Lands Prospected
Artesian Wells Bored Superior Stationary

-

A Now Drill Chuck
 THE CUSHMAN CHUCK CO Ha
any dea dealer in machinists, Tools.
A SKETCH OF ROMAN BUILDING

VOLNEY W. MASON \& CO. PRICTION POLLETS CLUTCHES and ELEVATORS GAS FOR COOKING PURPOSES.-BY

HISTORY OF THE ELECTRRICAL ART

PATENTS.

ME SRS. MUNN \& CO., In connection with the publi-
cation of the SCIENTIFIC AmRRICAN, continue to examine im provements, and to act as Solicitors of Patents for Inventors
In this line of business they have had forty-one vears' preparation of Patent Drawings, specifications, and the prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs Munn \& for Books, Liabels, Reissues. Assignments, and Reports
 them is done with
A pamphlet sent free of charge, on application, con-
taining full information about Patents and how to pro-
cure them; directions concerning cure them; directions concerning Labels, Copyrig hts,
Deasiga, Patents, Apeals, RRissoues, Infringements, As,
signemts, Rejected Cases, Hints on the Sale of PaWe also send, free of charge, a Aynopsis of Foreign Pa-
tent Lsws showng the cotat and method of socuring
patents in all the principal countries of the worlic MUNN \& CO., Solicitors of Patentes. 381 Broedway, New York.
BRANCH OFFICES.-NO. W2a and 24 F Street, Pa

RUBBER BELTING, PACKITIG, HOSE,

 MECHANICAL and MANUFAGTURINGPURPOSES. The Largest and Most Extensive Manufacturers in America. THE GUTTA PERCHA AND RUBBER MFG. CO New York, Chicago, San Francisco, Toronto.

Barnes' Foot-Power Machinery.
complete outfits for Actual Worksnop
Business. Read what a customer sass
und

PRINCIPLES INVOLVED IN THE CON-

THE DINGEB \&'CONABD CO'S

For 18 Years our Great Specinity has boon
 3 PLO 12 PLANTS 81088 per Hondred.

RAILS FOR STREET RAILROADS--

> BARREL, KEQ,
> Hogshead, STAVE MA CHINERY \& B. Holmes,

A IRATER OEFEER

If you will put a JENK INS BROS. VALVE on the worst place you can find, where you
 To avoid imposition, see that valves are stamped "Jenkins Bros,"

JENKINS BROS.,
$\boldsymbol{y} 1$ John St., New York.
13 MEDICATED SOAPS. - A PAPER BY

JACKETATENT KETTLES,
 614 and 616 Market st, Philadeelphia. Pa.
THE ERODING POWER OF, IUE.-A

THE CURTIS RETURN For returning steam ocnanope
 TH waste. Manuacatured by
THR CORTIS REGULATOR CO., ICE-HOUSE AND COLD ROOM.-BY R.

CAPILLARY TUBES, SPONTANEOUS

 owsdealers. EVERY USER OF MACHINERY How to Use Loose Pallegs.

 95 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March th, 1876, No. 174,465, and January 30th 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.
CANNED FOOD-AN INTERESTING

 Order from our "Special List." Order from our
THD JOHN T. NOYE MFG. OO.,

THE IRON AND COAL DISTRICTS

MOSDELUS

§゙ientific American

The Most Popular Scientific Paper in the World Only 83.00 a Year, including Postage. Weekly.
This widely circulated and splendidly illustrated paper is publisted weekly. Every number contains sixteen pages of useful iuformation and a large number of original engravings of new inventions and discoveries, New Inventions, Novelties in Mechanics, Mannecuinery Chemistry, Electricity Telegraphy, Pbotography, Architecture, Agriculture, Horticulture, Natural History, eta. All Classes of Readers fimid th the sousnura Amprican a popular reaume of the best sclentiffic in-
formation of the day; and it is the aim of the publishers to present it in an attractiveform, avoiding as much a possible abstruse terms. To every intelligent mind, his journal afords a constant supply of instructive every community where it circulates Terims of Subscription.-One cons THPIC American will be sent for one year- 52 numberapostage prepaia, to any subscriber in the United State lishers; six months, 81.50 ; three months, $\$ 1.00$. Clubs. - One extria copy of the Scien tipic Amer CAN will be supplied gratisfor every club of five subecriber at 83.00 each; additional coples at same proportionate
rate rate.
The saf The safest way to remit is by Postal Order. Draft, o Express Money Order. Money carefully placed Inside seldom goes astray, but is at the sender's risk. Ad able to MIUININ \& CO.,

361 Broadway, New York. TEIE
Scientific American Supplement.
This is a separate and distinct pubication from in size, every number containing sixteen large pages weekly, and includes a fery wide range of contents. presents the most recent papers by eminent writers in
all the principal departments of Sclence and the all the principal departments of Sclence and the
Useful Arts, embracing Biology, Geclogy, Mineralogy Natural History, Geography, A rchæology. Astronomy Chemistry, Electricity, Light, Heat, Mechanical Engi neering. Steam and Railway Engineering, Mining Ship Building, Marine Engineering, Photogruphy, Technology, Manufacturing Industries, Sanitary En
gineering, Agriculture, Horticulture, Domestic Econo my, Biography, Medicine, etc. A vast amount of fresh and valuable information pertaining to these and allied subjects is given, the whole profusely illustrated wit engravings.
The most important Ensineering Works, Mechanisms
and Manufactures at home and abroad are represente and described in the Supplement.
Price for the SUPPLEMRNT for the United States and Canala, zi.un a year, for one year for $\$ 7.00$. Address and remit by posta order. express money order, or check,

MUNN \& Con 361 Broadway, N. Y., Pabishers Scientific ambrican.
To Foreign Subscribers.- Under the faclitles of
the Postal Union,the Scientific Amerioan is now sent by post direct from New York, with regularity, to sub British colonies to Tha Anstria, Belgin, Russia, and all other European States; Japan, Brazil, Mexico, and all states of Central and South America. Terms, when sent to foreign countries, Canada excepte 84, gola, for Soientific American, one year; \$9, gold
for both ScIENTIFIC American and Supplement fo one year. This includes postare, which we pay. Remi by postal or express money order. or draft to order of

PRTHMWITE THTKE
THE "Scientific American", is printed with CHAS,
ENEV JOHNSON \& CO.S NK. Tenth and Ioan
bard Sta., Phila., and 47 Rose St., pop. Daane St, N.Y.

